/* * DSP utils * Copyright (c) 2000, 2001, 2002 Fabrice Bellard * Copyright (c) 2002-2004 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/dsputil.h * DSP utils. * note, many functions in here may use MMX which trashes the FPU state, it is * absolutely necessary to call emms_c() between dsp & float/double code */ #ifndef AVCODEC_DSPUTIL_H #define AVCODEC_DSPUTIL_H #include "libavutil/intreadwrite.h" #include "avcodec.h" //#define DEBUG /* dct code */ typedef short DCTELEM; typedef int DWTELEM; typedef short IDWTELEM; void fdct_ifast (DCTELEM *data); void fdct_ifast248 (DCTELEM *data); void ff_jpeg_fdct_islow (DCTELEM *data); void ff_fdct248_islow (DCTELEM *data); void j_rev_dct (DCTELEM *data); void j_rev_dct4 (DCTELEM *data); void j_rev_dct2 (DCTELEM *data); void j_rev_dct1 (DCTELEM *data); void ff_wmv2_idct_c(DCTELEM *data); void ff_fdct_mmx(DCTELEM *block); void ff_fdct_mmx2(DCTELEM *block); void ff_fdct_sse2(DCTELEM *block); void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride); void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride); void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block); void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block); void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); void ff_float_to_int16_c(int16_t *dst, const float *src, long len); void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels); /* encoding scans */ extern const uint8_t ff_alternate_horizontal_scan[64]; extern const uint8_t ff_alternate_vertical_scan[64]; extern const uint8_t ff_zigzag_direct[64]; extern const uint8_t ff_zigzag248_direct[64]; /* pixel operations */ #define MAX_NEG_CROP 1024 /* temporary */ extern uint32_t ff_squareTbl[512]; extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP]; /* VP3 DSP functions */ void ff_vp3_idct_c(DCTELEM *block/* align 16*/); void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values); void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values); /* VP6 DSP functions */ void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride, const int16_t *h_weights, const int16_t *v_weights); /* 1/2^n downscaling functions from imgconvert.c */ void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy, int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height); /* minimum alignment rules ;) If you notice errors in the align stuff, need more alignment for some ASM code for some CPU or need to use a function with less aligned data then send a mail to the ffmpeg-devel mailing list, ... !warning These alignments might not match reality, (missing attribute((align)) stuff somewhere possible). I (Michael) did not check them, these are just the alignments which I think could be reached easily ... !future video codecs might need functions with less strict alignment */ /* void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size); void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride); void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size); void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size); void clear_blocks_c(DCTELEM *blocks); */ /* add and put pixel (decoding) */ // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16 //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h); typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h); typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y); typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset); typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset); #define DEF_OLD_QPEL(name)\ void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); DEF_OLD_QPEL(qpel16_mc11_old_c) DEF_OLD_QPEL(qpel16_mc31_old_c) DEF_OLD_QPEL(qpel16_mc12_old_c) DEF_OLD_QPEL(qpel16_mc32_old_c) DEF_OLD_QPEL(qpel16_mc13_old_c) DEF_OLD_QPEL(qpel16_mc33_old_c) DEF_OLD_QPEL(qpel8_mc11_old_c) DEF_OLD_QPEL(qpel8_mc31_old_c) DEF_OLD_QPEL(qpel8_mc12_old_c) DEF_OLD_QPEL(qpel8_mc32_old_c) DEF_OLD_QPEL(qpel8_mc13_old_c) DEF_OLD_QPEL(qpel8_mc33_old_c) #define CALL_2X_PIXELS(a, b, n)\ static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\ b(block , pixels , line_size, h);\ b(block+n, pixels+n, line_size, h);\ } /* motion estimation */ // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2 // although currently h<4 is not used as functions with width <8 are neither used nor implemented typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/; // for snow slices typedef struct slice_buffer_s slice_buffer; /** * Scantable. */ typedef struct ScanTable{ const uint8_t *scantable; uint8_t permutated[64]; uint8_t raster_end[64]; #if ARCH_PPC /** Used by dct_quantize_altivec to find last-non-zero */ DECLARE_ALIGNED(16, uint8_t, inverse)[64]; #endif } ScanTable; void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable); void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize, int block_w, int block_h, int src_x, int src_y, int w, int h); /** * DSPContext. */ typedef struct DSPContext { /* pixel ops : interface with DCT */ void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size); void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride); void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size); void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size); int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/); /** * translational global motion compensation. */ void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder); /** * global motion compensation. */ void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy, int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height); void (*clear_block)(DCTELEM *block/*align 16*/); void (*clear_blocks)(DCTELEM *blocks/*align 16*/); int (*pix_sum)(uint8_t * pix, int line_size); int (*pix_norm1)(uint8_t * pix, int line_size); // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4 me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */ me_cmp_func sse[6]; me_cmp_func hadamard8_diff[6]; me_cmp_func dct_sad[6]; me_cmp_func quant_psnr[6]; me_cmp_func bit[6]; me_cmp_func rd[6]; me_cmp_func vsad[6]; me_cmp_func vsse[6]; me_cmp_func nsse[6]; me_cmp_func w53[6]; me_cmp_func w97[6]; me_cmp_func dct_max[6]; me_cmp_func dct264_sad[6]; me_cmp_func me_pre_cmp[6]; me_cmp_func me_cmp[6]; me_cmp_func me_sub_cmp[6]; me_cmp_func mb_cmp[6]; me_cmp_func ildct_cmp[6]; //only width 16 used me_cmp_func frame_skip_cmp[6]; //only width 8 used int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2, int size); /** * Halfpel motion compensation with rounding (a+b+1)>>1. * this is an array[4][4] of motion compensation functions for 4 * horizontal blocksizes (8,16) and the 4 halfpel positions
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ] * @param block destination where the result is stored * @param pixels source * @param line_size number of bytes in a horizontal line of block * @param h height */ op_pixels_func put_pixels_tab[4][4]; /** * Halfpel motion compensation with rounding (a+b+1)>>1. * This is an array[4][4] of motion compensation functions for 4 * horizontal blocksizes (8,16) and the 4 halfpel positions
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ] * @param block destination into which the result is averaged (a+b+1)>>1 * @param pixels source * @param line_size number of bytes in a horizontal line of block * @param h height */ op_pixels_func avg_pixels_tab[4][4]; /** * Halfpel motion compensation with no rounding (a+b)>>1. * this is an array[2][4] of motion compensation functions for 2 * horizontal blocksizes (8,16) and the 4 halfpel positions
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ] * @param block destination where the result is stored * @param pixels source * @param line_size number of bytes in a horizontal line of block * @param h height */ op_pixels_func put_no_rnd_pixels_tab[4][4]; /** * Halfpel motion compensation with no rounding (a+b)>>1. * this is an array[2][4] of motion compensation functions for 2 * horizontal blocksizes (8,16) and the 4 halfpel positions
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ] * @param block destination into which the result is averaged (a+b)>>1 * @param pixels source * @param line_size number of bytes in a horizontal line of block * @param h height */ op_pixels_func avg_no_rnd_pixels_tab[4][4]; void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h); /** * Thirdpel motion compensation with rounding (a+b+1)>>1. * this is an array[12] of motion compensation functions for the 9 thirdpe * positions
* *pixels_tab[ xthirdpel + 4*ythirdpel ] * @param block destination where the result is stored * @param pixels source * @param line_size number of bytes in a horizontal line of block * @param h height */ tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width? tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width? qpel_mc_func put_qpel_pixels_tab[2][16]; qpel_mc_func avg_qpel_pixels_tab[2][16]; qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16]; qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16]; qpel_mc_func put_mspel_pixels_tab[8]; /** * h264 Chroma MC */ h264_chroma_mc_func put_h264_chroma_pixels_tab[3]; h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]; /* This is really one func used in VC-1 decoding */ h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3]; h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3]; qpel_mc_func put_h264_qpel_pixels_tab[4][16]; qpel_mc_func avg_h264_qpel_pixels_tab[4][16]; qpel_mc_func put_2tap_qpel_pixels_tab[4][16]; qpel_mc_func avg_2tap_qpel_pixels_tab[4][16]; h264_weight_func weight_h264_pixels_tab[10]; h264_biweight_func biweight_h264_pixels_tab[10]; /* AVS specific */ qpel_mc_func put_cavs_qpel_pixels_tab[2][16]; qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]; void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride); me_cmp_func pix_abs[2][4]; /* huffyuv specific */ void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w); void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w); void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w); /** * subtract huffyuv's variant of median prediction * note, this might read from src1[-1], src2[-1] */ void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top); void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top); int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left); void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha); /* this might write to dst[w] */ void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp); void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w); void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0); void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0); /* v/h_loop_filter_luma_intra: align 16 */ void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0); void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0); void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); // h264_loop_filter_strength: simd only. the C version is inlined in h264.c void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2], int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field); void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale); void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale); void (*h261_loop_filter)(uint8_t *src, int stride); void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale); void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale); void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values); void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values); void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride, const int16_t *h_weights,const int16_t *v_weights); /* assume len is a multiple of 4, and arrays are 16-byte aligned */ void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize); void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len); /* no alignment needed */ void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ void (*vector_fmul)(float *dst, const float *src, int len); void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len); /* assume len is a multiple of 8, and src arrays are 16-byte aligned */ void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len); /* assume len is a multiple of 4, and arrays are 16-byte aligned */ void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len); void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */); /** * Multiply a vector of floats by a scalar float. Source and * destination vectors must overlap exactly or not at all. * @param dst result vector, 16-byte aligned * @param src input vector, 16-byte aligned * @param mul scalar value * @param len length of vector, multiple of 4 */ void (*vector_fmul_scalar)(float *dst, const float *src, float mul, int len); /** * Multiply a vector of floats by concatenated short vectors of * floats and by a scalar float. Source and destination vectors * must overlap exactly or not at all. * [0]: short vectors of length 2, 8-byte aligned * [1]: short vectors of length 4, 16-byte aligned * @param dst output vector, 16-byte aligned * @param src input vector, 16-byte aligned * @param sv array of pointers to short vectors * @param mul scalar value * @param len number of elements in src and dst, multiple of 4 */ void (*vector_fmul_sv_scalar[2])(float *dst, const float *src, const float **sv, float mul, int len); /** * Multiply short vectors of floats by a scalar float, store * concatenated result. * [0]: short vectors of length 2, 8-byte aligned * [1]: short vectors of length 4, 16-byte aligned * @param dst output vector, 16-byte aligned * @param sv array of pointers to short vectors * @param mul scalar value * @param len number of output elements, multiple of 4 */ void (*sv_fmul_scalar[2])(float *dst, const float **sv, float mul, int len); /** * Calculate the scalar product of two vectors of floats. * @param v1 first vector, 16-byte aligned * @param v2 second vector, 16-byte aligned * @param len length of vectors, multiple of 4 */ float (*scalarproduct_float)(const float *v1, const float *v2, int len); /** * Calculate the sum and difference of two vectors of floats. * @param v1 first input vector, sum output, 16-byte aligned * @param v2 second input vector, difference output, 16-byte aligned * @param len length of vectors, multiple of 4 */ void (*butterflies_float)(float *restrict v1, float *restrict v2, int len); /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767] * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */ void (*float_to_int16)(int16_t *dst, const float *src, long len); void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels); /* (I)DCT */ void (*fdct)(DCTELEM *block/* align 16*/); void (*fdct248)(DCTELEM *block/* align 16*/); /* IDCT really*/ void (*idct)(DCTELEM *block/* align 16*/); /** * block -> idct -> clip to unsigned 8 bit -> dest. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...) * @param line_size size in bytes of a horizontal line of dest */ void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); /** * block -> idct -> add dest -> clip to unsigned 8 bit -> dest. * @param line_size size in bytes of a horizontal line of dest */ void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); /** * idct input permutation. * several optimized IDCTs need a permutated input (relative to the normal order of the reference * IDCT) * this permutation must be performed before the idct_put/add, note, normally this can be merged * with the zigzag/alternate scan
* an example to avoid confusion: * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...) * - (x -> referece dct -> reference idct -> x) * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x) * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...) */ uint8_t idct_permutation[64]; int idct_permutation_type; #define FF_NO_IDCT_PERM 1 #define FF_LIBMPEG2_IDCT_PERM 2 #define FF_SIMPLE_IDCT_PERM 3 #define FF_TRANSPOSE_IDCT_PERM 4 #define FF_PARTTRANS_IDCT_PERM 5 #define FF_SSE2_IDCT_PERM 6 int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale); void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale); #define BASIS_SHIFT 16 #define RECON_SHIFT 6 void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w); #define EDGE_WIDTH 16 /* h264 functions */ /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them The reason for above, is that no 2 out of one list may use a different permutation. */ void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); void (*h264_dct)(DCTELEM block[4][4]); void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); /* snow wavelet */ void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width); void (*horizontal_compose97i)(IDWTELEM *b, int width); void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8); void (*prefetch)(void *mem, int stride, int h); void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); /* mlp/truehd functions */ void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff, int firorder, int iirorder, unsigned int filter_shift, int32_t mask, int blocksize, int32_t *sample_buffer); /* vc1 functions */ void (*vc1_inv_trans_8x8)(DCTELEM *b); void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_v_overlap)(uint8_t* src, int stride); void (*vc1_h_overlap)(uint8_t* src, int stride); void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq); void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq); void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq); void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq); void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq); void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq); /* put 8x8 block with bicubic interpolation and quarterpel precision * last argument is actually round value instead of height */ op_pixels_func put_vc1_mspel_pixels_tab[16]; op_pixels_func avg_vc1_mspel_pixels_tab[16]; /* intrax8 functions */ void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize); void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize, int * range, int * sum, int edges); /** * Calculate scalar product of two vectors. * @param len length of vectors, should be multiple of 16 * @param shift number of bits to discard from product */ int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift); /* ape functions */ /** * Calculate scalar product of v1 and v2, * and v1[i] += v3[i] * mul * @param len length of vectors, should be multiple of 16 */ int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul); /* rv30 functions */ qpel_mc_func put_rv30_tpel_pixels_tab[4][16]; qpel_mc_func avg_rv30_tpel_pixels_tab[4][16]; /* rv40 functions */ qpel_mc_func put_rv40_qpel_pixels_tab[4][16]; qpel_mc_func avg_rv40_qpel_pixels_tab[4][16]; h264_chroma_mc_func put_rv40_chroma_pixels_tab[3]; h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3]; } DSPContext; void dsputil_static_init(void); void dsputil_init(DSPContext* p, AVCodecContext *avctx); int ff_check_alignment(void); /** * permute block according to permuatation. * @param last last non zero element in scantable order */ void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last); void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type); #define BYTE_VEC32(c) ((c)*0x01010101UL) static inline uint32_t rnd_avg32(uint32_t a, uint32_t b) { return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1); } static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b) { return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1); } static inline int get_penalty_factor(int lambda, int lambda2, int type){ switch(type&0xFF){ default: case FF_CMP_SAD: return lambda>>FF_LAMBDA_SHIFT; case FF_CMP_DCT: return (3*lambda)>>(FF_LAMBDA_SHIFT+1); case FF_CMP_W53: return (4*lambda)>>(FF_LAMBDA_SHIFT); case FF_CMP_W97: return (2*lambda)>>(FF_LAMBDA_SHIFT); case FF_CMP_SATD: case FF_CMP_DCT264: return (2*lambda)>>FF_LAMBDA_SHIFT; case FF_CMP_RD: case FF_CMP_PSNR: case FF_CMP_SSE: case FF_CMP_NSSE: return lambda2>>FF_LAMBDA_SHIFT; case FF_CMP_BIT: return 1; } } /** * Empty mmx state. * this must be called between any dsp function and float/double code. * for example sin(); dsp->idct_put(); emms_c(); cos() */ #define emms_c() /* should be defined by architectures supporting one or more MultiMedia extension */ int mm_support(void); extern int mm_flags; void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx); void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx); void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx); void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx); void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx); void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx); void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx); void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx); void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx); #define DECLARE_ALIGNED_16(t, v, ...) DECLARE_ALIGNED(16, t, v) #define DECLARE_ALIGNED_8(t, v, ...) DECLARE_ALIGNED(8, t, v) #if HAVE_MMX #undef emms_c static inline void emms(void) { __asm__ volatile ("emms;":::"memory"); } #define emms_c() \ {\ if (mm_flags & FF_MM_MMX)\ emms();\ } #elif ARCH_ARM #if HAVE_NEON # define STRIDE_ALIGN 16 #endif #elif ARCH_PPC #define STRIDE_ALIGN 16 #elif HAVE_MMI #define STRIDE_ALIGN 16 #else #define mm_flags 0 #define mm_support() 0 #endif #ifndef STRIDE_ALIGN # define STRIDE_ALIGN 8 #endif #define LOCAL_ALIGNED(a, t, v, s, ...) \ uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)]; \ t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a) #if HAVE_LOCAL_ALIGNED_8 # define LOCAL_ALIGNED_8((t, v, s, ...) DECLARE_ALIGNED_8(t, v) s __VA_ARGS__ #else # define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__) #endif #if HAVE_LOCAL_ALIGNED_16 # define LOCAL_ALIGNED_16((t, v, s, ...) DECLARE_ALIGNED_16(t, v) s __VA_ARGS__ #else # define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__) #endif /* PSNR */ void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3], int orig_linesize[3], int coded_linesize, AVCodecContext *avctx); /* FFT computation */ /* NOTE: soon integer code will be added, so you must use the FFTSample type */ typedef float FFTSample; typedef struct FFTComplex { FFTSample re, im; } FFTComplex; typedef struct FFTContext { int nbits; int inverse; uint16_t *revtab; FFTComplex *exptab; FFTComplex *exptab1; /* only used by SSE code */ FFTComplex *tmp_buf; int mdct_size; /* size of MDCT (i.e. number of input data * 2) */ int mdct_bits; /* n = 2^nbits */ /* pre/post rotation tables */ FFTSample *tcos; FFTSample *tsin; void (*fft_permute)(struct FFTContext *s, FFTComplex *z); void (*fft_calc)(struct FFTContext *s, FFTComplex *z); void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input); void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); int split_radix; int permutation; #define FF_MDCT_PERM_NONE 0 #define FF_MDCT_PERM_INTERLEAVE 1 } FFTContext; #if CONFIG_HARDCODED_TABLES #define COSTABLE_CONST const #define SINTABLE_CONST const #define SINETABLE_CONST const #else #define COSTABLE_CONST #define SINTABLE_CONST #define SINETABLE_CONST #endif #define COSTABLE(size) \ COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size)[size/2] #define SINTABLE(size) \ SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size)[size/2] #define SINETABLE(size) \ SINETABLE_CONST DECLARE_ALIGNED_16(float, ff_sine_##size)[size] extern COSTABLE(16); extern COSTABLE(32); extern COSTABLE(64); extern COSTABLE(128); extern COSTABLE(256); extern COSTABLE(512); extern COSTABLE(1024); extern COSTABLE(2048); extern COSTABLE(4096); extern COSTABLE(8192); extern COSTABLE(16384); extern COSTABLE(32768); extern COSTABLE(65536); extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17]; /** * Initializes the cosine table in ff_cos_tabs[index] * \param index index in ff_cos_tabs array of the table to initialize */ void ff_init_ff_cos_tabs(int index); extern SINTABLE(16); extern SINTABLE(32); extern SINTABLE(64); extern SINTABLE(128); extern SINTABLE(256); extern SINTABLE(512); extern SINTABLE(1024); extern SINTABLE(2048); extern SINTABLE(4096); extern SINTABLE(8192); extern SINTABLE(16384); extern SINTABLE(32768); extern SINTABLE(65536); /** * Sets up a complex FFT. * @param nbits log2 of the length of the input array * @param inverse if 0 perform the forward transform, if 1 perform the inverse */ int ff_fft_init(FFTContext *s, int nbits, int inverse); void ff_fft_permute_c(FFTContext *s, FFTComplex *z); void ff_fft_calc_c(FFTContext *s, FFTComplex *z); void ff_fft_init_altivec(FFTContext *s); void ff_fft_init_mmx(FFTContext *s); void ff_fft_init_arm(FFTContext *s); /** * Do the permutation needed BEFORE calling ff_fft_calc(). */ static inline void ff_fft_permute(FFTContext *s, FFTComplex *z) { s->fft_permute(s, z); } /** * Do a complex FFT with the parameters defined in ff_fft_init(). The * input data must be permuted before. No 1.0/sqrt(n) normalization is done. */ static inline void ff_fft_calc(FFTContext *s, FFTComplex *z) { s->fft_calc(s, z); } void ff_fft_end(FFTContext *s); /* MDCT computation */ static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { s->imdct_calc(s, output, input); } static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) { s->imdct_half(s, output, input); } static inline void ff_mdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { s->mdct_calc(s, output, input); } /** * Generate a Kaiser-Bessel Derived Window. * @param window pointer to half window * @param alpha determines window shape * @param n size of half window */ void ff_kbd_window_init(float *window, float alpha, int n); /** * Generate a sine window. * @param window pointer to half window * @param n size of half window */ void ff_sine_window_init(float *window, int n); /** * initialize the specified entry of ff_sine_windows */ void ff_init_ff_sine_windows(int index); extern SINETABLE( 32); extern SINETABLE( 64); extern SINETABLE( 128); extern SINETABLE( 256); extern SINETABLE( 512); extern SINETABLE(1024); extern SINETABLE(2048); extern SINETABLE(4096); extern SINETABLE_CONST float * const ff_sine_windows[13]; int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale); void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_mdct_end(FFTContext *s); /* Real Discrete Fourier Transform */ enum RDFTransformType { RDFT, IRDFT, RIDFT, IRIDFT, }; typedef struct { int nbits; int inverse; int sign_convention; /* pre/post rotation tables */ const FFTSample *tcos; SINTABLE_CONST FFTSample *tsin; FFTContext fft; } RDFTContext; /** * Sets up a real FFT. * @param nbits log2 of the length of the input array * @param trans the type of transform */ int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans); void ff_rdft_calc(RDFTContext *s, FFTSample *data); void ff_rdft_end(RDFTContext *s); /* Discrete Cosine Transform */ typedef struct { int nbits; int inverse; FFTSample *data; RDFTContext rdft; const float *costab; FFTSample *csc2; } DCTContext; /** * Sets up (Inverse)DCT. * @param nbits log2 of the length of the input array * @param inverse >0 forward transform, <0 inverse transform */ int ff_dct_init(DCTContext *s, int nbits, int inverse); void ff_dct_calc(DCTContext *s, FFTSample *data); void ff_dct_end (DCTContext *s); #define WRAPPER8_16(name8, name16)\ static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\ return name8(s, dst , src , stride, h)\ +name8(s, dst+8 , src+8 , stride, h);\ } #define WRAPPER8_16_SQ(name8, name16)\ static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\ int score=0;\ score +=name8(s, dst , src , stride, 8);\ score +=name8(s, dst+8 , src+8 , stride, 8);\ if(h==16){\ dst += 8*stride;\ src += 8*stride;\ score +=name8(s, dst , src , stride, 8);\ score +=name8(s, dst+8 , src+8 , stride, 8);\ }\ return score;\ } static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) { int i; for(i=0; i