/* * Ut Video decoder * Copyright (c) 2011 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Ut Video decoder */ #include #include #define CACHED_BITSTREAM_READER !ARCH_X86_32 #define UNCHECKED_BITSTREAM_READER 1 #include "libavutil/intreadwrite.h" #include "libavutil/pixdesc.h" #include "avcodec.h" #include "bswapdsp.h" #include "bytestream.h" #include "get_bits.h" #include "internal.h" #include "thread.h" #include "utvideo.h" static int build_huff10(const uint8_t *src, VLC *vlc, int *fsym) { int i; HuffEntry he[1024]; int last; uint32_t codes[1024]; uint8_t bits[1024]; uint16_t syms[1024]; uint32_t code; *fsym = -1; for (i = 0; i < 1024; i++) { he[i].sym = i; he[i].len = *src++; } qsort(he, 1024, sizeof(*he), ff_ut10_huff_cmp_len); if (!he[0].len) { *fsym = he[0].sym; return 0; } last = 1023; while (he[last].len == 255 && last) last--; if (he[last].len > 32) { return -1; } code = 1; for (i = last; i >= 0; i--) { codes[i] = code >> (32 - he[i].len); bits[i] = he[i].len; syms[i] = he[i].sym; code += 0x80000000u >> (he[i].len - 1); } #define VLC_BITS 11 return ff_init_vlc_sparse(vlc, VLC_BITS, last + 1, bits, sizeof(*bits), sizeof(*bits), codes, sizeof(*codes), sizeof(*codes), syms, sizeof(*syms), sizeof(*syms), 0); } static int build_huff(const uint8_t *src, VLC *vlc, int *fsym) { int i; HuffEntry he[256]; int last; uint32_t codes[256]; uint8_t bits[256]; uint8_t syms[256]; uint32_t code; *fsym = -1; for (i = 0; i < 256; i++) { he[i].sym = i; he[i].len = *src++; } qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len); if (!he[0].len) { *fsym = he[0].sym; return 0; } last = 255; while (he[last].len == 255 && last) last--; if (he[last].len > 32) return -1; code = 1; for (i = last; i >= 0; i--) { codes[i] = code >> (32 - he[i].len); bits[i] = he[i].len; syms[i] = he[i].sym; code += 0x80000000u >> (he[i].len - 1); } return ff_init_vlc_sparse(vlc, VLC_BITS, last + 1, bits, sizeof(*bits), sizeof(*bits), codes, sizeof(*codes), sizeof(*codes), syms, sizeof(*syms), sizeof(*syms), 0); } static int decode_plane10(UtvideoContext *c, int plane_no, uint16_t *dst, ptrdiff_t stride, int width, int height, const uint8_t *src, const uint8_t *huff, int use_pred) { int i, j, slice, pix, ret; int sstart, send; VLC vlc; GetBitContext gb; int prev, fsym; if ((ret = build_huff10(huff, &vlc, &fsym)) < 0) { av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n"); return ret; } if (fsym >= 0) { // build_huff reported a symbol to fill slices with send = 0; for (slice = 0; slice < c->slices; slice++) { uint16_t *dest; sstart = send; send = (height * (slice + 1) / c->slices); dest = dst + sstart * stride; prev = 0x200; for (j = sstart; j < send; j++) { for (i = 0; i < width; i++) { pix = fsym; if (use_pred) { prev += pix; prev &= 0x3FF; pix = prev; } dest[i] = pix; } dest += stride; } } return 0; } send = 0; for (slice = 0; slice < c->slices; slice++) { uint16_t *dest; int slice_data_start, slice_data_end, slice_size; sstart = send; send = (height * (slice + 1) / c->slices); dest = dst + sstart * stride; // slice offset and size validation was done earlier slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0; slice_data_end = AV_RL32(src + slice * 4); slice_size = slice_data_end - slice_data_start; if (!slice_size) { av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol " "yet a slice has a length of zero.\n"); goto fail; } memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE); c->bdsp.bswap_buf((uint32_t *) c->slice_bits, (uint32_t *)(src + slice_data_start + c->slices * 4), (slice_data_end - slice_data_start + 3) >> 2); init_get_bits(&gb, c->slice_bits, slice_size * 8); prev = 0x200; for (j = sstart; j < send; j++) { for (i = 0; i < width; i++) { pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3); if (pix < 0) { av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n"); goto fail; } if (use_pred) { prev += pix; prev &= 0x3FF; pix = prev; } dest[i] = pix; } dest += stride; if (get_bits_left(&gb) < 0) { av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n"); goto fail; } } if (get_bits_left(&gb) > 32) av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n", get_bits_left(&gb)); } ff_free_vlc(&vlc); return 0; fail: ff_free_vlc(&vlc); return AVERROR_INVALIDDATA; } static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt) { const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no; if (interlaced) return ~(1 + 2 * is_luma); return ~is_luma; } static int decode_plane(UtvideoContext *c, int plane_no, uint8_t *dst, ptrdiff_t stride, int width, int height, const uint8_t *src, int use_pred) { int i, j, slice, pix; int sstart, send; VLC vlc; GetBitContext gb; int ret, prev, fsym; const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt); if (c->pack) { send = 0; for (slice = 0; slice < c->slices; slice++) { GetBitContext cbit, pbit; uint8_t *dest, *p; ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]); if (ret < 0) return ret; ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]); if (ret < 0) return ret; sstart = send; send = (height * (slice + 1) / c->slices) & cmask; dest = dst + sstart * stride; if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit)) return AVERROR_INVALIDDATA; for (p = dest; p < dst + send * stride; p += 8) { int bits = get_bits_le(&cbit, 3); if (bits == 0) { *(uint64_t *) p = 0; } else { uint32_t sub = 0x80 >> (8 - (bits + 1)), add; int k; if ((bits + 1) * 8 > get_bits_left(&pbit)) return AVERROR_INVALIDDATA; for (k = 0; k < 8; k++) { p[k] = get_bits_le(&pbit, bits + 1); add = (~p[k] & sub) << (8 - bits); p[k] -= sub; p[k] += add; } } } } return 0; } if (build_huff(src, &vlc, &fsym)) { av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n"); return AVERROR_INVALIDDATA; } if (fsym >= 0) { // build_huff reported a symbol to fill slices with send = 0; for (slice = 0; slice < c->slices; slice++) { uint8_t *dest; sstart = send; send = (height * (slice + 1) / c->slices) & cmask; dest = dst + sstart * stride; prev = 0x80; for (j = sstart; j < send; j++) { for (i = 0; i < width; i++) { pix = fsym; if (use_pred) { prev += (unsigned)pix; pix = prev; } dest[i] = pix; } dest += stride; } } return 0; } src += 256; send = 0; for (slice = 0; slice < c->slices; slice++) { uint8_t *dest; int slice_data_start, slice_data_end, slice_size; sstart = send; send = (height * (slice + 1) / c->slices) & cmask; dest = dst + sstart * stride; // slice offset and size validation was done earlier slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0; slice_data_end = AV_RL32(src + slice * 4); slice_size = slice_data_end - slice_data_start; if (!slice_size) { av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol " "yet a slice has a length of zero.\n"); goto fail; } memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE); c->bdsp.bswap_buf((uint32_t *) c->slice_bits, (uint32_t *)(src + slice_data_start + c->slices * 4), (slice_data_end - slice_data_start + 3) >> 2); init_get_bits(&gb, c->slice_bits, slice_size * 8); prev = 0x80; for (j = sstart; j < send; j++) { for (i = 0; i < width; i++) { pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3); if (pix < 0) { av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n"); goto fail; } if (use_pred) { prev += pix; pix = prev; } dest[i] = pix; } if (get_bits_left(&gb) < 0) { av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n"); goto fail; } dest += stride; } if (get_bits_left(&gb) > 32) av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n", get_bits_left(&gb)); } ff_free_vlc(&vlc); return 0; fail: ff_free_vlc(&vlc); return AVERROR_INVALIDDATA; } #undef A #undef B #undef C static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride, int width, int height, int slices, int rmode) { int i, j, slice; int A, B, C; uint8_t *bsrc; int slice_start, slice_height; const int cmask = ~rmode; for (slice = 0; slice < slices; slice++) { slice_start = ((slice * height) / slices) & cmask; slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start; if (!slice_height) continue; bsrc = src + slice_start * stride; // first line - left neighbour prediction bsrc[0] += 0x80; c->llviddsp.add_left_pred(bsrc, bsrc, width, 0); bsrc += stride; if (slice_height <= 1) continue; // second line - first element has top prediction, the rest uses median C = bsrc[-stride]; bsrc[0] += C; A = bsrc[0]; for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */ B = bsrc[i - stride]; bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C)); C = B; A = bsrc[i]; } if (width > 16) c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16, bsrc + 16, width - 16, &A, &B); bsrc += stride; // the rest of lines use continuous median prediction for (j = 2; j < slice_height; j++) { c->llviddsp.add_median_pred(bsrc, bsrc - stride, bsrc, width, &A, &B); bsrc += stride; } } } /* UtVideo interlaced mode treats every two lines as a single one, * so restoring function should take care of possible padding between * two parts of the same "line". */ static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride, int width, int height, int slices, int rmode) { int i, j, slice; int A, B, C; uint8_t *bsrc; int slice_start, slice_height; const int cmask = ~(rmode ? 3 : 1); const ptrdiff_t stride2 = stride << 1; for (slice = 0; slice < slices; slice++) { slice_start = ((slice * height) / slices) & cmask; slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start; slice_height >>= 1; if (!slice_height) continue; bsrc = src + slice_start * stride; // first line - left neighbour prediction bsrc[0] += 0x80; A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0); c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A); bsrc += stride2; if (slice_height <= 1) continue; // second line - first element has top prediction, the rest uses median C = bsrc[-stride2]; bsrc[0] += C; A = bsrc[0]; for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */ B = bsrc[i - stride2]; bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C)); C = B; A = bsrc[i]; } if (width > 16) c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16, bsrc + 16, width - 16, &A, &B); c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride, bsrc + stride, width, &A, &B); bsrc += stride2; // the rest of lines use continuous median prediction for (j = 2; j < slice_height; j++) { c->llviddsp.add_median_pred(bsrc, bsrc - stride2, bsrc, width, &A, &B); c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride, bsrc + stride, width, &A, &B); bsrc += stride2; } } } static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride, int width, int height, int slices, int rmode) { int i, j, slice; int A, B, C; uint8_t *bsrc; int slice_start, slice_height; const int cmask = ~rmode; int min_width = FFMIN(width, 32); for (slice = 0; slice < slices; slice++) { slice_start = ((slice * height) / slices) & cmask; slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start; if (!slice_height) continue; bsrc = src + slice_start * stride; // first line - left neighbour prediction bsrc[0] += 0x80; c->llviddsp.add_left_pred(bsrc, bsrc, width, 0); bsrc += stride; if (slice_height <= 1) continue; for (j = 1; j < slice_height; j++) { // second line - first element has top prediction, the rest uses gradient bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF; for (i = 1; i < min_width; i++) { /* dsp need align 32 */ A = bsrc[i - stride]; B = bsrc[i - (stride + 1)]; C = bsrc[i - 1]; bsrc[i] = (A - B + C + bsrc[i]) & 0xFF; } if (width > 32) c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32); bsrc += stride; } } } static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride, int width, int height, int slices, int rmode) { int i, j, slice; int A, B, C; uint8_t *bsrc; int slice_start, slice_height; const int cmask = ~(rmode ? 3 : 1); const ptrdiff_t stride2 = stride << 1; int min_width = FFMIN(width, 32); for (slice = 0; slice < slices; slice++) { slice_start = ((slice * height) / slices) & cmask; slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start; slice_height >>= 1; if (!slice_height) continue; bsrc = src + slice_start * stride; // first line - left neighbour prediction bsrc[0] += 0x80; A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0); c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A); bsrc += stride2; if (slice_height <= 1) continue; for (j = 1; j < slice_height; j++) { // second line - first element has top prediction, the rest uses gradient bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF; for (i = 1; i < min_width; i++) { /* dsp need align 32 */ A = bsrc[i - stride2]; B = bsrc[i - (stride2 + 1)]; C = bsrc[i - 1]; bsrc[i] = (A - B + C + bsrc[i]) & 0xFF; } if (width > 32) c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32); A = bsrc[-stride]; B = bsrc[-(1 + stride + stride - width)]; C = bsrc[width - 1]; bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF; for (i = 1; i < width; i++) { A = bsrc[i - stride]; B = bsrc[i - (1 + stride)]; C = bsrc[i - 1 + stride]; bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF; } bsrc += stride2; } } } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; UtvideoContext *c = avctx->priv_data; int i, j; const uint8_t *plane_start[5]; int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size; int ret; GetByteContext gb; ThreadFrame frame = { .f = data }; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; /* parse plane structure to get frame flags and validate slice offsets */ bytestream2_init(&gb, buf, buf_size); if (c->pack) { const uint8_t *packed_stream; const uint8_t *control_stream; GetByteContext pb; uint32_t nb_cbs; int left; c->frame_info = PRED_GRADIENT << 8; if (bytestream2_get_byte(&gb) != 1) return AVERROR_INVALIDDATA; bytestream2_skip(&gb, 3); c->offset = bytestream2_get_le32(&gb); if (buf_size <= c->offset + 8LL) return AVERROR_INVALIDDATA; bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset); nb_cbs = bytestream2_get_le32(&pb); if (nb_cbs > c->offset) return AVERROR_INVALIDDATA; packed_stream = buf + 8; control_stream = packed_stream + (c->offset - nb_cbs); left = control_stream - packed_stream; for (i = 0; i < c->planes; i++) { for (j = 0; j < c->slices; j++) { c->packed_stream[i][j] = packed_stream; c->packed_stream_size[i][j] = bytestream2_get_le32(&pb); if (c->packed_stream_size[i][j] > left) return AVERROR_INVALIDDATA; left -= c->packed_stream_size[i][j]; packed_stream += c->packed_stream_size[i][j]; } } left = buf + buf_size - control_stream; for (i = 0; i < c->planes; i++) { for (j = 0; j < c->slices; j++) { c->control_stream[i][j] = control_stream; c->control_stream_size[i][j] = bytestream2_get_le32(&pb); if (c->control_stream_size[i][j] > left) return AVERROR_INVALIDDATA; left -= c->control_stream_size[i][j]; control_stream += c->control_stream_size[i][j]; } } } else if (c->pro) { if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) { av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n"); return AVERROR_INVALIDDATA; } c->frame_info = bytestream2_get_le32u(&gb); c->slices = ((c->frame_info >> 16) & 0xff) + 1; for (i = 0; i < c->planes; i++) { plane_start[i] = gb.buffer; if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) { av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n"); return AVERROR_INVALIDDATA; } slice_start = 0; slice_end = 0; for (j = 0; j < c->slices; j++) { slice_end = bytestream2_get_le32u(&gb); if (slice_end < 0 || slice_end < slice_start || bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) { av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n"); return AVERROR_INVALIDDATA; } slice_size = slice_end - slice_start; slice_start = slice_end; max_slice_size = FFMAX(max_slice_size, slice_size); } plane_size = slice_end; bytestream2_skipu(&gb, plane_size); bytestream2_skipu(&gb, 1024); } plane_start[c->planes] = gb.buffer; } else { for (i = 0; i < c->planes; i++) { plane_start[i] = gb.buffer; if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) { av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n"); return AVERROR_INVALIDDATA; } bytestream2_skipu(&gb, 256); slice_start = 0; slice_end = 0; for (j = 0; j < c->slices; j++) { slice_end = bytestream2_get_le32u(&gb); if (slice_end < 0 || slice_end < slice_start || bytestream2_get_bytes_left(&gb) < slice_end) { av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n"); return AVERROR_INVALIDDATA; } slice_size = slice_end - slice_start; slice_start = slice_end; max_slice_size = FFMAX(max_slice_size, slice_size); } plane_size = slice_end; bytestream2_skipu(&gb, plane_size); } plane_start[c->planes] = gb.buffer; if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) { av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n"); return AVERROR_INVALIDDATA; } c->frame_info = bytestream2_get_le32u(&gb); } av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n", c->frame_info); c->frame_pred = (c->frame_info >> 8) & 3; max_slice_size += 4*avctx->width; if (!c->pack) { av_fast_malloc(&c->slice_bits, &c->slice_bits_size, max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!c->slice_bits) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n"); return AVERROR(ENOMEM); } } switch (c->avctx->pix_fmt) { case AV_PIX_FMT_GBRP: case AV_PIX_FMT_GBRAP: for (i = 0; i < c->planes; i++) { ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } else { restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } } else if (c->frame_pred == PRED_GRADIENT) { if (!c->interlaced) { restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } else { restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } } } c->utdsp.restore_rgb_planes(frame.f->data[2], frame.f->data[0], frame.f->data[1], frame.f->linesize[2], frame.f->linesize[0], frame.f->linesize[1], avctx->width, avctx->height); break; case AV_PIX_FMT_GBRAP10: case AV_PIX_FMT_GBRP10: for (i = 0; i < c->planes; i++) { ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2, avctx->width, avctx->height, plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT); if (ret) return ret; } c->utdsp.restore_rgb_planes10((uint16_t *)frame.f->data[2], (uint16_t *)frame.f->data[0], (uint16_t *)frame.f->data[1], frame.f->linesize[2] / 2, frame.f->linesize[0] / 2, frame.f->linesize[1] / 2, avctx->width, avctx->height); break; case AV_PIX_FMT_YUV420P: for (i = 0; i < 3; i++) { ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } else { restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } } else if (c->frame_pred == PRED_GRADIENT) { if (!c->interlaced) { restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } else { restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } } } break; case AV_PIX_FMT_YUV422P: for (i = 0; i < 3; i++) { ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } else { restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } } else if (c->frame_pred == PRED_GRADIENT) { if (!c->interlaced) { restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } else { restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } } } break; case AV_PIX_FMT_YUV444P: for (i = 0; i < 3; i++) { ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } else { restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } } else if (c->frame_pred == PRED_GRADIENT) { if (!c->interlaced) { restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } else { restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i], avctx->width, avctx->height, c->slices, 0); } } } break; case AV_PIX_FMT_YUV422P10: for (i = 0; i < 3; i++) { ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2, avctx->width >> !!i, avctx->height, plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT); if (ret) return ret; } break; } frame.f->key_frame = 1; frame.f->pict_type = AV_PICTURE_TYPE_I; frame.f->interlaced_frame = !!c->interlaced; *got_frame = 1; /* always report that the buffer was completely consumed */ return buf_size; } static av_cold int decode_init(AVCodecContext *avctx) { UtvideoContext * const c = avctx->priv_data; int h_shift, v_shift; c->avctx = avctx; ff_utvideodsp_init(&c->utdsp); ff_bswapdsp_init(&c->bdsp); ff_llviddsp_init(&c->llviddsp); c->slice_bits_size = 0; switch (avctx->codec_tag) { case MKTAG('U', 'L', 'R', 'G'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_GBRP; break; case MKTAG('U', 'L', 'R', 'A'): c->planes = 4; avctx->pix_fmt = AV_PIX_FMT_GBRAP; break; case MKTAG('U', 'L', 'Y', '0'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV420P; avctx->colorspace = AVCOL_SPC_BT470BG; break; case MKTAG('U', 'L', 'Y', '2'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV422P; avctx->colorspace = AVCOL_SPC_BT470BG; break; case MKTAG('U', 'L', 'Y', '4'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV444P; avctx->colorspace = AVCOL_SPC_BT470BG; break; case MKTAG('U', 'Q', 'Y', '2'): c->planes = 3; c->pro = 1; avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break; case MKTAG('U', 'Q', 'R', 'G'): c->planes = 3; c->pro = 1; avctx->pix_fmt = AV_PIX_FMT_GBRP10; break; case MKTAG('U', 'Q', 'R', 'A'): c->planes = 4; c->pro = 1; avctx->pix_fmt = AV_PIX_FMT_GBRAP10; break; case MKTAG('U', 'L', 'H', '0'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV420P; avctx->colorspace = AVCOL_SPC_BT709; break; case MKTAG('U', 'L', 'H', '2'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV422P; avctx->colorspace = AVCOL_SPC_BT709; break; case MKTAG('U', 'L', 'H', '4'): c->planes = 3; avctx->pix_fmt = AV_PIX_FMT_YUV444P; avctx->colorspace = AVCOL_SPC_BT709; break; case MKTAG('U', 'M', 'Y', '2'): c->planes = 3; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_YUV422P; avctx->colorspace = AVCOL_SPC_BT470BG; break; case MKTAG('U', 'M', 'H', '2'): c->planes = 3; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_YUV422P; avctx->colorspace = AVCOL_SPC_BT709; break; case MKTAG('U', 'M', 'Y', '4'): c->planes = 3; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_YUV444P; avctx->colorspace = AVCOL_SPC_BT470BG; break; case MKTAG('U', 'M', 'H', '4'): c->planes = 3; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_YUV444P; avctx->colorspace = AVCOL_SPC_BT709; break; case MKTAG('U', 'M', 'R', 'G'): c->planes = 3; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_GBRP; break; case MKTAG('U', 'M', 'R', 'A'): c->planes = 4; c->pack = 1; avctx->pix_fmt = AV_PIX_FMT_GBRAP; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n", avctx->codec_tag); return AVERROR_INVALIDDATA; } av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift); if ((avctx->width & ((1<height & ((1<pack && avctx->extradata_size >= 16) { av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n", avctx->extradata[3], avctx->extradata[2], avctx->extradata[1], avctx->extradata[0]); av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n", AV_RB32(avctx->extradata + 4)); c->compression = avctx->extradata[8]; if (c->compression != 2) avpriv_request_sample(avctx, "Unknown compression type"); c->slices = avctx->extradata[9] + 1; } else if (!c->pro && avctx->extradata_size >= 16) { av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n", avctx->extradata[3], avctx->extradata[2], avctx->extradata[1], avctx->extradata[0]); av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n", AV_RB32(avctx->extradata + 4)); c->frame_info_size = AV_RL32(avctx->extradata + 8); c->flags = AV_RL32(avctx->extradata + 12); if (c->frame_info_size != 4) avpriv_request_sample(avctx, "Frame info not 4 bytes"); av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags); c->slices = (c->flags >> 24) + 1; c->compression = c->flags & 1; c->interlaced = c->flags & 0x800; } else if (c->pro && avctx->extradata_size == 8) { av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n", avctx->extradata[3], avctx->extradata[2], avctx->extradata[1], avctx->extradata[0]); av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n", AV_RB32(avctx->extradata + 4)); c->interlaced = 0; c->frame_info_size = 4; } else { av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d, should be at least 16\n", avctx->extradata_size); return AVERROR_INVALIDDATA; } return 0; } static av_cold int decode_end(AVCodecContext *avctx) { UtvideoContext * const c = avctx->priv_data; av_freep(&c->slice_bits); return 0; } AVCodec ff_utvideo_decoder = { .name = "utvideo", .long_name = NULL_IF_CONFIG_SMALL("Ut Video"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_UTVIDEO, .priv_data_size = sizeof(UtvideoContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, };