/* * AOM film grain synthesis * Copyright (c) 2023 Niklas Haas * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Copyright © 2018, Niklas Haas * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "bit_depth_template.c" #undef entry #undef bitdepth #undef bitdepth_max #undef HBD_DECL #undef HBD_CALL #undef SCALING_SIZE #if BIT_DEPTH > 8 # define entry int16_t # define bitdepth_max ((1 << bitdepth) - 1) # define HBD_DECL , const int bitdepth # define HBD_CALL , bitdepth # define SCALING_SIZE 4096 #else # define entry int8_t # define bitdepth 8 # define bitdepth_max UINT8_MAX # define HBD_DECL # define HBD_CALL # define SCALING_SIZE 256 #endif static void FUNC(generate_grain_y_c)(entry buf[][GRAIN_WIDTH], const AVFilmGrainParams *const params HBD_DECL) { const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const int bitdepth_min_8 = bitdepth - 8; unsigned seed = params->seed; const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; const int ar_pad = 3; const int ar_lag = data->ar_coeff_lag; for (int y = 0; y < GRAIN_HEIGHT; y++) { for (int x = 0; x < GRAIN_WIDTH; x++) { const int value = get_random_number(11, &seed); buf[y][x] = round2(gaussian_sequence[ value ], shift); } } for (int y = ar_pad; y < GRAIN_HEIGHT; y++) { for (int x = ar_pad; x < GRAIN_WIDTH - ar_pad; x++) { const int8_t *coeff = data->ar_coeffs_y; int sum = 0, grain; for (int dy = -ar_lag; dy <= 0; dy++) { for (int dx = -ar_lag; dx <= ar_lag; dx++) { if (!dx && !dy) break; sum += *(coeff++) * buf[y + dy][x + dx]; } } grain = buf[y][x] + round2(sum, data->ar_coeff_shift); buf[y][x] = av_clip(grain, grain_min, grain_max); } } } static void FUNC(generate_grain_uv_c)(entry buf[][GRAIN_WIDTH], const entry buf_y[][GRAIN_WIDTH], const AVFilmGrainParams *const params, const intptr_t uv, const int subx, const int suby HBD_DECL) { const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const int bitdepth_min_8 = bitdepth - 8; unsigned seed = params->seed ^ (uv ? 0x49d8 : 0xb524); const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; const int chromaW = subx ? SUB_GRAIN_WIDTH : GRAIN_WIDTH; const int chromaH = suby ? SUB_GRAIN_HEIGHT : GRAIN_HEIGHT; const int ar_pad = 3; const int ar_lag = data->ar_coeff_lag; for (int y = 0; y < chromaH; y++) { for (int x = 0; x < chromaW; x++) { const int value = get_random_number(11, &seed); buf[y][x] = round2(gaussian_sequence[ value ], shift); } } for (int y = ar_pad; y < chromaH; y++) { for (int x = ar_pad; x < chromaW - ar_pad; x++) { const int8_t *coeff = data->ar_coeffs_uv[uv]; int sum = 0, grain; for (int dy = -ar_lag; dy <= 0; dy++) { for (int dx = -ar_lag; dx <= ar_lag; dx++) { // For the final (current) pixel, we need to add in the // contribution from the luma grain texture if (!dx && !dy) { const int lumaX = ((x - ar_pad) << subx) + ar_pad; const int lumaY = ((y - ar_pad) << suby) + ar_pad; int luma = 0; if (!data->num_y_points) break; for (int i = 0; i <= suby; i++) { for (int j = 0; j <= subx; j++) { luma += buf_y[lumaY + i][lumaX + j]; } } luma = round2(luma, subx + suby); sum += luma * (*coeff); break; } sum += *(coeff++) * buf[y + dy][x + dx]; } } grain = buf[y][x] + round2(sum, data->ar_coeff_shift); buf[y][x] = av_clip(grain, grain_min, grain_max); } } } // samples from the correct block of a grain LUT, while taking into account the // offsets provided by the offsets cache static inline entry FUNC(sample_lut)(const entry grain_lut[][GRAIN_WIDTH], const int offsets[2][2], const int subx, const int suby, const int bx, const int by, const int x, const int y) { const int randval = offsets[bx][by]; const int offx = 3 + (2 >> subx) * (3 + (randval >> 4)); const int offy = 3 + (2 >> suby) * (3 + (randval & 0xF)); return grain_lut[offy + y + (FG_BLOCK_SIZE >> suby) * by] [offx + x + (FG_BLOCK_SIZE >> subx) * bx]; } static void FUNC(fgy_32x32xn_c)(pixel *const dst_row, const pixel *const src_row, const ptrdiff_t stride, const AVFilmGrainParams *const params, const size_t pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], const int bh, const int row_num HBD_DECL) { const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const int rows = 1 + (data->overlap_flag && row_num > 0); const int bitdepth_min_8 = bitdepth - 8; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; unsigned seed[2]; int offsets[2 /* col offset */][2 /* row offset */]; int min_value, max_value; if (data->limit_output_range) { min_value = 16 << bitdepth_min_8; max_value = 235 << bitdepth_min_8; } else { min_value = 0; max_value = bitdepth_max; } // seed[0] contains the current row, seed[1] contains the previous for (int i = 0; i < rows; i++) { seed[i] = params->seed; seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); } av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0); // process this row in FG_BLOCK_SIZE^2 blocks for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE) { const int bw = FFMIN(FG_BLOCK_SIZE, (int) pw - bx); const pixel *src; pixel *dst; int noise; // x/y block offsets to compensate for overlapped regions const int ystart = data->overlap_flag && row_num ? FFMIN(2, bh) : 0; const int xstart = data->overlap_flag && bx ? FFMIN(2, bw) : 0; static const int w[2][2] = { { 27, 17 }, { 17, 27 } }; if (data->overlap_flag && bx) { // shift previous offsets left for (int i = 0; i < rows; i++) offsets[1][i] = offsets[0][i]; } // update current offsets for (int i = 0; i < rows; i++) offsets[0][i] = get_random_number(8, &seed[i]); #define add_noise_y(x, y, grain) \ src = (const pixel*)((const char*)src_row + (y) * stride) + (x) + bx; \ dst = (pixel*)((char*)dst_row + (y) * stride) + (x) + bx; \ noise = round2(scaling[ *src ] * (grain), data->scaling_shift); \ *dst = av_clip(*src + noise, min_value, max_value); for (int y = ystart; y < bh; y++) { // Non-overlapped image region (straightforward) for (int x = xstart; x < bw; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); add_noise_y(x, y, grain); } // Special case for overlapped column for (int x = 0; x < xstart; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y); grain = round2(old * w[x][0] + grain * w[x][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } } for (int y = 0; y < ystart; y++) { // Special case for overlapped row (sans corner) for (int x = xstart; x < bw; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y); grain = round2(old * w[y][0] + grain * w[y][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } // Special case for doubly-overlapped corner for (int x = 0; x < xstart; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); int top = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 1, x, y); // Blend the top pixel with the top left block top = round2(old * w[x][0] + top * w[x][1], 5); top = av_clip(top, grain_min, grain_max); // Blend the current pixel with the left block old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y); grain = round2(old * w[x][0] + grain * w[x][1], 5); grain = av_clip(grain, grain_min, grain_max); // Mix the row rows together and apply grain grain = round2(top * w[y][0] + grain * w[y][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } } } } static void FUNC(fguv_32x32xn_c)(pixel *const dst_row, const pixel *const src_row, const ptrdiff_t stride, const AVFilmGrainParams *const params, const size_t pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], const int bh, const int row_num, const pixel *const luma_row, const ptrdiff_t luma_stride, const int uv, const int is_id, const int sx, const int sy HBD_DECL) { const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const int rows = 1 + (data->overlap_flag && row_num > 0); const int bitdepth_min_8 = bitdepth - 8; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; unsigned seed[2]; int offsets[2 /* col offset */][2 /* row offset */]; int min_value, max_value; if (data->limit_output_range) { min_value = 16 << bitdepth_min_8; max_value = (is_id ? 235 : 240) << bitdepth_min_8; } else { min_value = 0; max_value = bitdepth_max; } // seed[0] contains the current row, seed[1] contains the previous for (int i = 0; i < rows; i++) { seed[i] = params->seed; seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); } av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0); // process this row in FG_BLOCK_SIZE^2 blocks (subsampled) for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE >> sx) { const int bw = FFMIN(FG_BLOCK_SIZE >> sx, (int)(pw - bx)); int val, lx, ly, noise; const pixel *src, *luma; pixel *dst, avg; // x/y block offsets to compensate for overlapped regions const int ystart = data->overlap_flag && row_num ? FFMIN(2 >> sy, bh) : 0; const int xstart = data->overlap_flag && bx ? FFMIN(2 >> sx, bw) : 0; static const int w[2 /* sub */][2 /* off */][2] = { { { 27, 17 }, { 17, 27 } }, { { 23, 22 } }, }; if (data->overlap_flag && bx) { // shift previous offsets left for (int i = 0; i < rows; i++) offsets[1][i] = offsets[0][i]; } // update current offsets for (int i = 0; i < rows; i++) offsets[0][i] = get_random_number(8, &seed[i]); #define add_noise_uv(x, y, grain) \ lx = (bx + x) << sx; \ ly = y << sy; \ luma = (const pixel*)((const char*)luma_row + ly * luma_stride) + lx;\ avg = luma[0]; \ if (sx) \ avg = (avg + luma[1] + 1) >> 1; \ src = (const pixel*)((const char *)src_row + (y) * stride) + bx + (x);\ dst = (pixel *) ((char *) dst_row + (y) * stride) + bx + (x); \ val = avg; \ if (!data->chroma_scaling_from_luma) { \ const int combined = avg * data->uv_mult_luma[uv] + \ *src * data->uv_mult[uv]; \ val = av_clip( (combined >> 6) + \ (data->uv_offset[uv] * (1 << bitdepth_min_8)), \ 0, bitdepth_max ); \ } \ noise = round2(scaling[ val ] * (grain), data->scaling_shift); \ *dst = av_clip(*src + noise, min_value, max_value); for (int y = ystart; y < bh; y++) { // Non-overlapped image region (straightforward) for (int x = xstart; x < bw; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); add_noise_uv(x, y, grain); } // Special case for overlapped column for (int x = 0; x < xstart; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y); grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } } for (int y = 0; y < ystart; y++) { // Special case for overlapped row (sans corner) for (int x = xstart; x < bw; x++) { int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y); grain = round2(old * w[sy][y][0] + grain * w[sy][y][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } // Special case for doubly-overlapped corner for (int x = 0; x < xstart; x++) { int top = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y); int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 1, x, y); int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); // Blend the top pixel with the top left block top = round2(old * w[sx][x][0] + top * w[sx][x][1], 5); top = av_clip(top, grain_min, grain_max); // Blend the current pixel with the left block old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y); grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5); grain = av_clip(grain, grain_min, grain_max); // Mix the row rows together and apply to image grain = round2(top * w[sy][y][0] + grain * w[sy][y][1], 5); grain = av_clip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } } } } static void FUNC(generate_scaling)(const uint8_t points[][2], const int num, uint8_t scaling[SCALING_SIZE] HBD_DECL) { const int shift_x = bitdepth - 8; const int scaling_size = 1 << bitdepth; const int max_value = points[num - 1][0] << shift_x; av_assert0(scaling_size <= SCALING_SIZE); if (num == 0) { memset(scaling, 0, scaling_size); return; } // Fill up the preceding entries with the initial value memset(scaling, points[0][1], points[0][0] << shift_x); // Linearly interpolate the values in the middle for (int i = 0; i < num - 1; i++) { const int bx = points[i][0]; const int by = points[i][1]; const int ex = points[i+1][0]; const int ey = points[i+1][1]; const int dx = ex - bx; const int dy = ey - by; const int delta = dy * ((0x10000 + (dx >> 1)) / dx); av_assert1(dx > 0); for (int x = 0, d = 0x8000; x < dx; x++) { scaling[(bx + x) << shift_x] = by + (d >> 16); d += delta; } } // Fill up the remaining entries with the final value memset(&scaling[max_value], points[num - 1][1], scaling_size - max_value); #if BIT_DEPTH != 8 for (int i = 0; i < num - 1; i++) { const int pad = 1 << shift_x, rnd = pad >> 1; const int bx = points[i][0] << shift_x; const int ex = points[i+1][0] << shift_x; const int dx = ex - bx; for (int x = 0; x < dx; x += pad) { const int range = scaling[bx + x + pad] - scaling[bx + x]; for (int n = 1, r = rnd; n < pad; n++) { r += range; scaling[bx + x + n] = scaling[bx + x] + (r >> shift_x); } } } #endif } static av_always_inline void FUNC(apply_grain_row)(AVFrame *out, const AVFrame *in, const int ss_x, const int ss_y, const uint8_t scaling[3][SCALING_SIZE], const entry grain_lut[3][GRAIN_HEIGHT+1][GRAIN_WIDTH], const AVFilmGrainParams *params, const int row HBD_DECL) { // Synthesize grain for the affected planes const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const int cpw = (out->width + ss_x) >> ss_x; const int is_id = out->colorspace == AVCOL_SPC_RGB; const int bh = (FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE) + ss_y) >> ss_y; const ptrdiff_t uv_off = row * FG_BLOCK_SIZE * out->linesize[1] >> ss_y; pixel *const luma_src = (pixel *) ((char *) in->data[0] + row * FG_BLOCK_SIZE * in->linesize[0]); if (data->num_y_points) { const int bh = FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE); const ptrdiff_t off = row * FG_BLOCK_SIZE * out->linesize[0]; FUNC(fgy_32x32xn_c)((pixel *) ((char *) out->data[0] + off), luma_src, out->linesize[0], params, out->width, scaling[0], grain_lut[0], bh, row HBD_CALL); } if (!data->num_uv_points[0] && !data->num_uv_points[1] && !data->chroma_scaling_from_luma) { return; } // extend padding pixels if (out->width & ss_x) { pixel *ptr = luma_src; for (int y = 0; y < bh; y++) { ptr[out->width] = ptr[out->width - 1]; ptr = (pixel *) ((char *) ptr + (in->linesize[0] << ss_y)); } } if (data->chroma_scaling_from_luma) { for (int pl = 0; pl < 2; pl++) FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off), (const pixel *) ((const char *) in->data[1 + pl] + uv_off), in->linesize[1], params, cpw, scaling[0], grain_lut[1 + pl], bh, row, luma_src, in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL); } else { for (int pl = 0; pl < 2; pl++) { if (data->num_uv_points[pl]) { FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off), (const pixel *) ((const char *) in->data[1 + pl] + uv_off), in->linesize[1], params, cpw, scaling[1 + pl], grain_lut[1 + pl], bh, row, luma_src, in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL); } } } } static int FUNC(apply_film_grain)(AVFrame *out_frame, const AVFrame *in_frame, const AVFilmGrainParams *params HBD_DECL) { entry grain_lut[3][GRAIN_HEIGHT + 1][GRAIN_WIDTH]; uint8_t scaling[3][SCALING_SIZE]; const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(out_frame->format); const int rows = AV_CEIL_RSHIFT(out_frame->height, 5); /* log2(FG_BLOCK_SIZE) */ const int subx = desc->log2_chroma_w, suby = desc->log2_chroma_h; // Generate grain LUTs as needed FUNC(generate_grain_y_c)(grain_lut[0], params HBD_CALL); if (data->num_uv_points[0] || data->chroma_scaling_from_luma) FUNC(generate_grain_uv_c)(grain_lut[1], grain_lut[0], params, 0, subx, suby HBD_CALL); if (data->num_uv_points[1] || data->chroma_scaling_from_luma) FUNC(generate_grain_uv_c)(grain_lut[2], grain_lut[0], params, 1, subx, suby HBD_CALL); // Generate scaling LUTs as needed if (data->num_y_points || data->chroma_scaling_from_luma) FUNC(generate_scaling)(data->y_points, data->num_y_points, scaling[0] HBD_CALL); if (data->num_uv_points[0]) FUNC(generate_scaling)(data->uv_points[0], data->num_uv_points[0], scaling[1] HBD_CALL); if (data->num_uv_points[1]) FUNC(generate_scaling)(data->uv_points[1], data->num_uv_points[1], scaling[2] HBD_CALL); for (int row = 0; row < rows; row++) { FUNC(apply_grain_row)(out_frame, in_frame, subx, suby, scaling, grain_lut, params, row HBD_CALL); } return 0; }