/* * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at) * Copyright (c) 2002 Fabrice Bellard * * This file is part of libswresample * * libswresample is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * libswresample is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with libswresample; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/common.h" #include "libavutil/opt.h" #include "swresample.h" #undef time #include "time.h" #undef fprintf #define SAMPLES 1000 #define ASSERT_LEVEL 2 static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){ const uint8_t *p; if(av_sample_fmt_is_planar(f)){ f= av_get_alt_sample_fmt(f, 0); p= a[ch]; }else{ p= a[0]; index= ch + index*ch_count; } switch(f){ case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0; case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0; case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0; case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index]; case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index]; default: av_assert0(0); } } static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){ uint8_t *p; if(av_sample_fmt_is_planar(f)){ f= av_get_alt_sample_fmt(f, 0); p= a[ch]; }else{ p= a[0]; index= ch + index*ch_count; } switch(f){ case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break; case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break; case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647)); break; case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break; case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break; default: av_assert2(0); } } static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){ int ch; if(av_sample_fmt_is_planar(f)){ f= av_get_alt_sample_fmt(f, 0); for(ch= 0; ch<ch_count; ch++) a[ch] += index*av_get_bytes_per_sample(f); }else{ a[0] += index*ch_count*av_get_bytes_per_sample(f); } } static const enum AVSampleFormat formats[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8P, AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_DBL, }; static const int rates[] = { 8000, 11025, 16000, 22050, 32000, 48000, }; uint64_t layouts[]={ AV_CH_LAYOUT_MONO , AV_CH_LAYOUT_STEREO , AV_CH_LAYOUT_2_1 , AV_CH_LAYOUT_SURROUND , AV_CH_LAYOUT_4POINT0 , AV_CH_LAYOUT_2_2 , AV_CH_LAYOUT_QUAD , AV_CH_LAYOUT_5POINT0 , AV_CH_LAYOUT_5POINT1 , AV_CH_LAYOUT_5POINT0_BACK , AV_CH_LAYOUT_5POINT1_BACK , AV_CH_LAYOUT_7POINT0 , AV_CH_LAYOUT_7POINT1 , AV_CH_LAYOUT_7POINT1_WIDE , }; static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){ if(av_sample_fmt_is_planar(format)){ int i; int plane_size= av_get_bytes_per_sample(format&0xFF)*samples; format&=0xFF; for(i=0; i<SWR_CH_MAX; i++){ out[i]= in + i*plane_size; } }else{ out[0]= in; } } static int cmp(const int *a, const int *b){ return *a - *b; } static void audiogen(void *data, enum AVSampleFormat sample_fmt, int channels, int sample_rate, int nb_samples) { int i, ch, k; double v, f, a, ampa; double tabf1[SWR_CH_MAX]; double tabf2[SWR_CH_MAX]; double taba[SWR_CH_MAX]; unsigned static rnd; #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v); #define uint_rand(x) (x = x * 1664525 + 1013904223) #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1) k = 0; /* 1 second of single freq sinus at 1000 Hz */ a = 0; for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { v = sin(a) * 0.30; for (ch = 0; ch < channels; ch++) PUT_SAMPLE a += M_PI * 1000.0 * 2.0 / sample_rate; } /* 1 second of varing frequency between 100 and 10000 Hz */ a = 0; for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { v = sin(a) * 0.30; for (ch = 0; ch < channels; ch++) PUT_SAMPLE f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate); a += M_PI * f * 2.0 / sample_rate; } /* 0.5 second of low amplitude white noise */ for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { v = dbl_rand(rnd) * 0.30; for (ch = 0; ch < channels; ch++) PUT_SAMPLE } /* 0.5 second of high amplitude white noise */ for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { v = dbl_rand(rnd); for (ch = 0; ch < channels; ch++) PUT_SAMPLE } /* 1 second of unrelated ramps for each channel */ for (ch = 0; ch < channels; ch++) { taba[ch] = 0; tabf1[ch] = 100 + uint_rand(rnd) % 5000; tabf2[ch] = 100 + uint_rand(rnd) % 5000; } for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { for (ch = 0; ch < channels; ch++) { v = sin(taba[ch]) * 0.30; PUT_SAMPLE f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate); taba[ch] += M_PI * f * 2.0 / sample_rate; } } /* 2 seconds of 500 Hz with varying volume */ a = 0; ampa = 0; for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) { for (ch = 0; ch < channels; ch++) { double amp = (1.0 + sin(ampa)) * 0.15; if (ch & 1) amp = 0.30 - amp; v = sin(a) * amp; PUT_SAMPLE a += M_PI * 500.0 * 2.0 / sample_rate; ampa += M_PI * 2.0 / sample_rate; } } } int main(int argc, char **argv){ int in_sample_rate, out_sample_rate, ch ,i, flush_count; uint64_t in_ch_layout, out_ch_layout; enum AVSampleFormat in_sample_fmt, out_sample_fmt; uint8_t array_in[SAMPLES*8*8]; uint8_t array_mid[SAMPLES*8*8*3]; uint8_t array_out[SAMPLES*8*8+100]; uint8_t *ain[SWR_CH_MAX]; uint8_t *aout[SWR_CH_MAX]; uint8_t *amid[SWR_CH_MAX]; int flush_i=0; int mode; int num_tests = 10000; uint32_t seed = 0; uint32_t rand_seed = 0; int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)]; int max_tests = FF_ARRAY_ELEMS(remaining_tests); int test; int specific_test= -1; struct SwrContext * forw_ctx= NULL; struct SwrContext *backw_ctx= NULL; if (argc > 1) { if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) { av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]] \n" "num_tests Default is %d\n", num_tests); return 0; } num_tests = strtol(argv[1], NULL, 0); if(num_tests < 0) { num_tests = -num_tests; rand_seed = time(0); } if(num_tests<= 0 || num_tests>max_tests) num_tests = max_tests; if(argc > 2) { specific_test = strtol(argv[1], NULL, 0); } } for(i=0; i<max_tests; i++) remaining_tests[i] = i; for(test=0; test<num_tests; test++){ unsigned r; uint_rand(seed); r = (seed * (uint64_t)(max_tests - test)) >>32; FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]); } qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp); in_sample_rate=16000; for(test=0; test<num_tests; test++){ char in_layout_string[256]; char out_layout_string[256]; unsigned vector= remaining_tests[max_tests - test - 1]; int in_ch_count; int out_count, mid_count, out_ch_count; in_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts); out_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts); in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates); av_assert0(!vector); if(specific_test == 0){ if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout) continue; } in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout); out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout); av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string), in_ch_count, in_ch_layout); av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout); fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n", in_layout_string, out_layout_string, in_sample_rate, out_sample_rate, av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt)); forw_ctx = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt, out_sample_rate, in_ch_layout, in_sample_fmt, in_sample_rate, 0, 0); backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout, in_sample_fmt, in_sample_rate, out_ch_layout, out_sample_fmt, out_sample_rate, 0, 0); if(!forw_ctx) { fprintf(stderr, "Failed to init forw_cts\n"); return 1; } if(!backw_ctx) { fprintf(stderr, "Failed to init backw_ctx\n"); return 1; } if(swr_init( forw_ctx) < 0) fprintf(stderr, "swr_init(->) failed\n"); if(swr_init(backw_ctx) < 0) fprintf(stderr, "swr_init(<-) failed\n"); //FIXME test planar setup_array(ain , array_in , in_sample_fmt, SAMPLES); setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES); setup_array(aout, array_out, in_sample_fmt , SAMPLES); #if 0 for(ch=0; ch<in_ch_count; ch++){ for(i=0; i<SAMPLES; i++) set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES)); } #else audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES); #endif mode = uint_rand(rand_seed) % 3; if(mode==0 /*|| out_sample_rate == in_sample_rate*/) { mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES); } else if(mode==1){ mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES); mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); } else { int tmp_count; mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1); av_assert0(mid_count==0); shift(ain, 1, in_ch_count, in_sample_fmt); mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2); shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; shift(ain, 2, in_ch_count, in_sample_fmt); mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3); shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; shift(ain, -3, in_ch_count, in_sample_fmt); mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); shift(amid, -tmp_count, out_ch_count, out_sample_fmt); } out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count); for(ch=0; ch<in_ch_count; ch++){ double sse, maxdiff=0; double sum_a= 0; double sum_b= 0; double sum_aa= 0; double sum_bb= 0; double sum_ab= 0; for(i=0; i<out_count; i++){ double a= get(ain , ch, i, in_ch_count, in_sample_fmt); double b= get(aout, ch, i, in_ch_count, in_sample_fmt); sum_a += a; sum_b += b; sum_aa+= a*a; sum_bb+= b*b; sum_ab+= a*b; maxdiff= FFMAX(maxdiff, FFABS(a-b)); } sse= sum_aa + sum_bb - 2*sum_ab; if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count); } flush_i++; flush_i%=21; flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0); shift(aout, flush_i, in_ch_count, in_sample_fmt); flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0); shift(aout, -flush_i, in_ch_count, in_sample_fmt); if(flush_count){ for(ch=0; ch<in_ch_count; ch++){ double sse, maxdiff=0; double sum_a= 0; double sum_b= 0; double sum_aa= 0; double sum_bb= 0; double sum_ab= 0; for(i=0; i<flush_count; i++){ double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt); double b= get(aout, ch, i, in_ch_count, in_sample_fmt); sum_a += a; sum_b += b; sum_aa+= a*a; sum_bb+= b*b; sum_ab+= a*b; maxdiff= FFMAX(maxdiff, FFABS(a-b)); } sse= sum_aa + sum_bb - 2*sum_ab; if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i); } } fprintf(stderr, "\n"); } return 0; }