/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "edge_common.h" // Internal helper for ff_sobel() static int get_rounded_direction(int gx, int gy) { /* reference angles: * tan( pi/8) = sqrt(2)-1 * tan(3pi/8) = sqrt(2)+1 * Gy/Gx is the tangent of the angle (theta), so Gy/Gx is compared against * , or more simply Gy against *Gx * * Gx and Gy bounds = [-1020;1020], using 16-bit arithmetic: * round((sqrt(2)-1) * (1<<16)) = 27146 * round((sqrt(2)+1) * (1<<16)) = 158218 */ if (gx) { int tanpi8gx, tan3pi8gx; if (gx < 0) gx = -gx, gy = -gy; gy *= (1 << 16); tanpi8gx = 27146 * gx; tan3pi8gx = 158218 * gx; if (gy > -tan3pi8gx && gy < -tanpi8gx) return DIRECTION_45UP; if (gy > -tanpi8gx && gy < tanpi8gx) return DIRECTION_HORIZONTAL; if (gy > tanpi8gx && gy < tan3pi8gx) return DIRECTION_45DOWN; } return DIRECTION_VERTICAL; } // Simple sobel operator to get rounded gradients void ff_sobel(int w, int h, uint16_t *dst, int dst_linesize, int8_t *dir, int dir_linesize, const uint8_t *src, int src_linesize) { int i, j; for (j = 1; j < h - 1; j++) { dst += dst_linesize; dir += dir_linesize; src += src_linesize; for (i = 1; i < w - 1; i++) { const int gx = -1*src[-src_linesize + i-1] + 1*src[-src_linesize + i+1] -2*src[ i-1] + 2*src[ i+1] -1*src[ src_linesize + i-1] + 1*src[ src_linesize + i+1]; const int gy = -1*src[-src_linesize + i-1] + 1*src[ src_linesize + i-1] -2*src[-src_linesize + i ] + 2*src[ src_linesize + i ] -1*src[-src_linesize + i+1] + 1*src[ src_linesize + i+1]; dst[i] = FFABS(gx) + FFABS(gy); dir[i] = get_rounded_direction(gx, gy); } } } // Filters rounded gradients to drop all non-maxima // Expects gradients generated by ff_sobel() // Expects zero's destination buffer void ff_non_maximum_suppression(int w, int h, uint8_t *dst, int dst_linesize, const int8_t *dir, int dir_linesize, const uint16_t *src, int src_linesize) { int i, j; #define COPY_MAXIMA(ay, ax, by, bx) do { \ if (src[i] > src[(ay)*src_linesize + i+(ax)] && \ src[i] > src[(by)*src_linesize + i+(bx)]) \ dst[i] = av_clip_uint8(src[i]); \ } while (0) for (j = 1; j < h - 1; j++) { dst += dst_linesize; dir += dir_linesize; src += src_linesize; for (i = 1; i < w - 1; i++) { switch (dir[i]) { case DIRECTION_45UP: COPY_MAXIMA( 1, -1, -1, 1); break; case DIRECTION_45DOWN: COPY_MAXIMA(-1, -1, 1, 1); break; case DIRECTION_HORIZONTAL: COPY_MAXIMA( 0, -1, 0, 1); break; case DIRECTION_VERTICAL: COPY_MAXIMA(-1, 0, 1, 0); break; } } } } // Filter to keep all pixels > high, and keep all pixels > low where all surrounding pixels > high void ff_double_threshold(int low, int high, int w, int h, uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize) { int i, j; for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { if (src[i] > high) { dst[i] = src[i]; continue; } if (!(!i || i == w - 1 || !j || j == h - 1) && src[i] > low && (src[-src_linesize + i-1] > high || src[-src_linesize + i ] > high || src[-src_linesize + i+1] > high || src[ i-1] > high || src[ i+1] > high || src[ src_linesize + i-1] > high || src[ src_linesize + i ] > high || src[ src_linesize + i+1] > high)) dst[i] = src[i]; else dst[i] = 0; } dst += dst_linesize; src += src_linesize; } } // Applies gaussian blur, using 5x5 kernels, sigma = 1.4 void ff_gaussian_blur(int w, int h, uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize) { int i, j; memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; for (j = 2; j < h - 2; j++) { dst[0] = src[0]; dst[1] = src[1]; for (i = 2; i < w - 2; i++) { /* Gaussian mask of size 5x5 with sigma = 1.4 */ dst[i] = ((src[-2*src_linesize + i-2] + src[2*src_linesize + i-2]) * 2 + (src[-2*src_linesize + i-1] + src[2*src_linesize + i-1]) * 4 + (src[-2*src_linesize + i ] + src[2*src_linesize + i ]) * 5 + (src[-2*src_linesize + i+1] + src[2*src_linesize + i+1]) * 4 + (src[-2*src_linesize + i+2] + src[2*src_linesize + i+2]) * 2 + (src[ -src_linesize + i-2] + src[ src_linesize + i-2]) * 4 + (src[ -src_linesize + i-1] + src[ src_linesize + i-1]) * 9 + (src[ -src_linesize + i ] + src[ src_linesize + i ]) * 12 + (src[ -src_linesize + i+1] + src[ src_linesize + i+1]) * 9 + (src[ -src_linesize + i+2] + src[ src_linesize + i+2]) * 4 + src[i-2] * 5 + src[i-1] * 12 + src[i ] * 15 + src[i+1] * 12 + src[i+2] * 5) / 159; } dst[i ] = src[i ]; dst[i + 1] = src[i + 1]; dst += dst_linesize; src += src_linesize; } memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; memcpy(dst, src, w); }