/* * Copyright (c) 2007-2008 CSIRO * Copyright (c) 2007-2009 Xiph.Org Foundation * Copyright (c) 2008-2009 Gregory Maxwell * Copyright (c) 2012 Andrew D'Addesio * Copyright (c) 2013-2014 Mozilla Corporation * Copyright (c) 2017 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "config_components.h" #include "libavutil/mem.h" #include "mathops.h" #include "opustab.h" #include "opus_pvq.h" #define ROUND_MUL16(a,b) ((MUL16(a, b) + 16384) >> 15) #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) static inline int16_t celt_cos(int16_t x) { x = (MUL16(x, x) + 4096) >> 13; x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); return x + 1; } static inline int celt_log2tan(int isin, int icos) { int lc, ls; lc = opus_ilog(icos); ls = opus_ilog(isin); icos <<= 15 - lc; isin <<= 15 - ls; return (ls << 11) - (lc << 11) + ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); } static inline int celt_bits2pulses(const uint8_t *cache, int bits) { // TODO: Find the size of cache and make it into an array in the parameters list int i, low = 0, high; high = cache[0]; bits--; for (i = 0; i < 6; i++) { int center = (low + high + 1) >> 1; if (cache[center] >= bits) high = center; else low = center; } return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; } static inline int celt_pulses2bits(const uint8_t *cache, int pulses) { // TODO: Find the size of cache and make it into an array in the parameters list return (pulses == 0) ? 0 : cache[pulses] + 1; } static inline void celt_normalize_residual(const int * restrict iy, float * restrict X, int N, float g) { int i; for (i = 0; i < N; i++) X[i] = g * iy[i]; } static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride, float c, float s) { float *Xptr; int i; Xptr = X; for (i = 0; i < len - stride; i++) { float x1 = Xptr[0]; float x2 = Xptr[stride]; Xptr[stride] = c * x2 + s * x1; *Xptr++ = c * x1 - s * x2; } Xptr = &X[len - 2 * stride - 1]; for (i = len - 2 * stride - 1; i >= 0; i--) { float x1 = Xptr[0]; float x2 = Xptr[stride]; Xptr[stride] = c * x2 + s * x1; *Xptr-- = c * x1 - s * x2; } } static inline void celt_exp_rotation(float *X, uint32_t len, uint32_t stride, uint32_t K, enum CeltSpread spread, const int encode) { uint32_t stride2 = 0; float c, s; float gain, theta; int i; if (2*K >= len || spread == CELT_SPREAD_NONE) return; gain = (float)len / (len + (20 - 5*spread) * K); theta = M_PI * gain * gain / 4; c = cosf(theta); s = sinf(theta); if (len >= stride << 3) { stride2 = 1; /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) stride2++; } len /= stride; for (i = 0; i < stride; i++) { if (encode) { celt_exp_rotation_impl(X + i * len, len, 1, c, -s); if (stride2) celt_exp_rotation_impl(X + i * len, len, stride2, s, -c); } else { if (stride2) celt_exp_rotation_impl(X + i * len, len, stride2, s, c); celt_exp_rotation_impl(X + i * len, len, 1, c, s); } } } static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) { int i, j, N0 = N / B; uint32_t collapse_mask = 0; if (B <= 1) return 1; for (i = 0; i < B; i++) for (j = 0; j < N0; j++) collapse_mask |= (!!iy[i*N0+j]) << i; return collapse_mask; } static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) { int i; float xp = 0, side = 0; float E[2]; float mid2; float gain[2]; /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ for (i = 0; i < N; i++) { xp += X[i] * Y[i]; side += Y[i] * Y[i]; } /* Compensating for the mid normalization */ xp *= mid; mid2 = mid; E[0] = mid2 * mid2 + side - 2 * xp; E[1] = mid2 * mid2 + side + 2 * xp; if (E[0] < 6e-4f || E[1] < 6e-4f) { for (i = 0; i < N; i++) Y[i] = X[i]; return; } gain[0] = 1.0f / sqrtf(E[0]); gain[1] = 1.0f / sqrtf(E[1]); for (i = 0; i < N; i++) { float value[2]; /* Apply mid scaling (side is already scaled) */ value[0] = mid * X[i]; value[1] = Y[i]; X[i] = gain[0] * (value[0] - value[1]); Y[i] = gain[1] * (value[0] + value[1]); } } static void celt_interleave_hadamard(float *tmp, float *X, int N0, int stride, int hadamard) { int i, j, N = N0*stride; const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; for (i = 0; i < stride; i++) for (j = 0; j < N0; j++) tmp[j*stride+i] = X[order[i]*N0+j]; memcpy(X, tmp, N*sizeof(float)); } static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, int stride, int hadamard) { int i, j, N = N0*stride; const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; for (i = 0; i < stride; i++) for (j = 0; j < N0; j++) tmp[order[i]*N0+j] = X[j*stride+i]; memcpy(X, tmp, N*sizeof(float)); } static void celt_haar1(float *X, int N0, int stride) { int i, j; N0 >>= 1; for (i = 0; i < stride; i++) { for (j = 0; j < N0; j++) { float x0 = X[stride * (2 * j + 0) + i]; float x1 = X[stride * (2 * j + 1) + i]; X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; } } } static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, int stereo) { int qn, qb; int N2 = 2 * N - 1; if (stereo && N == 2) N2--; /* The upper limit ensures that in a stereo split with itheta==16384, we'll * always have enough bits left over to code at least one pulse in the * side; otherwise it would collapse, since it doesn't get folded. */ qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; return qn; } /* Convert the quantized vector to an index */ static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y) { int i, idx = 0, sum = 0; for (i = N - 1; i >= 0; i--) { const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1); idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s; sum += FFABS(y[i]); } return idx; } // this code was adapted from libopus static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y) { uint64_t norm = 0; uint32_t q, p; int s, val; int k0; while (N > 2) { /*Lots of pulses case:*/ if (K >= N) { const uint32_t *row = ff_celt_pvq_u_row[N]; /* Are the pulses in this dimension negative? */ p = row[K + 1]; s = -(i >= p); i -= p & s; /*Count how many pulses were placed in this dimension.*/ k0 = K; q = row[N]; if (q > i) { K = N; do { p = ff_celt_pvq_u_row[--K][N]; } while (p > i); } else for (p = row[K]; p > i; p = row[K]) K--; i -= p; val = (k0 - K + s) ^ s; norm += val * val; *y++ = val; } else { /*Lots of dimensions case:*/ /*Are there any pulses in this dimension at all?*/ p = ff_celt_pvq_u_row[K ][N]; q = ff_celt_pvq_u_row[K + 1][N]; if (p <= i && i < q) { i -= p; *y++ = 0; } else { /*Are the pulses in this dimension negative?*/ s = -(i >= q); i -= q & s; /*Count how many pulses were placed in this dimension.*/ k0 = K; do p = ff_celt_pvq_u_row[--K][N]; while (p > i); i -= p; val = (k0 - K + s) ^ s; norm += val * val; *y++ = val; } } N--; } /* N == 2 */ p = 2 * K + 1; s = -(i >= p); i -= p & s; k0 = K; K = (i + 1) / 2; if (K) i -= 2 * K - 1; val = (k0 - K + s) ^ s; norm += val * val; *y++ = val; /* N==1 */ s = -i; val = (K + s) ^ s; norm += val * val; *y = val; return norm; } static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) { ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K)); } static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) { const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); return celt_cwrsi(N, K, idx, y); } #if CONFIG_OPUS_ENCODER /* * Faster than libopus's search, operates entirely in the signed domain. * Slightly worse/better depending on N, K and the input vector. */ static float ppp_pvq_search_c(float *X, int *y, int K, int N) { int i, y_norm = 0; float res = 0.0f, xy_norm = 0.0f; for (i = 0; i < N; i++) res += FFABS(X[i]); res = K/(res + FLT_EPSILON); for (i = 0; i < N; i++) { y[i] = lrintf(res*X[i]); y_norm += y[i]*y[i]; xy_norm += y[i]*X[i]; K -= FFABS(y[i]); } while (K) { int max_idx = 0, phase = FFSIGN(K); float max_num = 0.0f; float max_den = 1.0f; y_norm += 1.0f; for (i = 0; i < N; i++) { /* If the sum has been overshot and the best place has 0 pulses allocated * to it, attempting to decrease it further will actually increase the * sum. Prevent this by disregarding any 0 positions when decrementing. */ const int ca = 1 ^ ((y[i] == 0) & (phase < 0)); const int y_new = y_norm + 2*phase*FFABS(y[i]); float xy_new = xy_norm + 1*phase*FFABS(X[i]); xy_new = xy_new * xy_new; if (ca && (max_den*xy_new) > (y_new*max_num)) { max_den = y_new; max_num = xy_new; max_idx = i; } } K -= phase; phase *= FFSIGN(X[max_idx]); xy_norm += 1*phase*X[max_idx]; y_norm += 2*phase*y[max_idx]; y[max_idx] += phase; } return (float)y_norm; } #endif static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, enum CeltSpread spread, uint32_t blocks, float gain, CeltPVQ *pvq) { int *y = pvq->qcoeff; celt_exp_rotation(X, N, blocks, K, spread, 1); gain /= sqrtf(pvq->pvq_search(X, y, K, N)); celt_encode_pulses(rc, y, N, K); celt_normalize_residual(y, X, N, gain); celt_exp_rotation(X, N, blocks, K, spread, 0); return celt_extract_collapse_mask(y, N, blocks); } /** Decode pulse vector and combine the result with the pitch vector to produce the final normalised signal in the current band. */ static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, enum CeltSpread spread, uint32_t blocks, float gain, CeltPVQ *pvq) { int *y = pvq->qcoeff; gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); celt_normalize_residual(y, X, N, gain); celt_exp_rotation(X, N, blocks, K, spread, 0); return celt_extract_collapse_mask(y, N, blocks); } static int celt_calc_theta(const float *X, const float *Y, int coupling, int N) { int i; float e[2] = { 0.0f, 0.0f }; if (coupling) { /* Coupling case */ for (i = 0; i < N; i++) { e[0] += (X[i] + Y[i])*(X[i] + Y[i]); e[1] += (X[i] - Y[i])*(X[i] - Y[i]); } } else { for (i = 0; i < N; i++) { e[0] += X[i]*X[i]; e[1] += Y[i]*Y[i]; } } return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI); } static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N) { int i; const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON); e_l *= energy_n; e_r *= energy_n; for (i = 0; i < N; i++) X[i] = e_l*X[i] + e_r*Y[i]; } static void celt_stereo_ms_decouple(float *X, float *Y, int N) { int i; for (i = 0; i < N; i++) { const float Xret = X[i]; X[i] = (X[i] + Y[i])*M_SQRT1_2; Y[i] = (Y[i] - Xret)*M_SQRT1_2; } } static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, const int band, float *X, float *Y, int N, int b, uint32_t blocks, float *lowband, int duration, float *lowband_out, int level, float gain, float *lowband_scratch, int fill, int quant) { int i; const uint8_t *cache; int stereo = !!Y, split = stereo; int imid = 0, iside = 0; uint32_t N0 = N; int N_B = N / blocks; int N_B0 = N_B; int B0 = blocks; int time_divide = 0; int recombine = 0; int inv = 0; float mid = 0, side = 0; int longblocks = (B0 == 1); uint32_t cm = 0; if (N == 1) { float *x = X; for (i = 0; i <= stereo; i++) { int sign = 0; if (f->remaining2 >= 1 << 3) { if (quant) { sign = x[0] < 0; ff_opus_rc_put_raw(rc, sign, 1); } else { sign = ff_opus_rc_get_raw(rc, 1); } f->remaining2 -= 1 << 3; } x[0] = 1.0f - 2.0f*sign; x = Y; } if (lowband_out) lowband_out[0] = X[0]; return 1; } if (!stereo && level == 0) { int tf_change = f->tf_change[band]; int k; if (tf_change > 0) recombine = tf_change; /* Band recombining to increase frequency resolution */ if (lowband && (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { for (i = 0; i < N; i++) lowband_scratch[i] = lowband[i]; lowband = lowband_scratch; } for (k = 0; k < recombine; k++) { if (quant || lowband) celt_haar1(quant ? X : lowband, N >> k, 1 << k); fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; } blocks >>= recombine; N_B <<= recombine; /* Increasing the time resolution */ while ((N_B & 1) == 0 && tf_change < 0) { if (quant || lowband) celt_haar1(quant ? X : lowband, N_B, blocks); fill |= fill << blocks; blocks <<= 1; N_B >>= 1; time_divide++; tf_change++; } B0 = blocks; N_B0 = N_B; /* Reorganize the samples in time order instead of frequency order */ if (B0 > 1 && (quant || lowband)) celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband, N_B >> recombine, B0 << recombine, longblocks); } /* If we need 1.5 more bit than we can produce, split the band in two. */ cache = ff_celt_cache_bits + ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { N >>= 1; Y = X + N; split = 1; duration -= 1; if (blocks == 1) fill = (fill & 1) | (fill << 1); blocks = (blocks + 1) >> 1; } if (split) { int qn; int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0; int mbits, sbits, delta; int qalloc; int pulse_cap; int offset; int orig_fill; int tell; /* Decide on the resolution to give to the split parameter theta */ pulse_cap = ff_celt_log_freq_range[band] + duration * 8; offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : CELT_QTHETA_OFFSET); qn = (stereo && band >= f->intensity_stereo) ? 1 : celt_compute_qn(N, b, offset, pulse_cap, stereo); tell = opus_rc_tell_frac(rc); if (qn != 1) { if (quant) itheta = (itheta*qn + 8192) >> 14; /* Entropy coding of the angle. We use a uniform pdf for the * time split, a step for stereo, and a triangular one for the rest. */ if (quant) { if (stereo && N > 2) ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); else if (stereo || B0 > 1) ff_opus_rc_enc_uint(rc, itheta, qn + 1); else ff_opus_rc_enc_uint_tri(rc, itheta, qn); itheta = itheta * 16384 / qn; if (stereo) { if (itheta == 0) celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N); else celt_stereo_ms_decouple(X, Y, N); } } else { if (stereo && N > 2) itheta = ff_opus_rc_dec_uint_step(rc, qn / 2); else if (stereo || B0 > 1) itheta = ff_opus_rc_dec_uint(rc, qn+1); else itheta = ff_opus_rc_dec_uint_tri(rc, qn); itheta = itheta * 16384 / qn; } } else if (stereo) { if (quant) { inv = f->apply_phase_inv ? itheta > 8192 : 0; if (inv) { for (i = 0; i < N; i++) Y[i] *= -1; } celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N); if (b > 2 << 3 && f->remaining2 > 2 << 3) { ff_opus_rc_enc_log(rc, inv, 2); } else { inv = 0; } } else { inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; inv = f->apply_phase_inv ? inv : 0; } itheta = 0; } qalloc = opus_rc_tell_frac(rc) - tell; b -= qalloc; orig_fill = fill; if (itheta == 0) { imid = 32767; iside = 0; fill = av_zero_extend(fill, blocks); delta = -16384; } else if (itheta == 16384) { imid = 0; iside = 32767; fill &= ((1 << blocks) - 1) << blocks; delta = 16384; } else { imid = celt_cos(itheta); iside = celt_cos(16384-itheta); /* This is the mid vs side allocation that minimizes squared error in that band. */ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); } mid = imid / 32768.0f; side = iside / 32768.0f; /* This is a special case for N=2 that only works for stereo and takes advantage of the fact that mid and side are orthogonal to encode the side with just one bit. */ if (N == 2 && stereo) { int c; int sign = 0; float tmp; float *x2, *y2; mbits = b; /* Only need one bit for the side */ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; mbits -= sbits; c = (itheta > 8192); f->remaining2 -= qalloc+sbits; x2 = c ? Y : X; y2 = c ? X : Y; if (sbits) { if (quant) { sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; ff_opus_rc_put_raw(rc, sign, 1); } else { sign = ff_opus_rc_get_raw(rc, 1); } } sign = 1 - 2 * sign; /* We use orig_fill here because we want to fold the side, but if itheta==16384, we'll have cleared the low bits of fill. */ cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, lowband_out, level, gain, lowband_scratch, orig_fill); /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), and there's no need to worry about mixing with the other channel. */ y2[0] = -sign * x2[1]; y2[1] = sign * x2[0]; X[0] *= mid; X[1] *= mid; Y[0] *= side; Y[1] *= side; tmp = X[0]; X[0] = tmp - Y[0]; Y[0] = tmp + Y[0]; tmp = X[1]; X[1] = tmp - Y[1]; Y[1] = tmp + Y[1]; } else { /* "Normal" split code */ float *next_lowband2 = NULL; float *next_lowband_out1 = NULL; int next_level = 0; int rebalance; uint32_t cmt; /* Give more bits to low-energy MDCTs than they would * otherwise deserve */ if (B0 > 1 && !stereo && (itheta & 0x3fff)) { if (itheta > 8192) /* Rough approximation for pre-echo masking */ delta -= delta >> (4 - duration); else /* Corresponds to a forward-masking slope of * 1.5 dB per 10 ms */ delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); } mbits = av_clip((b - delta) / 2, 0, b); sbits = b - mbits; f->remaining2 -= qalloc; if (lowband && !stereo) next_lowband2 = lowband + N; /* >32-bit split case */ /* Only stereo needs to pass on lowband_out. * Otherwise, it's handled at the end */ if (stereo) next_lowband_out1 = lowband_out; else next_level = level + 1; rebalance = f->remaining2; if (mbits >= sbits) { /* In stereo mode, we do not apply a scaling to the mid * because we need the normalized mid for folding later */ cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid), lowband_scratch, fill); rebalance = mbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 0) sbits += rebalance - (3 << 3); /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, duration, NULL, next_level, gain * side, NULL, fill >> blocks); cm |= cmt << ((B0 >> 1) & (stereo - 1)); } else { /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, duration, NULL, next_level, gain * side, NULL, fill >> blocks); cm <<= ((B0 >> 1) & (stereo - 1)); rebalance = sbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 16384) mbits += rebalance - (3 << 3); /* In stereo mode, we do not apply a scaling to the mid because * we need the normalized mid for folding later */ cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid), lowband_scratch, fill); } } } else { /* This is the basic no-split case */ uint32_t q = celt_bits2pulses(cache, b); uint32_t curr_bits = celt_pulses2bits(cache, q); f->remaining2 -= curr_bits; /* Ensures we can never bust the budget */ while (f->remaining2 < 0 && q > 0) { f->remaining2 += curr_bits; curr_bits = celt_pulses2bits(cache, --q); f->remaining2 -= curr_bits; } if (q != 0) { /* Finally do the actual (de)quantization */ if (quant) { cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), f->spread, blocks, gain, pvq); } else { cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), f->spread, blocks, gain, pvq); } } else { /* If there's no pulse, fill the band anyway */ uint32_t cm_mask = (1 << blocks) - 1; fill &= cm_mask; if (fill) { if (!lowband) { /* Noise */ for (i = 0; i < N; i++) X[i] = (((int32_t)celt_rng(f)) >> 20); cm = cm_mask; } else { /* Folded spectrum */ for (i = 0; i < N; i++) { /* About 48 dB below the "normal" folding level */ X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); } cm = fill; } celt_renormalize_vector(X, N, gain); } else { memset(X, 0, N*sizeof(float)); } } } /* This code is used by the decoder and by the resynthesis-enabled encoder */ if (stereo) { if (N > 2) celt_stereo_merge(X, Y, mid, N); if (inv) { for (i = 0; i < N; i++) Y[i] *= -1; } } else if (level == 0) { int k; /* Undo the sample reorganization going from time order to frequency order */ if (B0 > 1) celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine, B0 << recombine, longblocks); /* Undo time-freq changes that we did earlier */ N_B = N_B0; blocks = B0; for (k = 0; k < time_divide; k++) { blocks >>= 1; N_B <<= 1; cm |= cm >> blocks; celt_haar1(X, N_B, blocks); } for (k = 0; k < recombine; k++) { cm = ff_celt_bit_deinterleave[cm]; celt_haar1(X, N0>>k, 1<quant_band = encode ? pvq_encode_band : pvq_decode_band; #if CONFIG_OPUS_ENCODER s->pvq_search = ppp_pvq_search_c; #if ARCH_X86 ff_celt_pvq_init_x86(s); #endif #endif *pvq = s; return 0; } void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq) { av_freep(pvq); }