/* * VC-1 and WMV3 decoder * Copyright (c) 2011 Mashiat Sarker Shakkhar * Copyright (c) 2006-2007 Konstantin Shishkov * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * VC-1 and WMV3 block decoding routines */ #include "avcodec.h" #include "mpegutils.h" #include "mpegvideo.h" #include "msmpeg4data.h" #include "unary.h" #include "vc1.h" #include "vc1_pred.h" #include "vc1acdata.h" #include "vc1data.h" #define MB_INTRA_VLC_BITS 9 #define DC_VLC_BITS 9 // offset tables for interlaced picture MVDATA decoding static const uint8_t offset_table[2][9] = { { 0, 1, 2, 4, 8, 16, 32, 64, 128 }, { 0, 1, 3, 7, 15, 31, 63, 127, 255 }, }; /***********************************************************************/ /** * @name VC-1 Bitplane decoding * @see 8.7, p56 * @{ */ static inline void init_block_index(VC1Context *v) { MpegEncContext *s = &v->s; ff_init_block_index(s); if (v->field_mode && !(v->second_field ^ v->tff)) { s->dest[0] += s->current_picture_ptr->f->linesize[0]; s->dest[1] += s->current_picture_ptr->f->linesize[1]; s->dest[2] += s->current_picture_ptr->f->linesize[2]; } } /** @} */ //Bitplane group static void vc1_put_blocks_clamped(VC1Context *v, int put_signed) { MpegEncContext *s = &v->s; uint8_t *dest; int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6; int fieldtx = 0; int i; /* The put pixels loop is one MB row and one MB column behind the decoding * loop because we can only put pixels when overlap filtering is done. For * interlaced frame pictures, however, the put pixels loop is only one * column behind the decoding loop as interlaced frame pictures only need * horizontal overlap filtering. */ if (!s->first_slice_line && v->fcm != ILACE_FRAME) { if (s->mb_x) { for (i = 0; i < block_count; i++) { if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] : v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) { dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8; if (put_signed) s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest, i > 3 ? s->uvlinesize : s->linesize); else s->idsp.put_pixels_clamped(v->block[v->topleft_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest, i > 3 ? s->uvlinesize : s->linesize); } } } if (s->mb_x == s->mb_width - 1) { for (i = 0; i < block_count; i++) { if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] : v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) { dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8; if (put_signed) s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest, i > 3 ? s->uvlinesize : s->linesize); else s->idsp.put_pixels_clamped(v->block[v->top_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest, i > 3 ? s->uvlinesize : s->linesize); } } } } if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) { if (s->mb_x) { if (v->fcm == ILACE_FRAME) fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1]; for (i = 0; i < block_count; i++) { if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] : v->mb_type[0][s->block_index[i] - 2]) { if (fieldtx) dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8; else dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8; if (put_signed) s->idsp.put_signed_pixels_clamped(v->block[v->left_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 : dest, i > 3 ? s->uvlinesize : s->linesize << fieldtx); else s->idsp.put_pixels_clamped(v->block[v->left_blk_idx][i], i > 3 ? s->dest[i - 3] - 8 : dest, i > 3 ? s->uvlinesize : s->linesize << fieldtx); } } } if (s->mb_x == s->mb_width - 1) { if (v->fcm == ILACE_FRAME) fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x]; for (i = 0; i < block_count; i++) { if (v->mb_type[0][s->block_index[i]]) { if (fieldtx) dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8; else dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8; if (put_signed) s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i], i > 3 ? s->dest[i - 3] : dest, i > 3 ? s->uvlinesize : s->linesize << fieldtx); else s->idsp.put_pixels_clamped(v->block[v->cur_blk_idx][i], i > 3 ? s->dest[i - 3] : dest, i > 3 ? s->uvlinesize : s->linesize << fieldtx); } } } } } #define inc_blk_idx(idx) do { \ idx++; \ if (idx >= v->n_allocated_blks) \ idx = 0; \ } while (0) /***********************************************************************/ /** * @name VC-1 Block-level functions * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ /** * @def GET_MQUANT * @brief Get macroblock-level quantizer scale */ #define GET_MQUANT() \ if (v->dquantfrm) { \ int edges = 0; \ if (v->dqprofile == DQPROFILE_ALL_MBS) { \ if (v->dqbilevel) { \ mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \ } else { \ mqdiff = get_bits(gb, 3); \ if (mqdiff != 7) \ mquant = -v->pq - mqdiff; \ else \ mquant = -get_bits(gb, 5); \ } \ } \ if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \ edges = 1 << v->dqsbedge; \ else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \ edges = (3 << v->dqsbedge) % 15; \ else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \ edges = 15; \ if ((edges&1) && !s->mb_x) \ mquant = -v->altpq; \ if ((edges&2) && !s->mb_y) \ mquant = -v->altpq; \ if ((edges&4) && s->mb_x == (s->mb_width - 1)) \ mquant = -v->altpq; \ if ((edges&8) && \ s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \ mquant = -v->altpq; \ if (!mquant || mquant > 31) { \ av_log(v->s.avctx, AV_LOG_ERROR, \ "Overriding invalid mquant %d\n", mquant); \ mquant = 1; \ } \ } /** * @def GET_MVDATA(_dmv_x, _dmv_y) * @brief Get MV differentials * @see MVDATA decoding from 8.3.5.2, p(1)20 * @param _dmv_x Horizontal differential for decoded MV * @param _dmv_y Vertical differential for decoded MV */ #define GET_MVDATA(_dmv_x, _dmv_y) \ index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \ VC1_MV_DIFF_VLC_BITS, 2); \ if (index > 36) { \ mb_has_coeffs = 1; \ index -= 37; \ } else \ mb_has_coeffs = 0; \ s->mb_intra = 0; \ if (!index) { \ _dmv_x = _dmv_y = 0; \ } else if (index == 35) { \ _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \ _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \ } else if (index == 36) { \ _dmv_x = 0; \ _dmv_y = 0; \ s->mb_intra = 1; \ } else { \ index1 = index % 6; \ _dmv_x = offset_table[1][index1]; \ val = size_table[index1] - (!s->quarter_sample && index1 == 5); \ if (val > 0) { \ val = get_bits(gb, val); \ sign = 0 - (val & 1); \ _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \ } \ \ index1 = index / 6; \ _dmv_y = offset_table[1][index1]; \ val = size_table[index1] - (!s->quarter_sample && index1 == 5); \ if (val > 0) { \ val = get_bits(gb, val); \ sign = 0 - (val & 1); \ _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \ } \ } static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x, int *dmv_y, int *pred_flag) { int index, index1; int extend_x, extend_y; GetBitContext *gb = &v->s.gb; int bits, esc; int val, sign; if (v->numref) { bits = VC1_2REF_MVDATA_VLC_BITS; esc = 125; } else { bits = VC1_1REF_MVDATA_VLC_BITS; esc = 71; } extend_x = v->dmvrange & 1; extend_y = (v->dmvrange >> 1) & 1; index = get_vlc2(gb, v->imv_vlc->table, bits, 3); if (index == esc) { *dmv_x = get_bits(gb, v->k_x); *dmv_y = get_bits(gb, v->k_y); if (v->numref) { if (pred_flag) *pred_flag = *dmv_y & 1; *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1; } } else { av_assert0(index < esc); index1 = (index + 1) % 9; if (index1 != 0) { val = get_bits(gb, index1 + extend_x); sign = 0 - (val & 1); *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign; } else *dmv_x = 0; index1 = (index + 1) / 9; if (index1 > v->numref) { val = get_bits(gb, (index1 >> v->numref) + extend_y); sign = 0 - (val & 1); *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign; } else *dmv_y = 0; if (v->numref && pred_flag) *pred_flag = index1 & 1; } } /** Reconstruct motion vector for B-frame and do motion compensation */ static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode) { if (direct) { ff_vc1_mc_1mv(v, 0); ff_vc1_interp_mc(v); return; } if (mode == BMV_TYPE_INTERPOLATED) { ff_vc1_mc_1mv(v, 0); ff_vc1_interp_mc(v); return; } ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD)); } /** Get predicted DC value for I-frames only * prediction dir: left=0, top=1 * @param s MpegEncContext * @param overlap flag indicating that overlap filtering is used * @param pq integer part of picture quantizer * @param[in] n block index in the current MB * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred, scale; int16_t *dc_val; static const uint16_t dcpred[32] = { -1, 1024, 512, 341, 256, 205, 171, 146, 128, 114, 102, 93, 85, 79, 73, 68, 64, 60, 57, 54, 51, 49, 47, 45, 43, 41, 39, 38, 37, 35, 34, 33 }; /* find prediction - wmv3_dc_scale always used here in fact */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; wrap = s->block_wrap[n]; dc_val = s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; if (pq < 9 || !overlap) { /* Set outer values */ if (s->first_slice_line && (n != 2 && n != 3)) b = a = dcpred[scale]; if (s->mb_x == 0 && (n != 1 && n != 3)) b = c = dcpred[scale]; } else { /* Set outer values */ if (s->first_slice_line && (n != 2 && n != 3)) b = a = 0; if (s->mb_x == 0 && (n != 1 && n != 3)) b = c = 0; } if (abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1; // left } else { pred = a; *dir_ptr = 0; // top } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** Get predicted DC value * prediction dir: left=0, top=1 * @param s MpegEncContext * @param overlap flag indicating that overlap filtering is used * @param pq integer part of picture quantizer * @param[in] n block index in the current MB * @param a_avail flag indicating top block availability * @param c_avail flag indicating left block availability * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int a_avail, int c_avail, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred; int16_t *dc_val; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int q1, q2 = 0; int dqscale_index; /* scale predictors if needed */ q1 = FFABS(s->current_picture.qscale_table[mb_pos]); dqscale_index = s->y_dc_scale_table[q1] - 1; if (dqscale_index < 0) return 0; wrap = s->block_wrap[n]; dc_val = s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; if (c_avail && (n != 1 && n != 3)) { q2 = FFABS(s->current_picture.qscale_table[mb_pos - 1]); if (q2 && q2 != q1) c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18; } if (a_avail && (n != 2 && n != 3)) { q2 = FFABS(s->current_picture.qscale_table[mb_pos - s->mb_stride]); if (q2 && q2 != q1) a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18; } if (a_avail && c_avail && (n != 3)) { int off = mb_pos; if (n != 1) off--; if (n != 2) off -= s->mb_stride; q2 = FFABS(s->current_picture.qscale_table[off]); if (q2 && q2 != q1) b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18; } if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) { pred = c; *dir_ptr = 1; // left } else if (a_avail) { pred = a; *dir_ptr = 0; // top } else { pred = 0; *dir_ptr = 1; // left } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** @} */ // Block group /** * @name VC1 Macroblock-level functions in Simple/Main Profiles * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr) { int xy, wrap, pred, a, b, c; xy = s->block_index[n]; wrap = s->b8_stride; /* B C * A X */ a = s->coded_block[xy - 1 ]; b = s->coded_block[xy - 1 - wrap]; c = s->coded_block[xy - wrap]; if (b == c) { pred = a; } else { pred = c; } /* store value */ *coded_block_ptr = &s->coded_block[xy]; return pred; } /** * Decode one AC coefficient * @param v The VC1 context * @param last Last coefficient * @param skip How much zero coefficients to skip * @param value Decoded AC coefficient value * @param codingset set of VLC to decode data * @see 8.1.3.4 */ static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset) { GetBitContext *gb = &v->s.gb; int index, run, level, lst, sign; index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); if (index != ff_vc1_ac_sizes[codingset] - 1) { run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0; sign = get_bits1(gb); } else { int escape = decode210(gb); if (escape != 2) { index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset]; if (escape == 0) { if (lst) level += vc1_last_delta_level_table[codingset][run]; else level += vc1_delta_level_table[codingset][run]; } else { if (lst) run += vc1_last_delta_run_table[codingset][level] + 1; else run += vc1_delta_run_table[codingset][level] + 1; } sign = get_bits1(gb); } else { lst = get_bits1(gb); if (v->s.esc3_level_length == 0) { if (v->pq < 8 || v->dquantfrm) { // table 59 v->s.esc3_level_length = get_bits(gb, 3); if (!v->s.esc3_level_length) v->s.esc3_level_length = get_bits(gb, 2) + 8; } else { // table 60 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2; } v->s.esc3_run_length = 3 + get_bits(gb, 2); } run = get_bits(gb, v->s.esc3_run_length); sign = get_bits1(gb); level = get_bits(gb, v->s.esc3_level_length); } } *last = lst; *skip = run; *value = (level ^ -sign) + sign; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param[in] n subblock index * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data */ static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n, int coded, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff, scale; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0) { av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0; if (dcdiff == 119 /* ESC index value */) { dcdiff = get_bits(gb, 8 + m); } else { if (m) dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1); } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; block[0] = dcdiff * scale; ac_val = s->ac_val[0][s->block_index[n]]; ac_val2 = ac_val; if (dc_pred_dir) // left ac_val -= 16; else // top ac_val -= 16 * s->block_wrap[n]; scale = v->pq * 2 + v->halfpq; //AC Decoding i = !!coded; if (coded) { int last = 0, skip, value; const uint8_t *zz_table; int k; if (v->s.ac_pred) { if (!dc_pred_dir) zz_table = v->zz_8x8[2]; else zz_table = v->zz_8x8[3]; } else zz_table = v->zz_8x8[1]; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if (i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if (s->ac_pred) { int sh; if (dc_pred_dir) { // left sh = v->left_blk_sh; } else { // top sh = v->top_blk_sh; ac_val += 8; } for (k = 1; k < 8; k++) block[k << sh] += ac_val[k]; } /* save AC coeffs for further prediction */ for (k = 1; k < 8; k++) { ac_val2[k] = block[k << v->left_blk_sh]; ac_val2[k + 8] = block[k << v->top_blk_sh]; } /* scale AC coeffs */ for (k = 1; k < 64; k++) if (block[k]) { block[k] *= scale; if (!v->pquantizer) block[k] += (block[k] < 0) ? -v->pq : v->pq; } } else { int k; memset(ac_val2, 0, 16 * 2); /* apply AC prediction if needed */ if (s->ac_pred) { int sh; if (dc_pred_dir) { //left sh = v->left_blk_sh; } else { // top sh = v->top_blk_sh; ac_val += 8; ac_val2 += 8; } memcpy(ac_val2, ac_val, 8 * 2); for (k = 1; k < 8; k++) { block[k << sh] = ac_val[k] * scale; if (!v->pquantizer && block[k << sh]) block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq; } } } if (s->ac_pred) i = 63; s->block_last_index[n] = i; return 0; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param[in] n subblock number * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data * @param mquant quantizer value for this macroblock */ static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n, int coded, int codingset, int mquant) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val = NULL; int16_t *ac_val, *ac_val2; int dcdiff; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int quant = FFABS(mquant); /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0) { av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { const int m = (quant == 1 || quant == 2) ? 3 - quant : 0; if (dcdiff == 119 /* ESC index value */) { dcdiff = get_bits(gb, 8 + m); } else { if (m) dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1); } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; block[0] = dcdiff * scale; /* check if AC is needed at all */ if (!a_avail && !c_avail) use_pred = 0; scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq); ac_val = s->ac_val[0][s->block_index[n]]; ac_val2 = ac_val; if (dc_pred_dir) // left ac_val -= 16; else // top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if (n == 3) q2 = q1; else if (dc_pred_dir) { if (n == 1) q2 = q1; else if (c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; } else { if (n == 2) q2 = q1; else if (a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; } //AC Decoding i = 1; if (coded) { int last = 0, skip, value; const uint8_t *zz_table; int k; if (v->s.ac_pred) { if (!use_pred && v->fcm == ILACE_FRAME) { zz_table = v->zzi_8x8; } else { if (!dc_pred_dir) // top zz_table = v->zz_8x8[2]; else // left zz_table = v->zz_8x8[3]; } } else { if (v->fcm != ILACE_FRAME) zz_table = v->zz_8x8[1]; else zz_table = v->zzi_8x8; } while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if (i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if (use_pred) { int sh; if (dc_pred_dir) { // left sh = v->left_blk_sh; } else { // top sh = v->top_blk_sh; ac_val += 8; } /* scale predictors if needed*/ q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (q2) q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1; if (q2 && q1 != q2) { for (k = 1; k < 8; k++) block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { for (k = 1; k < 8; k++) block[k << sh] += ac_val[k]; } } /* save AC coeffs for further prediction */ for (k = 1; k < 8; k++) { ac_val2[k ] = block[k << v->left_blk_sh]; ac_val2[k + 8] = block[k << v->top_blk_sh]; } /* scale AC coeffs */ for (k = 1; k < 64; k++) if (block[k]) { block[k] *= scale; if (!v->pquantizer) block[k] += (block[k] < 0) ? -quant : quant; } } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); /* apply AC prediction if needed */ if (use_pred) { int sh; if (dc_pred_dir) { // left sh = v->left_blk_sh; } else { // top sh = v->top_blk_sh; ac_val += 8; ac_val2 += 8; } memcpy(ac_val2, ac_val, 8 * 2); q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (q2) q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1; if (q2 && q1 != q2) { for (k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } for (k = 1; k < 8; k++) { block[k << sh] = ac_val2[k] * scale; if (!v->pquantizer && block[k << sh]) block[k << sh] += (block[k << sh] < 0) ? -quant : quant; } } } if (use_pred) i = 63; s->block_last_index[n] = i; return 0; } /** Decode intra block in inter frames - more generic version than vc1_decode_i_block * @param v VC1Context * @param block block to decode * @param[in] n subblock index * @param coded are AC coeffs present or not * @param mquant block quantizer * @param codingset set of VLC to decode data */ static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n, int coded, int mquant, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val = NULL; int16_t *ac_val, *ac_val2; int dcdiff; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; int quant = FFABS(mquant); s->bdsp.clear_block(block); /* XXX: Guard against dumb values of mquant */ quant = av_clip_uintp2(quant, 5); /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[quant]; s->c_dc_scale = s->c_dc_scale_table[quant]; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0) { av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { const int m = (quant == 1 || quant == 2) ? 3 - quant : 0; if (dcdiff == 119 /* ESC index value */) { dcdiff = get_bits(gb, 8 + m); } else { if (m) dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1); } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } //AC Decoding i = 1; /* check if AC is needed at all and adjust direction if needed */ if (!a_avail) dc_pred_dir = 1; if (!c_avail) dc_pred_dir = 0; if (!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][s->block_index[n]]; ac_val2 = ac_val; scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq); if (dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if (dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if (dc_pred_dir && n == 1) q2 = q1; if (!dc_pred_dir && n == 2) q2 = q1; if (n == 3) q2 = q1; if (coded) { int last = 0, skip, value; int k; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if (i > 63) break; if (v->fcm == PROGRESSIVE) block[v->zz_8x8[0][i++]] = value; else { if (use_pred && (v->fcm == ILACE_FRAME)) { if (!dc_pred_dir) // top block[v->zz_8x8[2][i++]] = value; else // left block[v->zz_8x8[3][i++]] = value; } else { block[v->zzi_8x8[i++]] = value; } } } /* apply AC prediction if needed */ if (use_pred) { /* scale predictors if needed*/ q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (q2) q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1; if (q2 && q1 != q2) { if (dc_pred_dir) { // left for (k = 1; k < 8; k++) block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { //top for (k = 1; k < 8; k++) block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if (dc_pred_dir) { // left for (k = 1; k < 8; k++) block[k << v->left_blk_sh] += ac_val[k]; } else { // top for (k = 1; k < 8; k++) block[k << v->top_blk_sh] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for (k = 1; k < 8; k++) { ac_val2[k ] = block[k << v->left_blk_sh]; ac_val2[k + 8] = block[k << v->top_blk_sh]; } /* scale AC coeffs */ for (k = 1; k < 64; k++) if (block[k]) { block[k] *= scale; if (!v->pquantizer) block[k] += (block[k] < 0) ? -quant : quant; } if (use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if (dc_pred_dir) { // left if (use_pred) { memcpy(ac_val2, ac_val, 8 * 2); q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (q2) q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1; if (q2 && q1 != q2) { for (k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else { // top if (use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (q2) q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1; if (q2 && q1 != q2) { for (k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if (use_pred) { if (dc_pred_dir) { // left for (k = 1; k < 8; k++) { block[k << v->left_blk_sh] = ac_val2[k] * scale; if (!v->pquantizer && block[k << v->left_blk_sh]) block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant; } } else { // top for (k = 1; k < 8; k++) { block[k << v->top_blk_sh] = ac_val2[k + 8] * scale; if (!v->pquantizer && block[k << v->top_blk_sh]) block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode P block */ static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n, int mquant, int ttmb, int first_block, uint8_t *dst, int linesize, int skip_block, int *ttmb_out) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int subblkpat = 0; int scale, off, idx, last, skip, value; int ttblk = ttmb & 7; int pat = 0; int quant = FFABS(mquant); s->bdsp.clear_block(block); if (ttmb == -1) { ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)]; } if (ttblk == TT_4X4) { subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1); } if ((ttblk != TT_8X8 && ttblk != TT_4X4) && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block)) || (!v->res_rtm_flag && !first_block))) { subblkpat = decode012(gb); if (subblkpat) subblkpat ^= 3; // swap decoded pattern bits if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4; if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8; } scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq); // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) { subblkpat = 2 - (ttblk == TT_8X4_TOP); ttblk = TT_8X4; } if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) { subblkpat = 2 - (ttblk == TT_4X8_LEFT); ttblk = TT_4X8; } switch (ttblk) { case TT_8X8: pat = 0xF; i = 0; last = 0; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if (i > 63) break; if (!v->fcm) idx = v->zz_8x8[0][i++]; else idx = v->zzi_8x8[i++]; block[idx] = value * scale; if (!v->pquantizer) block[idx] += (block[idx] < 0) ? -quant : quant; } if (!skip_block) { if (i == 1) v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block); else { v->vc1dsp.vc1_inv_trans_8x8(block); s->idsp.add_pixels_clamped(block, dst, linesize); } } break; case TT_4X4: pat = ~subblkpat & 0xF; for (j = 0; j < 4; j++) { last = subblkpat & (1 << (3 - j)); i = 0; off = (j & 1) * 4 + (j & 2) * 16; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if (i > 15) break; if (!v->fcm) idx = ff_vc1_simple_progressive_4x4_zz[i++]; else idx = ff_vc1_adv_interlaced_4x4_zz[i++]; block[idx + off] = value * scale; if (!v->pquantizer) block[idx + off] += (block[idx + off] < 0) ? -quant : quant; } if (!(subblkpat & (1 << (3 - j))) && !skip_block) { if (i == 1) v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off); else v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off); } } break; case TT_8X4: pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF; for (j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 32; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if (i > 31) break; if (!v->fcm) idx = v->zz_8x4[i++] + off; else idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off; block[idx] = value * scale; if (!v->pquantizer) block[idx] += (block[idx] < 0) ? -quant : quant; } if (!(subblkpat & (1 << (1 - j))) && !skip_block) { if (i == 1) v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off); else v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off); } } break; case TT_4X8: pat = ~(subblkpat * 5) & 0xF; for (j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 4; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if (i > 31) break; if (!v->fcm) idx = v->zz_4x8[i++] + off; else idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off; block[idx] = value * scale; if (!v->pquantizer) block[idx] += (block[idx] < 0) ? -quant : quant; } if (!(subblkpat & (1 << (1 - j))) && !skip_block) { if (i == 1) v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off); else v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off); } } break; } if (ttmb_out) *ttmb_out |= ttblk << (n * 4); return pat; } /** @} */ // Macroblock group static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 }; /** Decode one P-frame MB */ static int vc1_decode_p_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int index, index1; /* LUT indexes */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, fourmv; int block_cbp = 0, pat, block_tt = 0, block_intra = 0; mquant = v->pq; /* lossy initialization */ if (v->mv_type_is_raw) fourmv = get_bits1(gb); else fourmv = v->mv_type_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; if (!fourmv) { /* 1MV mode */ if (!skipped) { GET_MVDATA(dmv_x, dmv_y); if (s->mb_intra) { s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; } s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16; ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0); /* FIXME Set DC val for inter block ? */ if (s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->ac_pred = get_bits1(gb); cbp = 0; } else if (mb_has_coeffs) { if (s->mb_intra) s->ac_pred = get_bits1(gb); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); } else { mquant = v->pq; cbp = 0; } s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); if (!s->mb_intra) ff_vc1_mc_1mv(v, 0); dst_idx = 0; for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if (s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]); if (v->rangeredfrm) for (j = 0; j < 64; j++) v->block[v->cur_blk_idx][i][j] <<= 1; block_cbp |= 0xF << (i << 2); block_intra |= 1 << i; } else if (val) { pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize, CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } else { // skipped s->mb_intra = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.qscale_table[mb_pos] = 0; ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0); ff_vc1_mc_1mv(v, 0); } } else { // 4MV mode if (!skipped /* unskipped MB */) { int intra_count = 0, coded_inter = 0; int is_intra[6], is_coded[6]; /* Get CBPCY */ cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); for (i = 0; i < 6; i++) { val = ((cbp >> (5 - i)) & 1); s->dc_val[0][s->block_index[i]] = 0; s->mb_intra = 0; if (i < 4) { dmv_x = dmv_y = 0; s->mb_intra = 0; mb_has_coeffs = 0; if (val) { GET_MVDATA(dmv_x, dmv_y); } ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0); if (!s->mb_intra) ff_vc1_mc_4mv_luma(v, i, 0, 0); intra_count += s->mb_intra; is_intra[i] = s->mb_intra; is_coded[i] = mb_has_coeffs; } if (i & 4) { is_intra[i] = (intra_count >= 3); is_coded[i] = val; } if (i == 4) ff_vc1_mc_4mv_chroma(v, 0); v->mb_type[0][s->block_index[i]] = is_intra[i]; if (!coded_inter) coded_inter = !is_intra[i] & is_coded[i]; } // if there are no coded blocks then don't do anything more dst_idx = 0; if (!intra_count && !coded_inter) goto end; GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* test if block is intra and has pred */ { int intrapred = 0; for (i = 0; i < 6; i++) if (is_intra[i]) { if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]]) || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) { intrapred = 1; break; } } if (intrapred) s->ac_pred = get_bits1(gb); else s->ac_pred = 0; } if (!v->ttmbf && coded_inter) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i = 0; i < 6; i++) { dst_idx += i >> 2; off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); s->mb_intra = is_intra[i]; if (is_intra[i]) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, is_coded[i], mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]); if (v->rangeredfrm) for (j = 0; j < 64; j++) v->block[v->cur_blk_idx][i][j] <<= 1; block_cbp |= 0xF << (i << 2); block_intra |= 1 << i; } else if (is_coded[i]) { pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize, CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } else { // skipped MB s->mb_intra = 0; s->current_picture.qscale_table[mb_pos] = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } for (i = 0; i < 4; i++) { ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0); ff_vc1_mc_4mv_luma(v, i, 0, 0); } ff_vc1_mc_4mv_chroma(v, 0); s->current_picture.qscale_table[mb_pos] = 0; } } end: if (v->overlap && v->pq >= 9) ff_vc1_p_overlap_filter(v); vc1_put_blocks_clamped(v, 1); v->cbp[s->mb_x] = block_cbp; v->ttblk[s->mb_x] = block_tt; v->is_intra[s->mb_x] = block_intra; return 0; } /* Decode one macroblock in an interlaced frame p picture */ static int vc1_decode_p_mb_intfr(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int val; /* temp value */ int first_block = 1; int dst_idx, off; int skipped, fourmv = 0, twomv = 0; int block_cbp = 0, pat, block_tt = 0; int idx_mbmode = 0, mvbp; int fieldtx; mquant = v->pq; /* Lossy initialization */ if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; if (!skipped) { if (v->fourmvswitch) idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done else idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) { /* store the motion vector type in a flag (useful later) */ case MV_PMODE_INTFR_4MV: fourmv = 1; v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; break; case MV_PMODE_INTFR_4MV_FIELD: fourmv = 1; v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; break; case MV_PMODE_INTFR_2MV_FIELD: twomv = 1; v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; break; case MV_PMODE_INTFR_1MV: v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; break; } if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB for (i = 0; i < 4; i++) { s->current_picture.motion_val[1][s->block_index[i]][0] = 0; s->current_picture.motion_val[1][s->block_index[i]][1] = 0; } v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1. s->mb_intra = 1; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb); mb_has_coeffs = get_bits1(gb); if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same (not sure if necessary here) */ s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)]; s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)]; dst_idx = 0; for (i = 0; i < 6; i++) { v->a_avail = v->c_avail = 0; v->mb_type[0][s->block_index[i]] = 1; s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]); if (i < 4) off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize; else off = 0; block_cbp |= 0xf << (i << 2); } } else { // inter MB mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3]; if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) { v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1); } else { if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV) || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) { v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1); } } s->mb_intra = v->is_intra[s->mb_x] = 0; for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0; fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1]; /* for all motion vector read MVDATA and motion compensate each block */ dst_idx = 0; if (fourmv) { mvbp = v->fourmvbp; for (i = 0; i < 4; i++) { dmv_x = dmv_y = 0; if (mvbp & (8 >> i)) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_4mv_luma(v, i, 0, 0); } ff_vc1_mc_4mv_chroma4(v, 0, 0, 0); } else if (twomv) { mvbp = v->twomvbp; dmv_x = dmv_y = 0; if (mvbp & 2) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_4mv_luma(v, 0, 0, 0); ff_vc1_mc_4mv_luma(v, 1, 0, 0); dmv_x = dmv_y = 0; if (mvbp & 1) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_4mv_luma(v, 2, 0, 0); ff_vc1_mc_4mv_luma(v, 3, 0, 0); ff_vc1_mc_4mv_chroma4(v, 0, 0, 0); } else { mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2]; dmv_x = dmv_y = 0; if (mvbp) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_1mv(v, 0); } if (cbp) GET_MQUANT(); // p. 227 s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && cbp) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (!fieldtx) off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); else off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize)); if (val) { pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : (s->linesize << fieldtx), CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } } else { // skipped s->mb_intra = v->is_intra[s->mb_x] = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.qscale_table[mb_pos] = 0; v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_1mv(v, 0); v->fieldtx_plane[mb_pos] = 0; } if (v->overlap && v->pq >= 9) ff_vc1_p_overlap_filter(v); vc1_put_blocks_clamped(v, 1); v->cbp[s->mb_x] = block_cbp; v->ttblk[s->mb_x] = block_tt; return 0; } static int vc1_decode_p_mb_intfi(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int val; /* temp values */ int first_block = 1; int dst_idx, off; int pred_flag = 0; int block_cbp = 0, pat, block_tt = 0; int idx_mbmode = 0; mquant = v->pq; /* Lossy initialization */ idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2); if (idx_mbmode <= 1) { // intra MB v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1. s->mb_intra = 1; s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0; s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0; s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA; GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same (not sure if necessary here) */ s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)]; s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)]; v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb); mb_has_coeffs = idx_mbmode & 1; if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2); dst_idx = 0; for (i = 0; i < 6; i++) { v->a_avail = v->c_avail = 0; v->mb_type[0][s->block_index[i]] = 1; s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); block_cbp |= 0xf << (i << 2); } } else { s->mb_intra = v->is_intra[s->mb_x] = 0; s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16; for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0; if (idx_mbmode <= 5) { // 1-MV dmv_x = dmv_y = pred_flag = 0; if (idx_mbmode & 1) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag); } ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0); ff_vc1_mc_1mv(v, 0); mb_has_coeffs = !(idx_mbmode & 2); } else { // 4-MV v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1); for (i = 0; i < 4; i++) { dmv_x = dmv_y = pred_flag = 0; if (v->fourmvbp & (8 >> i)) get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag); ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0); ff_vc1_mc_4mv_luma(v, i, 0, 0); } ff_vc1_mc_4mv_chroma(v, 0); mb_has_coeffs = idx_mbmode & 1; } if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); if (cbp) { GET_MQUANT(); } s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && cbp) { ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); } dst_idx = 0; for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize; if (val) { pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize, CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } if (v->overlap && v->pq >= 9) ff_vc1_p_overlap_filter(v); vc1_put_blocks_clamped(v, 1); v->cbp[s->mb_x] = block_cbp; v->ttblk[s->mb_x] = block_tt; return 0; } /** Decode one B-frame MB (in Main profile) */ static void vc1_decode_b_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 0; /* last_flag */ int index, index1; /* LUT indexes */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, direct; int dmv_x[2], dmv_y[2]; int bmvtype = BMV_TYPE_BACKWARD; mquant = v->pq; /* lossy initialization */ s->mb_intra = 0; if (v->dmb_is_raw) direct = get_bits1(gb); else direct = v->direct_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.qscale_table[mb_pos] = 0; if (!direct) { if (!skipped) { GET_MVDATA(dmv_x[0], dmv_y[0]); dmv_x[1] = dmv_x[0]; dmv_y[1] = dmv_y[0]; } if (skipped || !s->mb_intra) { bmvtype = decode012(gb); switch (bmvtype) { case 0: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD; break; case 1: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD; break; case 2: bmvtype = BMV_TYPE_INTERPOLATED; dmv_x[0] = dmv_y[0] = 0; } } } for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = s->mb_intra; if (skipped) { if (direct) bmvtype = BMV_TYPE_INTERPOLATED; ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if (direct) { cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->mb_intra = 0; s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0; ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } else { if (!mb_has_coeffs && !s->mb_intra) { /* no coded blocks - effectively skipped */ ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if (s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; s->ac_pred = get_bits1(gb); cbp = 0; ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); } else { if (bmvtype == BMV_TYPE_INTERPOLATED) { GET_MVDATA(dmv_x[0], dmv_y[0]); if (!mb_has_coeffs) { /* interpolated skipped block */ ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } } ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); if (!s->mb_intra) { vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } if (s->mb_intra) s->ac_pred = get_bits1(gb); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); } } dst_idx = 0; for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if (s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(s->block[i]); if (v->rangeredfrm) for (j = 0; j < 64; j++) s->block[i][j] <<= 1; s->idsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize); } else if (val) { vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize, CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } /** Decode one B-frame MB (in interlaced field B picture) */ static void vc1_decode_b_mb_intfi(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 0; /* last_flag */ int val; /* temp value */ int first_block = 1; int dst_idx, off; int fwd; int dmv_x[2], dmv_y[2], pred_flag[2]; int bmvtype = BMV_TYPE_BACKWARD; int block_cbp = 0, pat, block_tt = 0; int idx_mbmode; mquant = v->pq; /* Lossy initialization */ s->mb_intra = 0; idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2); if (idx_mbmode <= 1) { // intra MB v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1. s->mb_intra = 1; s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA; GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same (not sure if necessary here) */ s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)]; s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)]; v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb); mb_has_coeffs = idx_mbmode & 1; if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2); dst_idx = 0; for (i = 0; i < 6; i++) { v->a_avail = v->c_avail = 0; v->mb_type[0][s->block_index[i]] = 1; s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(s->block[i]); if (v->rangeredfrm) for (j = 0; j < 64; j++) s->block[i][j] <<= 1; off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); s->idsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize); } } else { s->mb_intra = v->is_intra[s->mb_x] = 0; s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16; for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0; if (v->fmb_is_raw) fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb); else fwd = v->forward_mb_plane[mb_pos]; if (idx_mbmode <= 5) { // 1-MV int interpmvp = 0; dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0; pred_flag[0] = pred_flag[1] = 0; if (fwd) bmvtype = BMV_TYPE_FORWARD; else { bmvtype = decode012(gb); switch (bmvtype) { case 0: bmvtype = BMV_TYPE_BACKWARD; break; case 1: bmvtype = BMV_TYPE_DIRECT; break; case 2: bmvtype = BMV_TYPE_INTERPOLATED; interpmvp = get_bits1(gb); } } v->bmvtype = bmvtype; if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) { get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]); } if (interpmvp) { get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]); } if (bmvtype == BMV_TYPE_DIRECT) { dmv_x[0] = dmv_y[0] = pred_flag[0] = 0; dmv_x[1] = dmv_y[1] = pred_flag[0] = 0; if (!s->next_picture_ptr->field_picture) { av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n"); return; } } ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag); vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype); mb_has_coeffs = !(idx_mbmode & 2); } else { // 4-MV if (fwd) bmvtype = BMV_TYPE_FORWARD; v->bmvtype = bmvtype; v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1); for (i = 0; i < 4; i++) { dmv_x[0] = dmv_y[0] = pred_flag[0] = 0; dmv_x[1] = dmv_y[1] = pred_flag[1] = 0; if (v->fourmvbp & (8 >> i)) { get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]); } ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag); ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0); } ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD); mb_has_coeffs = idx_mbmode & 1; } if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); if (cbp) { GET_MQUANT(); } s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && cbp) { ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); } dst_idx = 0; for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize; if (val) { pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize, CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } v->cbp[s->mb_x] = block_cbp; v->ttblk[s->mb_x] = block_tt; } /** Decode one B-frame MB (in interlaced frame B picture) */ static int vc1_decode_b_mb_intfr(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mvsw = 0; /* motion vector switch */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int val; /* temp value */ int first_block = 1; int dst_idx, off; int skipped, direct, twomv = 0; int block_cbp = 0, pat, block_tt = 0; int idx_mbmode = 0, mvbp; int stride_y, fieldtx; int bmvtype = BMV_TYPE_BACKWARD; int dir, dir2; mquant = v->pq; /* Lossy initialization */ s->mb_intra = 0; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; if (!skipped) { idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) { twomv = 1; v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; } else { v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; } } if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB for (i = 0; i < 4; i++) { s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0; s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0; s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0; s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0; } v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1. s->mb_intra = 1; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb); mb_has_coeffs = get_bits1(gb); if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same (not sure if necessary here) */ s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)]; s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)]; dst_idx = 0; for (i = 0; i < 6; i++) { v->a_avail = v->c_avail = 0; v->mb_type[0][s->block_index[i]] = 1; s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(s->block[i]); if (i < 4) { stride_y = s->linesize << fieldtx; off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize; } else { stride_y = s->uvlinesize; off = 0; } s->idsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y); } } else { s->mb_intra = v->is_intra[s->mb_x] = 0; if (v->dmb_is_raw) direct = get_bits1(gb); else direct = v->direct_mb_plane[mb_pos]; if (direct) { if (s->next_picture_ptr->field_picture) av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n"); s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample); s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample); s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample); s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample); if (twomv) { s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample); s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample); s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample); s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample); for (i = 1; i < 4; i += 2) { s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0]; s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1]; s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0]; s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1]; } } else { for (i = 1; i < 4; i++) { s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0]; s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1]; s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0]; s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1]; } } } if (!direct) { if (skipped || !s->mb_intra) { bmvtype = decode012(gb); switch (bmvtype) { case 0: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD; break; case 1: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD; break; case 2: bmvtype = BMV_TYPE_INTERPOLATED; } } if (twomv && bmvtype != BMV_TYPE_INTERPOLATED) mvsw = get_bits1(gb); } if (!skipped) { // inter MB mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3]; if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); if (!direct) { if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) { v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1); } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) { v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1); } } for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0; fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1]; /* for all motion vector read MVDATA and motion compensate each block */ dst_idx = 0; if (direct) { if (twomv) { for (i = 0; i < 4; i++) { ff_vc1_mc_4mv_luma(v, i, 0, 0); ff_vc1_mc_4mv_luma(v, i, 1, 1); } ff_vc1_mc_4mv_chroma4(v, 0, 0, 0); ff_vc1_mc_4mv_chroma4(v, 1, 1, 1); } else { ff_vc1_mc_1mv(v, 0); ff_vc1_interp_mc(v); } } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) { mvbp = v->fourmvbp; for (i = 0; i < 4; i++) { dir = i==1 || i==3; dmv_x = dmv_y = 0; val = ((mvbp >> (3 - i)) & 1); if (val) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); j = i > 1 ? 2 : 0; ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir); ff_vc1_mc_4mv_luma(v, j, dir, dir); ff_vc1_mc_4mv_luma(v, j+1, dir, dir); } ff_vc1_mc_4mv_chroma4(v, 0, 0, 0); ff_vc1_mc_4mv_chroma4(v, 1, 1, 1); } else if (bmvtype == BMV_TYPE_INTERPOLATED) { mvbp = v->twomvbp; dmv_x = dmv_y = 0; if (mvbp & 2) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_mc_1mv(v, 0); dmv_x = dmv_y = 0; if (mvbp & 1) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1); ff_vc1_interp_mc(v); } else if (twomv) { dir = bmvtype == BMV_TYPE_BACKWARD; dir2 = dir; if (mvsw) dir2 = !dir; mvbp = v->twomvbp; dmv_x = dmv_y = 0; if (mvbp & 2) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir); dmv_x = dmv_y = 0; if (mvbp & 1) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2); if (mvsw) { for (i = 0; i < 2; i++) { s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0]; s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1]; s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0]; s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1]; } } else { ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir); ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir); } ff_vc1_mc_4mv_luma(v, 0, dir, 0); ff_vc1_mc_4mv_luma(v, 1, dir, 0); ff_vc1_mc_4mv_luma(v, 2, dir2, 0); ff_vc1_mc_4mv_luma(v, 3, dir2, 0); ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0); } else { dir = bmvtype == BMV_TYPE_BACKWARD; mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2]; dmv_x = dmv_y = 0; if (mvbp) get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir); v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir); for (i = 0; i < 2; i++) { s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0]; s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1]; } ff_vc1_mc_1mv(v, dir); } if (cbp) GET_MQUANT(); // p. 227 s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && cbp) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (!fieldtx) off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); else off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize)); if (val) { pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : (s->linesize << fieldtx), CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } else { // skipped dir = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.qscale_table[mb_pos] = 0; v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; if (!direct) { if (bmvtype == BMV_TYPE_INTERPOLATED) { ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0); ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1); } else { dir = bmvtype == BMV_TYPE_BACKWARD; ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir); if (mvsw) { int dir2 = dir; if (mvsw) dir2 = !dir; for (i = 0; i < 2; i++) { s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0]; s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1]; s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0]; s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1]; } } else { v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir); for (i = 0; i < 2; i++) { s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0]; s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1]; } } } } ff_vc1_mc_1mv(v, dir); if (direct || bmvtype == BMV_TYPE_INTERPOLATED) { ff_vc1_interp_mc(v); } v->fieldtx_plane[mb_pos] = 0; } } v->cbp[s->mb_x] = block_cbp; v->ttblk[s->mb_x] = block_tt; return 0; } /** Decode blocks of I-frame */ static void vc1_decode_i_blocks(VC1Context *v) { int k, j; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; /* select coding mode used for VLC tables selection */ switch (v->y_ac_table_index) { case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch (v->c_ac_table_index) { case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[v->pq]; s->c_dc_scale = s->c_dc_scale_table[v->pq]; //do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) { s->mb_x = 0; init_block_index(v); for (; s->mb_x < v->end_mb_x; s->mb_x++) { int16_t (*block)[64] = v->block[v->cur_blk_idx]; ff_update_block_index(s); s->bdsp.clear_blocks(block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_width; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; s->current_picture.qscale_table[mb_pos] = v->pq; for (int i = 0; i < 4; i++) { s->current_picture.motion_val[1][s->block_index[i]][0] = 0; s->current_picture.motion_val[1][s->block_index[i]][1] = 0; } // do actual MB decoding and displaying cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); v->s.ac_pred = get_bits1(&v->s.gb); for (k = 0; k < 6; k++) { v->mb_type[0][s->block_index[k]] = 1; val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); vc1_decode_i_block(v, block[k], k, val, (k < 4) ? v->codingset : v->codingset2); if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(block[k]); } if (v->overlap && v->pq >= 9) { ff_vc1_i_overlap_filter(v); if (v->rangeredfrm) for (k = 0; k < 6; k++) for (j = 0; j < 64; j++) block[k][j] <<= 1; vc1_put_blocks_clamped(v, 1); } else { if (v->rangeredfrm) for (k = 0; k < 6; k++) for (j = 0; j < 64; j++) block[k][j] = (block[k][j] - 64) << 1; vc1_put_blocks_clamped(v, 0); } if (v->s.loop_filter) ff_vc1_i_loop_filter(v); if (get_bits_count(&s->gb) > v->bits) { ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2); v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2); v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2); v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2); } if (!v->s.loop_filter) ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16); else if (s->mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16); s->first_slice_line = 0; } if (v->s.loop_filter) ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16); /* This is intentionally mb_height and not end_mb_y - unlike in advanced * profile, these only differ are when decoding MSS2 rectangles. */ ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END); } /** Decode blocks of I-frame for advanced profile */ static void vc1_decode_i_blocks_adv(VC1Context *v) { int k; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; int mquant; int mqdiff; GetBitContext *gb = &s->gb; /* select coding mode used for VLC tables selection */ switch (v->y_ac_table_index) { case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch (v->c_ac_table_index) { case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } // do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; s->mb_y = s->start_mb_y; if (s->start_mb_y) { s->mb_x = 0; init_block_index(v); memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0, (1 + s->b8_stride) * sizeof(*s->coded_block)); } for (; s->mb_y < s->end_mb_y; s->mb_y++) { s->mb_x = 0; init_block_index(v); for (;s->mb_x < s->mb_width; s->mb_x++) { int16_t (*block)[64] = v->block[v->cur_blk_idx]; mquant = v->pq; ff_update_block_index(s); s->bdsp.clear_blocks(block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_stride; s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA; for (int i = 0; i < 4; i++) { s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0; s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0; } // do actual MB decoding and displaying if (v->fieldtx_is_raw) v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb); cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); if (v->acpred_is_raw) v->s.ac_pred = get_bits1(&v->s.gb); else v->s.ac_pred = v->acpred_plane[mb_pos]; if (v->condover == CONDOVER_SELECT && v->overflg_is_raw) v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)]; s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)]; for (k = 0; k < 6; k++) { v->mb_type[0][s->block_index[k]] = 1; val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); v->a_avail = !s->first_slice_line || (k == 2 || k == 3); v->c_avail = !!s->mb_x || (k == 1 || k == 3); vc1_decode_i_block_adv(v, block[k], k, val, (k < 4) ? v->codingset : v->codingset2, mquant); if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(block[k]); } if (v->overlap && v->condover != CONDOVER_NONE) ff_vc1_i_overlap_filter(v); vc1_put_blocks_clamped(v, 1); if (v->s.loop_filter) ff_vc1_i_loop_filter(v); if (get_bits_count(&s->gb) > v->bits) { // TODO: may need modification to handle slice coding ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } inc_blk_idx(v->topleft_blk_idx); inc_blk_idx(v->top_blk_idx); inc_blk_idx(v->left_blk_idx); inc_blk_idx(v->cur_blk_idx); } if (!v->s.loop_filter) ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16); else if (s->mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16); s->first_slice_line = 0; } if (v->s.loop_filter) ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16); ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1, (s->end_mb_y << v->field_mode) - 1, ER_MB_END); } static void vc1_decode_p_blocks(VC1Context *v) { MpegEncContext *s = &v->s; int apply_loop_filter; /* select coding mode used for VLC tables selection */ switch (v->c_ac_table_index) { case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch (v->c_ac_table_index) { case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY); s->first_slice_line = 1; memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride); for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) { s->mb_x = 0; init_block_index(v); for (; s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); if (v->fcm == ILACE_FIELD) { vc1_decode_p_mb_intfi(v); if (apply_loop_filter) ff_vc1_p_loop_filter(v); } else if (v->fcm == ILACE_FRAME) { vc1_decode_p_mb_intfr(v); if (apply_loop_filter) ff_vc1_p_intfr_loop_filter(v); } else { vc1_decode_p_mb(v); if (apply_loop_filter) ff_vc1_p_loop_filter(v); } if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { // TODO: may need modification to handle slice coding ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y); return; } inc_blk_idx(v->topleft_blk_idx); inc_blk_idx(v->top_blk_idx); inc_blk_idx(v->left_blk_idx); inc_blk_idx(v->cur_blk_idx); } memmove(v->cbp_base, v->cbp - s->mb_stride, sizeof(v->cbp_base[0]) * 2 * s->mb_stride); memmove(v->ttblk_base, v->ttblk - s->mb_stride, sizeof(v->ttblk_base[0]) * 2 * s->mb_stride); memmove(v->is_intra_base, v->is_intra - s->mb_stride, sizeof(v->is_intra_base[0]) * 2 * s->mb_stride); memmove(v->luma_mv_base, v->luma_mv - s->mb_stride, sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride); if (s->mb_y != s->start_mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16); s->first_slice_line = 0; } if (s->end_mb_y >= s->start_mb_y) ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16); ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1, (s->end_mb_y << v->field_mode) - 1, ER_MB_END); } static void vc1_decode_b_blocks(VC1Context *v) { MpegEncContext *s = &v->s; /* select coding mode used for VLC tables selection */ switch (v->c_ac_table_index) { case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch (v->c_ac_table_index) { case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } s->first_slice_line = 1; for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) { s->mb_x = 0; init_block_index(v); for (; s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); if (v->fcm == ILACE_FIELD) { vc1_decode_b_mb_intfi(v); if (v->s.loop_filter) ff_vc1_b_intfi_loop_filter(v); } else if (v->fcm == ILACE_FRAME) { vc1_decode_b_mb_intfr(v); if (v->s.loop_filter) ff_vc1_p_intfr_loop_filter(v); } else { vc1_decode_b_mb(v); if (v->s.loop_filter) ff_vc1_i_loop_filter(v); } if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { // TODO: may need modification to handle slice coding ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y); return; } } memmove(v->cbp_base, v->cbp - s->mb_stride, sizeof(v->cbp_base[0]) * 2 * s->mb_stride); memmove(v->ttblk_base, v->ttblk - s->mb_stride, sizeof(v->ttblk_base[0]) * 2 * s->mb_stride); memmove(v->is_intra_base, v->is_intra - s->mb_stride, sizeof(v->is_intra_base[0]) * 2 * s->mb_stride); if (!v->s.loop_filter) ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16); else if (s->mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16); s->first_slice_line = 0; } if (v->s.loop_filter) ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16); ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1, (s->end_mb_y << v->field_mode) - 1, ER_MB_END); } static void vc1_decode_skip_blocks(VC1Context *v) { MpegEncContext *s = &v->s; if (!v->s.last_picture.f->data[0]) return; ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END); s->first_slice_line = 1; for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) { s->mb_x = 0; init_block_index(v); ff_update_block_index(s); memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16); memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } s->pict_type = AV_PICTURE_TYPE_P; } void ff_vc1_decode_blocks(VC1Context *v) { v->s.esc3_level_length = 0; if (v->x8_type) { ff_intrax8_decode_picture(&v->x8, &v->s.current_picture, &v->s.gb, &v->s.mb_x, &v->s.mb_y, 2 * v->pq + v->halfpq, v->pq * !v->pquantizer, v->s.loop_filter, v->s.low_delay); ff_er_add_slice(&v->s.er, 0, 0, (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1, ER_MB_END); } else { v->cur_blk_idx = 0; v->left_blk_idx = -1; v->topleft_blk_idx = 1; v->top_blk_idx = 2; switch (v->s.pict_type) { case AV_PICTURE_TYPE_I: if (v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); break; case AV_PICTURE_TYPE_P: if (v->p_frame_skipped) vc1_decode_skip_blocks(v); else vc1_decode_p_blocks(v); break; case AV_PICTURE_TYPE_B: if (v->bi_type) { if (v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); } else vc1_decode_b_blocks(v); break; } } }