/* * Copyright (c) 2019 Guo Yejun * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "libavfilter/dnn/dnn_backend_native_layer_pad.h" #define EPSON 0.00001 static int test_with_mode_symmetric(void) { // the input data and expected data are generated with below python code. /* x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') data = np.arange(48).reshape(1, 4, 4, 3); sess=tf.Session() sess.run(tf.global_variables_initializer()) output = sess.run(y, feed_dict={x: data}) print(list(data.flatten())) print(list(output.flatten())) print(data.shape) print(output.shape) */ LayerPadParams params; DnnOperand operands[2]; int32_t input_indexes[1]; float input[1*4*4*3] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 }; float expected_output[1*9*9*3] = { 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 }; float *output; params.mode = LPMP_SYMMETRIC; params.paddings[0][0] = 0; params.paddings[0][1] = 0; params.paddings[1][0] = 2; params.paddings[1][1] = 3; params.paddings[2][0] = 3; params.paddings[2][1] = 2; params.paddings[3][0] = 0; params.paddings[3][1] = 0; operands[0].data = input; operands[0].dims[0] = 1; operands[0].dims[1] = 4; operands[0].dims[2] = 4; operands[0].dims[3] = 3; operands[1].data = NULL; input_indexes[0] = 0; dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); output = operands[1].data; for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { if (fabs(output[i] - expected_output[i]) > EPSON) { printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); av_freep(&output); return 1; } } av_freep(&output); return 0; } static int test_with_mode_reflect(void) { // the input data and expected data are generated with below python code. /* x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') data = np.arange(36).reshape(3, 2, 2, 3); sess=tf.Session() sess.run(tf.global_variables_initializer()) output = sess.run(y, feed_dict={x: data}) print(list(data.flatten())) print(list(output.flatten())) print(data.shape) print(output.shape) */ LayerPadParams params; DnnOperand operands[2]; int32_t input_indexes[1]; float input[3*2*2*3] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 }; float expected_output[6*2*2*3] = { 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 }; float *output; params.mode = LPMP_REFLECT; params.paddings[0][0] = 1; params.paddings[0][1] = 2; params.paddings[1][0] = 0; params.paddings[1][1] = 0; params.paddings[2][0] = 0; params.paddings[2][1] = 0; params.paddings[3][0] = 0; params.paddings[3][1] = 0; operands[0].data = input; operands[0].dims[0] = 3; operands[0].dims[1] = 2; operands[0].dims[2] = 2; operands[0].dims[3] = 3; operands[1].data = NULL; input_indexes[0] = 0; dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); output = operands[1].data; for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { if (fabs(output[i] - expected_output[i]) > EPSON) { printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); av_freep(&output); return 1; } } av_freep(&output); return 0; } static int test_with_mode_constant(void) { // the input data and expected data are generated with below python code. /* x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) data = np.arange(12).reshape(1, 2, 2, 3); sess=tf.Session() sess.run(tf.global_variables_initializer()) output = sess.run(y, feed_dict={x: data}) print(list(data.flatten())) print(list(output.flatten())) print(data.shape) print(output.shape) */ LayerPadParams params; DnnOperand operands[2]; int32_t input_indexes[1]; float input[1*2*2*3] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; float expected_output[1*3*2*6] = { 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 }; float *output; params.mode = LPMP_CONSTANT; params.constant_values = 728; params.paddings[0][0] = 0; params.paddings[0][1] = 0; params.paddings[1][0] = 1; params.paddings[1][1] = 0; params.paddings[2][0] = 0; params.paddings[2][1] = 0; params.paddings[3][0] = 1; params.paddings[3][1] = 2; operands[0].data = input; operands[0].dims[0] = 3; operands[0].dims[1] = 2; operands[0].dims[2] = 2; operands[0].dims[3] = 3; operands[1].data = NULL; input_indexes[0] = 0; dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); output = operands[1].data; for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { if (fabs(output[i] - expected_output[i]) > EPSON) { printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); av_freep(&output); return 1; } } av_freep(&output); return 0; } int main(int argc, char **argv) { if (test_with_mode_symmetric()) return 1; if (test_with_mode_reflect()) return 1; if (test_with_mode_constant()) return 1; }