/* * SVQ1 Encoder * Copyright (C) 2004 Mike Melanson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */ #include "avcodec.h" #include "dsputil.h" #include "hpeldsp.h" #include "mpegvideo.h" #include "h263.h" #include "internal.h" #include "mpegutils.h" #include "svq1.h" #include "svq1enc.h" #include "svq1enc_cb.h" #include "libavutil/avassert.h" static void svq1_write_header(SVQ1EncContext *s, int frame_type) { int i; /* frame code */ put_bits(&s->pb, 22, 0x20); /* temporal reference (sure hope this is a "don't care") */ put_bits(&s->pb, 8, 0x00); /* frame type */ put_bits(&s->pb, 2, frame_type - 1); if (frame_type == AV_PICTURE_TYPE_I) { /* no checksum since frame code is 0x20 */ /* no embedded string either */ /* output 5 unknown bits (2 + 2 + 1) */ put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */ i = ff_match_2uint16((void*)ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height); put_bits(&s->pb, 3, i); if (i == 7) { put_bits(&s->pb, 12, s->frame_width); put_bits(&s->pb, 12, s->frame_height); } } /* no checksum or extra data (next 2 bits get 0) */ put_bits(&s->pb, 2, 0); } #define QUALITY_THRESHOLD 100 #define THRESHOLD_MULTIPLIER 0.6 static int ssd_int8_vs_int16_c(const int8_t *pix1, const int16_t *pix2, intptr_t size) { int score = 0, i; for (i = 0; i < size; i++) score += (pix1[i] - pix2[i]) * (pix1[i] - pix2[i]); return score; } static int encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra) { int count, y, x, i, j, split, best_mean, best_score, best_count; int best_vector[6]; int block_sum[7] = { 0, 0, 0, 0, 0, 0 }; int w = 2 << (level + 2 >> 1); int h = 2 << (level + 1 >> 1); int size = w * h; int16_t block[7][256]; const int8_t *codebook_sum, *codebook; const uint16_t(*mean_vlc)[2]; const uint8_t(*multistage_vlc)[2]; best_score = 0; // FIXME: Optimize, this does not need to be done multiple times. if (intra) { codebook_sum = svq1_intra_codebook_sum[level]; codebook = ff_svq1_intra_codebooks[level]; mean_vlc = ff_svq1_intra_mean_vlc; multistage_vlc = ff_svq1_intra_multistage_vlc[level]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = src[x + y * stride]; block[0][x + w * y] = v; best_score += v * v; block_sum[0] += v; } } } else { codebook_sum = svq1_inter_codebook_sum[level]; codebook = ff_svq1_inter_codebooks[level]; mean_vlc = ff_svq1_inter_mean_vlc + 256; multistage_vlc = ff_svq1_inter_multistage_vlc[level]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = src[x + y * stride] - ref[x + y * stride]; block[0][x + w * y] = v; best_score += v * v; block_sum[0] += v; } } } best_count = 0; best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3)); best_mean = block_sum[0] + (size >> 1) >> (level + 3); if (level < 4) { for (count = 1; count < 7; count++) { int best_vector_score = INT_MAX; int best_vector_sum = -999, best_vector_mean = -999; const int stage = count - 1; const int8_t *vector; for (i = 0; i < 16; i++) { int sum = codebook_sum[stage * 16 + i]; int sqr, diff, score; vector = codebook + stage * size * 16 + i * size; sqr = s->ssd_int8_vs_int16(vector, block[stage], size); diff = block_sum[stage] - sum; score = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64bit slooow if (score < best_vector_score) { int mean = diff + (size >> 1) >> (level + 3); av_assert2(mean > -300 && mean < 300); mean = av_clip(mean, intra ? 0 : -256, 255); best_vector_score = score; best_vector[stage] = i; best_vector_sum = sum; best_vector_mean = mean; } } av_assert0(best_vector_mean != -999); vector = codebook + stage * size * 16 + best_vector[stage] * size; for (j = 0; j < size; j++) block[stage + 1][j] = block[stage][j] - vector[j]; block_sum[stage + 1] = block_sum[stage] - best_vector_sum; best_vector_score += lambda * (+1 + 4 * count + multistage_vlc[1 + count][1] + mean_vlc[best_vector_mean][1]); if (best_vector_score < best_score) { best_score = best_vector_score; best_count = count; best_mean = best_vector_mean; } } } split = 0; if (best_score > threshold && level) { int score = 0; int offset = level & 1 ? stride * h / 2 : w / 2; PutBitContext backup[6]; for (i = level - 1; i >= 0; i--) backup[i] = s->reorder_pb[i]; score += encode_block(s, src, ref, decoded, stride, level - 1, threshold >> 1, lambda, intra); score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level - 1, threshold >> 1, lambda, intra); score += lambda; if (score < best_score) { best_score = score; split = 1; } else { for (i = level - 1; i >= 0; i--) s->reorder_pb[i] = backup[i]; } } if (level > 0) put_bits(&s->reorder_pb[level], 1, split); if (!split) { av_assert1(best_mean >= 0 && best_mean < 256 || !intra); av_assert1(best_mean >= -256 && best_mean < 256); av_assert1(best_count >= 0 && best_count < 7); av_assert1(level < 4 || best_count == 0); /* output the encoding */ put_bits(&s->reorder_pb[level], multistage_vlc[1 + best_count][1], multistage_vlc[1 + best_count][0]); put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], mean_vlc[best_mean][0]); for (i = 0; i < best_count; i++) { av_assert2(best_vector[i] >= 0 && best_vector[i] < 16); put_bits(&s->reorder_pb[level], 4, best_vector[i]); } for (y = 0; y < h; y++) for (x = 0; x < w; x++) decoded[x + y * stride] = src[x + y * stride] - block[best_count][x + w * y] + best_mean; } return best_score; } static void init_block_index(MpegEncContext *s){ s->block_index[0]= s->b8_stride*(s->mb_y*2 ) + s->mb_x*2; s->block_index[1]= s->b8_stride*(s->mb_y*2 ) + 1 + s->mb_x*2; s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) + s->mb_x*2; s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) + 1 + s->mb_x*2; s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x; s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x; } static int svq1_encode_plane(SVQ1EncContext *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane, int width, int height, int src_stride, int stride) { const AVFrame *f = s->avctx->coded_frame; int x, y; int i; int block_width, block_height; int level; int threshold[6]; uint8_t *src = s->scratchbuf + stride * 32; const int lambda = (f->quality * f->quality) >> (2 * FF_LAMBDA_SHIFT); /* figure out the acceptable level thresholds in advance */ threshold[5] = QUALITY_THRESHOLD; for (level = 4; level >= 0; level--) threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; block_width = (width + 15) / 16; block_height = (height + 15) / 16; if (f->pict_type == AV_PICTURE_TYPE_P) { s->m.avctx = s->avctx; s->m.current_picture_ptr = &s->m.current_picture; s->m.last_picture_ptr = &s->m.last_picture; s->m.last_picture.f->data[0] = ref_plane; s->m.linesize = s->m.last_picture.f->linesize[0] = s->m.new_picture.f->linesize[0] = s->m.current_picture.f->linesize[0] = stride; s->m.width = width; s->m.height = height; s->m.mb_width = block_width; s->m.mb_height = block_height; s->m.mb_stride = s->m.mb_width + 1; s->m.b8_stride = 2 * s->m.mb_width + 1; s->m.f_code = 1; s->m.pict_type = f->pict_type; s->m.me_method = s->avctx->me_method; s->m.me.scene_change_score = 0; s->m.flags = s->avctx->flags; // s->m.out_format = FMT_H263; // s->m.unrestricted_mv = 1; s->m.lambda = f->quality; s->m.qscale = s->m.lambda * 139 + FF_LAMBDA_SCALE * 64 >> FF_LAMBDA_SHIFT + 7; s->m.lambda2 = s->m.lambda * s->m.lambda + FF_LAMBDA_SCALE / 2 >> FF_LAMBDA_SHIFT; if (!s->motion_val8[plane]) { s->motion_val8[plane] = av_mallocz((s->m.b8_stride * block_height * 2 + 2) * 2 * sizeof(int16_t)); s->motion_val16[plane] = av_mallocz((s->m.mb_stride * (block_height + 2) + 1) * 2 * sizeof(int16_t)); } s->m.mb_type = s->mb_type; // dummies, to avoid segfaults s->m.current_picture.mb_mean = (uint8_t *)s->dummy; s->m.current_picture.mb_var = (uint16_t *)s->dummy; s->m.current_picture.mc_mb_var = (uint16_t *)s->dummy; s->m.current_picture.mb_type = s->dummy; s->m.current_picture.motion_val[0] = s->motion_val8[plane] + 2; s->m.p_mv_table = s->motion_val16[plane] + s->m.mb_stride + 1; s->m.dsp = s->dsp; // move ff_init_me(&s->m); s->m.me.dia_size = s->avctx->dia_size; s->m.first_slice_line = 1; for (y = 0; y < block_height; y++) { s->m.new_picture.f->data[0] = src - y * 16 * stride; // ugly s->m.mb_y = y; for (i = 0; i < 16 && i + 16 * y < height; i++) { memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], width); for (x = width; x < 16 * block_width; x++) src[i * stride + x] = src[i * stride + x - 1]; } for (; i < 16 && i + 16 * y < 16 * block_height; i++) memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width); for (x = 0; x < block_width; x++) { s->m.mb_x = x; init_block_index(&s->m); ff_estimate_p_frame_motion(&s->m, x, y); } s->m.first_slice_line = 0; } ff_fix_long_p_mvs(&s->m); ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0); } s->m.first_slice_line = 1; for (y = 0; y < block_height; y++) { for (i = 0; i < 16 && i + 16 * y < height; i++) { memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], width); for (x = width; x < 16 * block_width; x++) src[i * stride + x] = src[i * stride + x - 1]; } for (; i < 16 && i + 16 * y < 16 * block_height; i++) memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width); s->m.mb_y = y; for (x = 0; x < block_width; x++) { uint8_t reorder_buffer[3][6][7 * 32]; int count[3][6]; int offset = y * 16 * stride + x * 16; uint8_t *decoded = decoded_plane + offset; uint8_t *ref = ref_plane + offset; int score[4] = { 0, 0, 0, 0 }, best; uint8_t *temp = s->scratchbuf; if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 3000) { // FIXME: check size av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } s->m.mb_x = x; init_block_index(&s->m); if (f->pict_type == AV_PICTURE_TYPE_I || (s->m.mb_type[x + y * s->m.mb_stride] & CANDIDATE_MB_TYPE_INTRA)) { for (i = 0; i < 6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7 * 32); if (f->pict_type == AV_PICTURE_TYPE_P) { const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA]; put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); score[0] = vlc[1] * lambda; } score[0] += encode_block(s, src + 16 * x, NULL, temp, stride, 5, 64, lambda, 1); for (i = 0; i < 6; i++) { count[0][i] = put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } } else score[0] = INT_MAX; best = 0; if (f->pict_type == AV_PICTURE_TYPE_P) { const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER]; int mx, my, pred_x, pred_y, dxy; int16_t *motion_ptr; motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y); if (s->m.mb_type[x + y * s->m.mb_stride] & CANDIDATE_MB_TYPE_INTER) { for (i = 0; i < 6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7 * 32); put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); s->m.pb = s->reorder_pb[5]; mx = motion_ptr[0]; my = motion_ptr[1]; av_assert1(mx >= -32 && mx <= 31); av_assert1(my >= -32 && my <= 31); av_assert1(pred_x >= -32 && pred_x <= 31); av_assert1(pred_y >= -32 && pred_y <= 31); ff_h263_encode_motion(&s->m, mx - pred_x, 1); ff_h263_encode_motion(&s->m, my - pred_y, 1); s->reorder_pb[5] = s->m.pb; score[1] += lambda * put_bits_count(&s->reorder_pb[5]); dxy = (mx & 1) + 2 * (my & 1); s->hdsp.put_pixels_tab[0][dxy](temp + 16*stride, ref + (mx >> 1) + stride * (my >> 1), stride, 16); score[1] += encode_block(s, src + 16 * x, temp + 16*stride, decoded, stride, 5, 64, lambda, 0); best = score[1] <= score[0]; vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP]; score[2] = s->dsp.sse[0](NULL, src + 16 * x, ref, stride, 16); score[2] += vlc[1] * lambda; if (score[2] < score[best] && mx == 0 && my == 0) { best = 2; s->hdsp.put_pixels_tab[0][0](decoded, ref, stride, 16); for (i = 0; i < 6; i++) count[2][i] = 0; put_bits(&s->pb, vlc[1], vlc[0]); } } if (best == 1) { for (i = 0; i < 6; i++) { count[1][i] = put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } } else { motion_ptr[0] = motion_ptr[1] = motion_ptr[2] = motion_ptr[3] = motion_ptr[0 + 2 * s->m.b8_stride] = motion_ptr[1 + 2 * s->m.b8_stride] = motion_ptr[2 + 2 * s->m.b8_stride] = motion_ptr[3 + 2 * s->m.b8_stride] = 0; } } s->rd_total += score[best]; for (i = 5; i >= 0; i--) avpriv_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]); if (best == 0) s->hdsp.put_pixels_tab[0][0](decoded, temp, stride, 16); } s->m.first_slice_line = 0; } return 0; } static av_cold int svq1_encode_end(AVCodecContext *avctx) { SVQ1EncContext *const s = avctx->priv_data; int i; av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total / (double)(avctx->width * avctx->height * avctx->frame_number)); s->m.mb_type = NULL; ff_MPV_common_end(&s->m); av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->m.me.score_map); av_freep(&s->mb_type); av_freep(&s->dummy); av_freep(&s->scratchbuf); for (i = 0; i < 3; i++) { av_freep(&s->motion_val8[i]); av_freep(&s->motion_val16[i]); } av_frame_free(&s->current_picture); av_frame_free(&s->last_picture); av_frame_free(&avctx->coded_frame); return 0; } static av_cold int svq1_encode_init(AVCodecContext *avctx) { SVQ1EncContext *const s = avctx->priv_data; int ret; ff_dsputil_init(&s->dsp, avctx); ff_hpeldsp_init(&s->hdsp, avctx->flags); avctx->coded_frame = av_frame_alloc(); s->current_picture = av_frame_alloc(); s->last_picture = av_frame_alloc(); if (!avctx->coded_frame || !s->current_picture || !s->last_picture) { svq1_encode_end(avctx); return AVERROR(ENOMEM); } s->frame_width = avctx->width; s->frame_height = avctx->height; s->y_block_width = (s->frame_width + 15) / 16; s->y_block_height = (s->frame_height + 15) / 16; s->c_block_width = (s->frame_width / 4 + 15) / 16; s->c_block_height = (s->frame_height / 4 + 15) / 16; s->avctx = avctx; s->m.avctx = avctx; if ((ret = ff_MPV_common_init(&s->m)) < 0) { svq1_encode_end(avctx); return ret; } s->m.picture_structure = PICT_FRAME; s->m.me.temp = s->m.me.scratchpad = av_mallocz((avctx->width + 64) * 2 * 16 * 2 * sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t)); s->mb_type = av_mallocz((s->y_block_width + 1) * s->y_block_height * sizeof(int16_t)); s->dummy = av_mallocz((s->y_block_width + 1) * s->y_block_height * sizeof(int32_t)); s->ssd_int8_vs_int16 = ssd_int8_vs_int16_c; if (ARCH_PPC) ff_svq1enc_init_ppc(s); if (ARCH_X86) ff_svq1enc_init_x86(s); ff_h263_encode_init(&s->m); // mv_penalty return 0; } static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { SVQ1EncContext *const s = avctx->priv_data; AVFrame *const p = avctx->coded_frame; int i, ret; if ((ret = ff_alloc_packet2(avctx, pkt, s->y_block_width * s->y_block_height * MAX_MB_BYTES*3 + FF_MIN_BUFFER_SIZE)) < 0) return ret; if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) { av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n"); return -1; } if (!s->current_picture->data[0]) { if ((ret = ff_get_buffer(avctx, s->current_picture, 0))< 0 || (ret = ff_get_buffer(avctx, s->last_picture, 0)) < 0) { return ret; } s->scratchbuf = av_malloc(s->current_picture->linesize[0] * 16 * 3); } FFSWAP(AVFrame*, s->current_picture, s->last_picture); init_put_bits(&s->pb, pkt->data, pkt->size); p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; p->key_frame = p->pict_type == AV_PICTURE_TYPE_I; p->quality = pict->quality; svq1_write_header(s, p->pict_type); for (i = 0; i < 3; i++) if (svq1_encode_plane(s, i, pict->data[i], s->last_picture->data[i], s->current_picture->data[i], s->frame_width / (i ? 4 : 1), s->frame_height / (i ? 4 : 1), pict->linesize[i], s->current_picture->linesize[i]) < 0) return -1; // avpriv_align_put_bits(&s->pb); while (put_bits_count(&s->pb) & 31) put_bits(&s->pb, 1, 0); flush_put_bits(&s->pb); pkt->size = put_bits_count(&s->pb) / 8; if (p->pict_type == AV_PICTURE_TYPE_I) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } AVCodec ff_svq1_encoder = { .name = "svq1", .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_SVQ1, .priv_data_size = sizeof(SVQ1EncContext), .init = svq1_encode_init, .encode2 = svq1_encode_frame, .close = svq1_encode_end, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P, AV_PIX_FMT_NONE }, };