/* * Copyright (C) 2003-2004 the ffmpeg project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file vp3.c * On2 VP3 Video Decoder * * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) * For more information about the VP3 coding process, visit: * http://multimedia.cx/ * * Theora decoder by Alex Beregszaszi */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "avcodec.h" #include "dsputil.h" #include "bitstream.h" #include "vp3data.h" #include "xiph.h" #define FRAGMENT_PIXELS 8 /* * Debugging Variables * * Define one or more of the following compile-time variables to 1 to obtain * elaborate information about certain aspects of the decoding process. * * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode) * DEBUG_VP3: high-level decoding flow * DEBUG_INIT: initialization parameters * DEBUG_DEQUANTIZERS: display how the dequanization tables are built * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding * DEBUG_MODES: unpacking the coding modes for individual fragments * DEBUG_VECTORS: display the motion vectors * DEBUG_TOKEN: display exhaustive information about each DCT token * DEBUG_VLC: display the VLCs as they are extracted from the stream * DEBUG_DC_PRED: display the process of reversing DC prediction * DEBUG_IDCT: show every detail of the IDCT process */ #define KEYFRAMES_ONLY 0 #define DEBUG_VP3 0 #define DEBUG_INIT 0 #define DEBUG_DEQUANTIZERS 0 #define DEBUG_BLOCK_CODING 0 #define DEBUG_MODES 0 #define DEBUG_VECTORS 0 #define DEBUG_TOKEN 0 #define DEBUG_VLC 0 #define DEBUG_DC_PRED 0 #define DEBUG_IDCT 0 #if DEBUG_VP3 #define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_vp3(const char *format, ...) { } #endif #if DEBUG_INIT #define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_init(const char *format, ...) { } #endif #if DEBUG_DEQUANTIZERS #define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_dequantizers(const char *format, ...) { } #endif #if DEBUG_BLOCK_CODING #define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_block_coding(const char *format, ...) { } #endif #if DEBUG_MODES #define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_modes(const char *format, ...) { } #endif #if DEBUG_VECTORS #define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_vectors(const char *format, ...) { } #endif #if DEBUG_TOKEN #define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_token(const char *format, ...) { } #endif #if DEBUG_VLC #define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_vlc(const char *format, ...) { } #endif #if DEBUG_DC_PRED #define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_dc_pred(const char *format, ...) { } #endif #if DEBUG_IDCT #define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args) #else static inline void debug_idct(const char *format, ...) { } #endif typedef struct Coeff { struct Coeff *next; DCTELEM coeff; uint8_t index; } Coeff; //FIXME split things out into their own arrays typedef struct Vp3Fragment { Coeff *next_coeff; /* address of first pixel taking into account which plane the fragment * lives on as well as the plane stride */ int first_pixel; /* this is the macroblock that the fragment belongs to */ uint16_t macroblock; uint8_t coding_method; uint8_t coeff_count; int8_t motion_x; int8_t motion_y; } Vp3Fragment; #define SB_NOT_CODED 0 #define SB_PARTIALLY_CODED 1 #define SB_FULLY_CODED 2 #define MODE_INTER_NO_MV 0 #define MODE_INTRA 1 #define MODE_INTER_PLUS_MV 2 #define MODE_INTER_LAST_MV 3 #define MODE_INTER_PRIOR_LAST 4 #define MODE_USING_GOLDEN 5 #define MODE_GOLDEN_MV 6 #define MODE_INTER_FOURMV 7 #define CODING_MODE_COUNT 8 /* special internal mode */ #define MODE_COPY 8 /* There are 6 preset schemes, plus a free-form scheme */ static int ModeAlphabet[7][CODING_MODE_COUNT] = { /* this is the custom scheme */ { 0, 0, 0, 0, 0, 0, 0, 0 }, /* scheme 1: Last motion vector dominates */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 2 */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 3 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 4 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 5: No motion vector dominates */ { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 6 */ { MODE_INTER_NO_MV, MODE_USING_GOLDEN, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, }; #define MIN_DEQUANT_VAL 2 typedef struct Vp3DecodeContext { AVCodecContext *avctx; int theora, theora_tables; int version; int width, height; AVFrame golden_frame; AVFrame last_frame; AVFrame current_frame; int keyframe; DSPContext dsp; int flipped_image; int qis[3]; int nqis; int quality_index; int last_quality_index; int superblock_count; int superblock_width; int superblock_height; int y_superblock_width; int y_superblock_height; int c_superblock_width; int c_superblock_height; int u_superblock_start; int v_superblock_start; unsigned char *superblock_coding; int macroblock_count; int macroblock_width; int macroblock_height; int fragment_count; int fragment_width; int fragment_height; Vp3Fragment *all_fragments; Coeff *coeffs; Coeff *next_coeff; int fragment_start[3]; ScanTable scantable; /* tables */ uint16_t coded_dc_scale_factor[64]; uint32_t coded_ac_scale_factor[64]; uint8_t base_matrix[384][64]; uint8_t qr_count[2][3]; uint8_t qr_size [2][3][64]; uint16_t qr_base[2][3][64]; /* this is a list of indices into the all_fragments array indicating * which of the fragments are coded */ int *coded_fragment_list; int coded_fragment_list_index; int pixel_addresses_initialized; VLC dc_vlc[16]; VLC ac_vlc_1[16]; VLC ac_vlc_2[16]; VLC ac_vlc_3[16]; VLC ac_vlc_4[16]; VLC superblock_run_length_vlc; VLC fragment_run_length_vlc; VLC mode_code_vlc; VLC motion_vector_vlc; /* these arrays need to be on 16-byte boundaries since SSE2 operations * index into them */ DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane] /* This table contains superblock_count * 16 entries. Each set of 16 * numbers corresponds to the fragment indices 0..15 of the superblock. * An entry will be -1 to indicate that no entry corresponds to that * index. */ int *superblock_fragments; /* This table contains superblock_count * 4 entries. Each set of 4 * numbers corresponds to the macroblock indices 0..3 of the superblock. * An entry will be -1 to indicate that no entry corresponds to that * index. */ int *superblock_macroblocks; /* This table contains macroblock_count * 6 entries. Each set of 6 * numbers corresponds to the fragment indices 0..5 which comprise * the macroblock (4 Y fragments and 2 C fragments). */ int *macroblock_fragments; /* This is an array that indicates how a particular macroblock * is coded. */ unsigned char *macroblock_coding; int first_coded_y_fragment; int first_coded_c_fragment; int last_coded_y_fragment; int last_coded_c_fragment; uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16 /* Huffman decode */ int hti; unsigned int hbits; int entries; int huff_code_size; uint16_t huffman_table[80][32][2]; uint32_t filter_limit_values[64]; int bounding_values_array[256]; } Vp3DecodeContext; /************************************************************************ * VP3 specific functions ************************************************************************/ /* * This function sets up all of the various blocks mappings: * superblocks <-> fragments, macroblocks <-> fragments, * superblocks <-> macroblocks * * Returns 0 is successful; returns 1 if *anything* went wrong. */ static int init_block_mapping(Vp3DecodeContext *s) { int i, j; signed int hilbert_walk_mb[4]; int current_fragment = 0; int current_width = 0; int current_height = 0; int right_edge = 0; int bottom_edge = 0; int superblock_row_inc = 0; int *hilbert = NULL; int mapping_index = 0; int current_macroblock; int c_fragment; signed char travel_width[16] = { 1, 1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1 }; signed char travel_height[16] = { 0, 0, 1, 0, 1, 1, 0, -1, 0, 1, 0, -1, -1, 0, -1, 0 }; signed char travel_width_mb[4] = { 1, 0, 1, 0 }; signed char travel_height_mb[4] = { 0, 1, 0, -1 }; debug_vp3(" vp3: initialize block mapping tables\n"); hilbert_walk_mb[0] = 1; hilbert_walk_mb[1] = s->macroblock_width; hilbert_walk_mb[2] = 1; hilbert_walk_mb[3] = -s->macroblock_width; /* iterate through each superblock (all planes) and map the fragments */ for (i = 0; i < s->superblock_count; i++) { debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n", i, s->u_superblock_start, s->v_superblock_start); /* time to re-assign the limits? */ if (i == 0) { /* start of Y superblocks */ right_edge = s->fragment_width; bottom_edge = s->fragment_height; current_width = -1; current_height = 0; superblock_row_inc = 3 * s->fragment_width - (s->y_superblock_width * 4 - s->fragment_width); /* the first operation for this variable is to advance by 1 */ current_fragment = -1; } else if (i == s->u_superblock_start) { /* start of U superblocks */ right_edge = s->fragment_width / 2; bottom_edge = s->fragment_height / 2; current_width = -1; current_height = 0; superblock_row_inc = 3 * (s->fragment_width / 2) - (s->c_superblock_width * 4 - s->fragment_width / 2); /* the first operation for this variable is to advance by 1 */ current_fragment = s->fragment_start[1] - 1; } else if (i == s->v_superblock_start) { /* start of V superblocks */ right_edge = s->fragment_width / 2; bottom_edge = s->fragment_height / 2; current_width = -1; current_height = 0; superblock_row_inc = 3 * (s->fragment_width / 2) - (s->c_superblock_width * 4 - s->fragment_width / 2); /* the first operation for this variable is to advance by 1 */ current_fragment = s->fragment_start[2] - 1; } if (current_width >= right_edge - 1) { /* reset width and move to next superblock row */ current_width = -1; current_height += 4; /* fragment is now at the start of a new superblock row */ current_fragment += superblock_row_inc; } /* iterate through all 16 fragments in a superblock */ for (j = 0; j < 16; j++) { current_fragment += travel_width[j] + right_edge * travel_height[j]; current_width += travel_width[j]; current_height += travel_height[j]; /* check if the fragment is in bounds */ if ((current_width < right_edge) && (current_height < bottom_edge)) { s->superblock_fragments[mapping_index] = current_fragment; debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", s->superblock_fragments[mapping_index], i, j, current_width, right_edge, current_height, bottom_edge); } else { s->superblock_fragments[mapping_index] = -1; debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", i, j, current_width, right_edge, current_height, bottom_edge); } mapping_index++; } } /* initialize the superblock <-> macroblock mapping; iterate through * all of the Y plane superblocks to build this mapping */ right_edge = s->macroblock_width; bottom_edge = s->macroblock_height; current_width = -1; current_height = 0; superblock_row_inc = s->macroblock_width - (s->y_superblock_width * 2 - s->macroblock_width); hilbert = hilbert_walk_mb; mapping_index = 0; current_macroblock = -1; for (i = 0; i < s->u_superblock_start; i++) { if (current_width >= right_edge - 1) { /* reset width and move to next superblock row */ current_width = -1; current_height += 2; /* macroblock is now at the start of a new superblock row */ current_macroblock += superblock_row_inc; } /* iterate through each potential macroblock in the superblock */ for (j = 0; j < 4; j++) { current_macroblock += hilbert_walk_mb[j]; current_width += travel_width_mb[j]; current_height += travel_height_mb[j]; /* check if the macroblock is in bounds */ if ((current_width < right_edge) && (current_height < bottom_edge)) { s->superblock_macroblocks[mapping_index] = current_macroblock; debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n", s->superblock_macroblocks[mapping_index], i, j, current_width, right_edge, current_height, bottom_edge); } else { s->superblock_macroblocks[mapping_index] = -1; debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n", i, j, current_width, right_edge, current_height, bottom_edge); } mapping_index++; } } /* initialize the macroblock <-> fragment mapping */ current_fragment = 0; current_macroblock = 0; mapping_index = 0; for (i = 0; i < s->fragment_height; i += 2) { for (j = 0; j < s->fragment_width; j += 2) { debug_init(" macroblock %d contains fragments: ", current_macroblock); s->all_fragments[current_fragment].macroblock = current_macroblock; s->macroblock_fragments[mapping_index++] = current_fragment; debug_init("%d ", current_fragment); if (j + 1 < s->fragment_width) { s->all_fragments[current_fragment + 1].macroblock = current_macroblock; s->macroblock_fragments[mapping_index++] = current_fragment + 1; debug_init("%d ", current_fragment + 1); } else s->macroblock_fragments[mapping_index++] = -1; if (i + 1 < s->fragment_height) { s->all_fragments[current_fragment + s->fragment_width].macroblock = current_macroblock; s->macroblock_fragments[mapping_index++] = current_fragment + s->fragment_width; debug_init("%d ", current_fragment + s->fragment_width); } else s->macroblock_fragments[mapping_index++] = -1; if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) { s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = current_macroblock; s->macroblock_fragments[mapping_index++] = current_fragment + s->fragment_width + 1; debug_init("%d ", current_fragment + s->fragment_width + 1); } else s->macroblock_fragments[mapping_index++] = -1; /* C planes */ c_fragment = s->fragment_start[1] + (i * s->fragment_width / 4) + (j / 2); s->all_fragments[c_fragment].macroblock = s->macroblock_count; s->macroblock_fragments[mapping_index++] = c_fragment; debug_init("%d ", c_fragment); c_fragment = s->fragment_start[2] + (i * s->fragment_width / 4) + (j / 2); s->all_fragments[c_fragment].macroblock = s->macroblock_count; s->macroblock_fragments[mapping_index++] = c_fragment; debug_init("%d ", c_fragment); debug_init("\n"); if (j + 2 <= s->fragment_width) current_fragment += 2; else current_fragment++; current_macroblock++; } current_fragment += s->fragment_width; } return 0; /* successful path out */ } /* * This function wipes out all of the fragment data. */ static void init_frame(Vp3DecodeContext *s, GetBitContext *gb) { int i; /* zero out all of the fragment information */ s->coded_fragment_list_index = 0; for (i = 0; i < s->fragment_count; i++) { s->all_fragments[i].coeff_count = 0; s->all_fragments[i].motion_x = 127; s->all_fragments[i].motion_y = 127; s->all_fragments[i].next_coeff= NULL; s->coeffs[i].index= s->coeffs[i].coeff=0; s->coeffs[i].next= NULL; } } /* * This function sets up the dequantization tables used for a particular * frame. */ static void init_dequantizer(Vp3DecodeContext *s) { int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index]; int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index]; int i, plane, inter, qri, bmi, bmj, qistart; debug_vp3(" vp3: initializing dequantization tables\n"); for(inter=0; inter<2; inter++){ for(plane=0; plane<3; plane++){ int sum=0; for(qri=0; qri<s->qr_count[inter][plane]; qri++){ sum+= s->qr_size[inter][plane][qri]; if(s->quality_index <= sum) break; } qistart= sum - s->qr_size[inter][plane][qri]; bmi= s->qr_base[inter][plane][qri ]; bmj= s->qr_base[inter][plane][qri+1]; for(i=0; i<64; i++){ int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i] - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i] + s->qr_size[inter][plane][qri]) / (2*s->qr_size[inter][plane][qri]); int qmin= 8<<(inter + !i); int qscale= i ? ac_scale_factor : dc_scale_factor; s->qmat[inter][plane][i]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); } } } memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune } /* * This function initializes the loop filter boundary limits if the frame's * quality index is different from the previous frame's. */ static void init_loop_filter(Vp3DecodeContext *s) { int *bounding_values= s->bounding_values_array+127; int filter_limit; int x; filter_limit = s->filter_limit_values[s->quality_index]; /* set up the bounding values */ memset(s->bounding_values_array, 0, 256 * sizeof(int)); for (x = 0; x < filter_limit; x++) { bounding_values[-x - filter_limit] = -filter_limit + x; bounding_values[-x] = -x; bounding_values[x] = x; bounding_values[x + filter_limit] = filter_limit - x; } } /* * This function unpacks all of the superblock/macroblock/fragment coding * information from the bitstream. */ static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) { int bit = 0; int current_superblock = 0; int current_run = 0; int decode_fully_flags = 0; int decode_partial_blocks = 0; int first_c_fragment_seen; int i, j; int current_fragment; debug_vp3(" vp3: unpacking superblock coding\n"); if (s->keyframe) { debug_vp3(" keyframe-- all superblocks are fully coded\n"); memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); } else { /* unpack the list of partially-coded superblocks */ bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; while (current_superblock < s->superblock_count) { if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2); if (current_run == 33) current_run += get_bits(gb, 12); debug_block_coding(" setting superblocks %d..%d to %s\n", current_superblock, current_superblock + current_run - 1, (bit) ? "partially coded" : "not coded"); /* if any of the superblocks are not partially coded, flag * a boolean to decode the list of fully-coded superblocks */ if (bit == 0) { decode_fully_flags = 1; } else { /* make a note of the fact that there are partially coded * superblocks */ decode_partial_blocks = 1; } } s->superblock_coding[current_superblock++] = bit; } /* unpack the list of fully coded superblocks if any of the blocks were * not marked as partially coded in the previous step */ if (decode_fully_flags) { current_superblock = 0; current_run = 0; bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; while (current_superblock < s->superblock_count) { /* skip any superblocks already marked as partially coded */ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2); if (current_run == 33) current_run += get_bits(gb, 12); } debug_block_coding(" setting superblock %d to %s\n", current_superblock, (bit) ? "fully coded" : "not coded"); s->superblock_coding[current_superblock] = 2*bit; } current_superblock++; } } /* if there were partial blocks, initialize bitstream for * unpacking fragment codings */ if (decode_partial_blocks) { current_run = 0; bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; } } /* figure out which fragments are coded; iterate through each * superblock (all planes) */ s->coded_fragment_list_index = 0; s->next_coeff= s->coeffs + s->fragment_count; s->first_coded_y_fragment = s->first_coded_c_fragment = 0; s->last_coded_y_fragment = s->last_coded_c_fragment = -1; first_c_fragment_seen = 0; memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); for (i = 0; i < s->superblock_count; i++) { /* iterate through all 16 fragments in a superblock */ for (j = 0; j < 16; j++) { /* if the fragment is in bounds, check its coding status */ current_fragment = s->superblock_fragments[i * 16 + j]; if (current_fragment >= s->fragment_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n", current_fragment, s->fragment_count); return 1; } if (current_fragment != -1) { if (s->superblock_coding[i] == SB_NOT_CODED) { /* copy all the fragments from the prior frame */ s->all_fragments[current_fragment].coding_method = MODE_COPY; } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { /* fragment may or may not be coded; this is the case * that cares about the fragment coding runs */ if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); } if (bit) { /* default mode; actual mode will be decoded in * the next phase */ s->all_fragments[current_fragment].coding_method = MODE_INTER_NO_MV; s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; s->coded_fragment_list[s->coded_fragment_list_index] = current_fragment; if ((current_fragment >= s->fragment_start[1]) && (s->last_coded_y_fragment == -1) && (!first_c_fragment_seen)) { s->first_coded_c_fragment = s->coded_fragment_list_index; s->last_coded_y_fragment = s->first_coded_c_fragment - 1; first_c_fragment_seen = 1; } s->coded_fragment_list_index++; s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n", i, current_fragment); } else { /* not coded; copy this fragment from the prior frame */ s->all_fragments[current_fragment].coding_method = MODE_COPY; debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n", i, current_fragment); } } else { /* fragments are fully coded in this superblock; actual * coding will be determined in next step */ s->all_fragments[current_fragment].coding_method = MODE_INTER_NO_MV; s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; s->coded_fragment_list[s->coded_fragment_list_index] = current_fragment; if ((current_fragment >= s->fragment_start[1]) && (s->last_coded_y_fragment == -1) && (!first_c_fragment_seen)) { s->first_coded_c_fragment = s->coded_fragment_list_index; s->last_coded_y_fragment = s->first_coded_c_fragment - 1; first_c_fragment_seen = 1; } s->coded_fragment_list_index++; s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n", i, current_fragment); } } } } if (!first_c_fragment_seen) /* only Y fragments coded in this frame */ s->last_coded_y_fragment = s->coded_fragment_list_index - 1; else /* end the list of coded C fragments */ s->last_coded_c_fragment = s->coded_fragment_list_index - 1; debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n", s->coded_fragment_list_index, s->first_coded_y_fragment, s->last_coded_y_fragment, s->first_coded_c_fragment, s->last_coded_c_fragment); return 0; } /* * This function unpacks all the coding mode data for individual macroblocks * from the bitstream. */ static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) { int i, j, k; int scheme; int current_macroblock; int current_fragment; int coding_mode; debug_vp3(" vp3: unpacking encoding modes\n"); if (s->keyframe) { debug_vp3(" keyframe-- all blocks are coded as INTRA\n"); for (i = 0; i < s->fragment_count; i++) s->all_fragments[i].coding_method = MODE_INTRA; } else { /* fetch the mode coding scheme for this frame */ scheme = get_bits(gb, 3); debug_modes(" using mode alphabet %d\n", scheme); /* is it a custom coding scheme? */ if (scheme == 0) { debug_modes(" custom mode alphabet ahead:\n"); for (i = 0; i < 8; i++) ModeAlphabet[scheme][get_bits(gb, 3)] = i; } for (i = 0; i < 8; i++) debug_modes(" mode[%d][%d] = %d\n", scheme, i, ModeAlphabet[scheme][i]); /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (i = 0; i < s->u_superblock_start; i++) { for (j = 0; j < 4; j++) { current_macroblock = s->superblock_macroblocks[i * 4 + j]; if ((current_macroblock == -1) || (s->macroblock_coding[current_macroblock] == MODE_COPY)) continue; if (current_macroblock >= s->macroblock_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n", current_macroblock, s->macroblock_count); return 1; } /* mode 7 means get 3 bits for each coding mode */ if (scheme == 7) coding_mode = get_bits(gb, 3); else coding_mode = ModeAlphabet[scheme] [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; s->macroblock_coding[current_macroblock] = coding_mode; for (k = 0; k < 6; k++) { current_fragment = s->macroblock_fragments[current_macroblock * 6 + k]; if (current_fragment == -1) continue; if (current_fragment >= s->fragment_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n", current_fragment, s->fragment_count); return 1; } if (s->all_fragments[current_fragment].coding_method != MODE_COPY) s->all_fragments[current_fragment].coding_method = coding_mode; } debug_modes(" coding method for macroblock starting @ fragment %d = %d\n", s->macroblock_fragments[current_macroblock * 6], coding_mode); } } } return 0; } /* * This function unpacks all the motion vectors for the individual * macroblocks from the bitstream. */ static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) { int i, j, k; int coding_mode; int motion_x[6]; int motion_y[6]; int last_motion_x = 0; int last_motion_y = 0; int prior_last_motion_x = 0; int prior_last_motion_y = 0; int current_macroblock; int current_fragment; debug_vp3(" vp3: unpacking motion vectors\n"); if (s->keyframe) { debug_vp3(" keyframe-- there are no motion vectors\n"); } else { memset(motion_x, 0, 6 * sizeof(int)); memset(motion_y, 0, 6 * sizeof(int)); /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ coding_mode = get_bits1(gb); debug_vectors(" using %s scheme for unpacking motion vectors\n", (coding_mode == 0) ? "VLC" : "fixed-length"); /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (i = 0; i < s->u_superblock_start; i++) { for (j = 0; j < 4; j++) { current_macroblock = s->superblock_macroblocks[i * 4 + j]; if ((current_macroblock == -1) || (s->macroblock_coding[current_macroblock] == MODE_COPY)) continue; if (current_macroblock >= s->macroblock_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n", current_macroblock, s->macroblock_count); return 1; } current_fragment = s->macroblock_fragments[current_macroblock * 6]; if (current_fragment >= s->fragment_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n", current_fragment, s->fragment_count); return 1; } switch (s->macroblock_coding[current_macroblock]) { case MODE_INTER_PLUS_MV: case MODE_GOLDEN_MV: /* all 6 fragments use the same motion vector */ if (coding_mode == 0) { motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; } for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* vector maintenance, only on MODE_INTER_PLUS_MV */ if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; } break; case MODE_INTER_FOURMV: /* fetch 4 vectors from the bitstream, one for each * Y fragment, then average for the C fragment vectors */ motion_x[4] = motion_y[4] = 0; for (k = 0; k < 4; k++) { if (coding_mode == 0) { motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; } motion_x[4] += motion_x[k]; motion_y[4] += motion_y[k]; } motion_x[5]= motion_x[4]= RSHIFT(motion_x[4], 2); motion_y[5]= motion_y[4]= RSHIFT(motion_y[4], 2); /* vector maintenance; vector[3] is treated as the * last vector in this case */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[3]; last_motion_y = motion_y[3]; break; case MODE_INTER_LAST_MV: /* all 6 fragments use the last motion vector */ motion_x[0] = last_motion_x; motion_y[0] = last_motion_y; for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* no vector maintenance (last vector remains the * last vector) */ break; case MODE_INTER_PRIOR_LAST: /* all 6 fragments use the motion vector prior to the * last motion vector */ motion_x[0] = prior_last_motion_x; motion_y[0] = prior_last_motion_y; for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; break; default: /* covers intra, inter without MV, golden without MV */ memset(motion_x, 0, 6 * sizeof(int)); memset(motion_y, 0, 6 * sizeof(int)); /* no vector maintenance */ break; } /* assign the motion vectors to the correct fragments */ debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n", current_fragment, s->macroblock_coding[current_macroblock]); for (k = 0; k < 6; k++) { current_fragment = s->macroblock_fragments[current_macroblock * 6 + k]; if (current_fragment == -1) continue; if (current_fragment >= s->fragment_count) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n", current_fragment, s->fragment_count); return 1; } s->all_fragments[current_fragment].motion_x = motion_x[k]; s->all_fragments[current_fragment].motion_y = motion_y[k]; debug_vectors(" vector %d: fragment %d = (%d, %d)\n", k, current_fragment, motion_x[k], motion_y[k]); } } } } return 0; } /* * This function is called by unpack_dct_coeffs() to extract the VLCs from * the bitstream. The VLCs encode tokens which are used to unpack DCT * data. This function unpacks all the VLCs for either the Y plane or both * C planes, and is called for DC coefficients or different AC coefficient * levels (since different coefficient types require different VLC tables. * * This function returns a residual eob run. E.g, if a particular token gave * instructions to EOB the next 5 fragments and there were only 2 fragments * left in the current fragment range, 3 would be returned so that it could * be passed into the next call to this same function. */ static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int first_fragment, int last_fragment, int eob_run) { int i; int token; int zero_run = 0; DCTELEM coeff = 0; Vp3Fragment *fragment; uint8_t *perm= s->scantable.permutated; int bits_to_get; if ((first_fragment >= s->fragment_count) || (last_fragment >= s->fragment_count)) { av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n", first_fragment, last_fragment); return 0; } for (i = first_fragment; i <= last_fragment; i++) { fragment = &s->all_fragments[s->coded_fragment_list[i]]; if (fragment->coeff_count > coeff_index) continue; if (!eob_run) { /* decode a VLC into a token */ token = get_vlc2(gb, table->table, 5, 3); debug_vlc(" token = %2d, ", token); /* use the token to get a zero run, a coefficient, and an eob run */ if (token <= 6) { eob_run = eob_run_base[token]; if (eob_run_get_bits[token]) eob_run += get_bits(gb, eob_run_get_bits[token]); coeff = zero_run = 0; } else { bits_to_get = coeff_get_bits[token]; if (!bits_to_get) coeff = coeff_tables[token][0]; else coeff = coeff_tables[token][get_bits(gb, bits_to_get)]; zero_run = zero_run_base[token]; if (zero_run_get_bits[token]) zero_run += get_bits(gb, zero_run_get_bits[token]); } } if (!eob_run) { fragment->coeff_count += zero_run; if (fragment->coeff_count < 64){ fragment->next_coeff->coeff= coeff; fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already? fragment->next_coeff->next= s->next_coeff; s->next_coeff->next=NULL; fragment->next_coeff= s->next_coeff++; } debug_vlc(" fragment %d coeff = %d\n", s->coded_fragment_list[i], fragment->next_coeff[coeff_index]); } else { fragment->coeff_count |= 128; debug_vlc(" fragment %d eob with %d coefficients\n", s->coded_fragment_list[i], fragment->coeff_count&127); eob_run--; } } return eob_run; } /* * This function unpacks all of the DCT coefficient data from the * bitstream. */ static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) { int i; int dc_y_table; int dc_c_table; int ac_y_table; int ac_c_table; int residual_eob_run = 0; /* fetch the DC table indices */ dc_y_table = get_bits(gb, 4); dc_c_table = get_bits(gb, 4); /* unpack the Y plane DC coefficients */ debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n", dc_y_table); residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); /* unpack the C plane DC coefficients */ debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n", dc_c_table); residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); /* fetch the AC table indices */ ac_y_table = get_bits(gb, 4); ac_c_table = get_bits(gb, 4); /* unpack the group 1 AC coefficients (coeffs 1-5) */ for (i = 1; i <= 5; i++) { debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", i, ac_y_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", i, ac_c_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); } /* unpack the group 2 AC coefficients (coeffs 6-14) */ for (i = 6; i <= 14; i++) { debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", i, ac_y_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", i, ac_c_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); } /* unpack the group 3 AC coefficients (coeffs 15-27) */ for (i = 15; i <= 27; i++) { debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", i, ac_y_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", i, ac_c_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); } /* unpack the group 4 AC coefficients (coeffs 28-63) */ for (i = 28; i <= 63; i++) { debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", i, ac_y_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", i, ac_c_table); residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); } return 0; } /* * This function reverses the DC prediction for each coded fragment in * the frame. Much of this function is adapted directly from the original * VP3 source code. */ #define COMPATIBLE_FRAME(x) \ (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY) #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height) { #define PUL 8 #define PU 4 #define PUR 2 #define PL 1 int x, y; int i = first_fragment; int predicted_dc; /* DC values for the left, up-left, up, and up-right fragments */ int vl, vul, vu, vur; /* indices for the left, up-left, up, and up-right fragments */ int l, ul, u, ur; /* * The 6 fields mean: * 0: up-left multiplier * 1: up multiplier * 2: up-right multiplier * 3: left multiplier */ int predictor_transform[16][4] = { { 0, 0, 0, 0}, { 0, 0, 0,128}, // PL { 0, 0,128, 0}, // PUR { 0, 0, 53, 75}, // PUR|PL { 0,128, 0, 0}, // PU { 0, 64, 0, 64}, // PU|PL { 0,128, 0, 0}, // PU|PUR { 0, 0, 53, 75}, // PU|PUR|PL {128, 0, 0, 0}, // PUL { 0, 0, 0,128}, // PUL|PL { 64, 0, 64, 0}, // PUL|PUR { 0, 0, 53, 75}, // PUL|PUR|PL { 0,128, 0, 0}, // PUL|PU {-104,116, 0,116}, // PUL|PU|PL { 24, 80, 24, 0}, // PUL|PU|PUR {-104,116, 0,116} // PUL|PU|PUR|PL }; /* This table shows which types of blocks can use other blocks for * prediction. For example, INTRA is the only mode in this table to * have a frame number of 0. That means INTRA blocks can only predict * from other INTRA blocks. There are 2 golden frame coding types; * blocks encoding in these modes can only predict from other blocks * that were encoded with these 1 of these 2 modes. */ unsigned char compatible_frame[8] = { 1, /* MODE_INTER_NO_MV */ 0, /* MODE_INTRA */ 1, /* MODE_INTER_PLUS_MV */ 1, /* MODE_INTER_LAST_MV */ 1, /* MODE_INTER_PRIOR_MV */ 2, /* MODE_USING_GOLDEN */ 2, /* MODE_GOLDEN_MV */ 1 /* MODE_INTER_FOUR_MV */ }; int current_frame_type; /* there is a last DC predictor for each of the 3 frame types */ short last_dc[3]; int transform = 0; debug_vp3(" vp3: reversing DC prediction\n"); vul = vu = vur = vl = 0; last_dc[0] = last_dc[1] = last_dc[2] = 0; /* for each fragment row... */ for (y = 0; y < fragment_height; y++) { /* for each fragment in a row... */ for (x = 0; x < fragment_width; x++, i++) { /* reverse prediction if this block was coded */ if (s->all_fragments[i].coding_method != MODE_COPY) { current_frame_type = compatible_frame[s->all_fragments[i].coding_method]; debug_dc_pred(" frag %d: orig DC = %d, ", i, DC_COEFF(i)); transform= 0; if(x){ l= i-1; vl = DC_COEFF(l); if(FRAME_CODED(l) && COMPATIBLE_FRAME(l)) transform |= PL; } if(y){ u= i-fragment_width; vu = DC_COEFF(u); if(FRAME_CODED(u) && COMPATIBLE_FRAME(u)) transform |= PU; if(x){ ul= i-fragment_width-1; vul = DC_COEFF(ul); if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul)) transform |= PUL; } if(x + 1 < fragment_width){ ur= i-fragment_width+1; vur = DC_COEFF(ur); if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur)) transform |= PUR; } } debug_dc_pred("transform = %d, ", transform); if (transform == 0) { /* if there were no fragments to predict from, use last * DC saved */ predicted_dc = last_dc[current_frame_type]; debug_dc_pred("from last DC (%d) = %d\n", current_frame_type, DC_COEFF(i)); } else { /* apply the appropriate predictor transform */ predicted_dc = (predictor_transform[transform][0] * vul) + (predictor_transform[transform][1] * vu) + (predictor_transform[transform][2] * vur) + (predictor_transform[transform][3] * vl); predicted_dc /= 128; /* check for outranging on the [ul u l] and * [ul u ur l] predictors */ if ((transform == 13) || (transform == 15)) { if (FFABS(predicted_dc - vu) > 128) predicted_dc = vu; else if (FFABS(predicted_dc - vl) > 128) predicted_dc = vl; else if (FFABS(predicted_dc - vul) > 128) predicted_dc = vul; } debug_dc_pred("from pred DC = %d\n", DC_COEFF(i)); } /* at long last, apply the predictor */ if(s->coeffs[i].index){ *s->next_coeff= s->coeffs[i]; s->coeffs[i].index=0; s->coeffs[i].coeff=0; s->coeffs[i].next= s->next_coeff++; } s->coeffs[i].coeff += predicted_dc; /* save the DC */ last_dc[current_frame_type] = DC_COEFF(i); if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){ s->all_fragments[i].coeff_count= 129; // s->all_fragments[i].next_coeff= s->next_coeff; s->coeffs[i].next= s->next_coeff; (s->next_coeff++)->next=NULL; } } } } } static void horizontal_filter(unsigned char *first_pixel, int stride, int *bounding_values); static void vertical_filter(unsigned char *first_pixel, int stride, int *bounding_values); /* * Perform the final rendering for a particular slice of data. * The slice number ranges from 0..(macroblock_height - 1). */ static void render_slice(Vp3DecodeContext *s, int slice) { int x; int m, n; int16_t *dequantizer; DECLARE_ALIGNED_16(DCTELEM, block[64]); int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; int motion_halfpel_index; uint8_t *motion_source; int plane; int current_macroblock_entry = slice * s->macroblock_width * 6; if (slice >= s->macroblock_height) return; for (plane = 0; plane < 3; plane++) { uint8_t *output_plane = s->current_frame.data [plane]; uint8_t * last_plane = s-> last_frame.data [plane]; uint8_t *golden_plane = s-> golden_frame.data [plane]; int stride = s->current_frame.linesize[plane]; int plane_width = s->width >> !!plane; int plane_height = s->height >> !!plane; int y = slice * FRAGMENT_PIXELS << !plane ; int slice_height = y + (FRAGMENT_PIXELS << !plane); int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane]; if (!s->flipped_image) stride = -stride; if(FFABS(stride) > 2048) return; //various tables are fixed size /* for each fragment row in the slice (both of them)... */ for (; y < slice_height; y += 8) { /* for each fragment in a row... */ for (x = 0; x < plane_width; x += 8, i++) { if ((i < 0) || (i >= s->fragment_count)) { av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i); return; } /* transform if this block was coded */ if ((s->all_fragments[i].coding_method != MODE_COPY) && !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) { if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) motion_source= golden_plane; else motion_source= last_plane; motion_source += s->all_fragments[i].first_pixel; motion_halfpel_index = 0; /* sort out the motion vector if this fragment is coded * using a motion vector method */ if ((s->all_fragments[i].coding_method > MODE_INTRA) && (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { int src_x, src_y; motion_x = s->all_fragments[i].motion_x; motion_y = s->all_fragments[i].motion_y; if(plane){ motion_x= (motion_x>>1) | (motion_x&1); motion_y= (motion_y>>1) | (motion_y&1); } src_x= (motion_x>>1) + x; src_y= (motion_y>>1) + y; if ((motion_x == 127) || (motion_y == 127)) av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y); motion_halfpel_index = motion_x & 0x01; motion_source += (motion_x >> 1); motion_halfpel_index |= (motion_y & 0x01) << 1; motion_source += ((motion_y >> 1) * stride); if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ uint8_t *temp= s->edge_emu_buffer; if(stride<0) temp -= 9*stride; else temp += 9*stride; ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); motion_source= temp; } } /* first, take care of copying a block from either the * previous or the golden frame */ if (s->all_fragments[i].coding_method != MODE_INTRA) { /* Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed */ if(motion_halfpel_index != 3){ s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( output_plane + s->all_fragments[i].first_pixel, motion_source, stride, 8); }else{ int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 s->dsp.put_no_rnd_pixels_l2[1]( output_plane + s->all_fragments[i].first_pixel, motion_source - d, motion_source + stride + 1 + d, stride, 8); } dequantizer = s->qmat[1][plane]; }else{ dequantizer = s->qmat[0][plane]; } /* dequantize the DCT coefficients */ debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", i, s->all_fragments[i].coding_method, DC_COEFF(i), dequantizer[0]); if(s->avctx->idct_algo==FF_IDCT_VP3){ Coeff *coeff= s->coeffs + i; memset(block, 0, sizeof(block)); while(coeff->next){ block[coeff->index]= coeff->coeff * dequantizer[coeff->index]; coeff= coeff->next; } }else{ Coeff *coeff= s->coeffs + i; memset(block, 0, sizeof(block)); while(coeff->next){ block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2; coeff= coeff->next; } } /* invert DCT and place (or add) in final output */ if (s->all_fragments[i].coding_method == MODE_INTRA) { if(s->avctx->idct_algo!=FF_IDCT_VP3) block[0] += 128<<3; s->dsp.idct_put( output_plane + s->all_fragments[i].first_pixel, stride, block); } else { s->dsp.idct_add( output_plane + s->all_fragments[i].first_pixel, stride, block); } debug_idct("block after idct_%s():\n", (s->all_fragments[i].coding_method == MODE_INTRA)? "put" : "add"); for (m = 0; m < 8; m++) { for (n = 0; n < 8; n++) { debug_idct(" %3d", *(output_plane + s->all_fragments[i].first_pixel + (m * stride + n))); } debug_idct("\n"); } debug_idct("\n"); } else { /* copy directly from the previous frame */ s->dsp.put_pixels_tab[1][0]( output_plane + s->all_fragments[i].first_pixel, last_plane + s->all_fragments[i].first_pixel, stride, 8); } #if 0 /* perform the left edge filter if: * - the fragment is not on the left column * - the fragment is coded in this frame * - the fragment is not coded in this frame but the left * fragment is coded in this frame (this is done instead * of a right edge filter when rendering the left fragment * since this fragment is not available yet) */ if ((x > 0) && ((s->all_fragments[i].coding_method != MODE_COPY) || ((s->all_fragments[i].coding_method == MODE_COPY) && (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) { horizontal_filter( output_plane + s->all_fragments[i].first_pixel + 7*stride, -stride, s->bounding_values_array + 127); } /* perform the top edge filter if: * - the fragment is not on the top row * - the fragment is coded in this frame * - the fragment is not coded in this frame but the above * fragment is coded in this frame (this is done instead * of a bottom edge filter when rendering the above * fragment since this fragment is not available yet) */ if ((y > 0) && ((s->all_fragments[i].coding_method != MODE_COPY) || ((s->all_fragments[i].coding_method == MODE_COPY) && (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) { vertical_filter( output_plane + s->all_fragments[i].first_pixel - stride, -stride, s->bounding_values_array + 127); } #endif } } } /* this looks like a good place for slice dispatch... */ /* algorithm: * if (slice == s->macroblock_height - 1) * dispatch (both last slice & 2nd-to-last slice); * else if (slice > 0) * dispatch (slice - 1); */ emms_c(); } static void horizontal_filter(unsigned char *first_pixel, int stride, int *bounding_values) { unsigned char *end; int filter_value; for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) { filter_value = (first_pixel[-2] - first_pixel[ 1]) +3*(first_pixel[ 0] - first_pixel[-1]); filter_value = bounding_values[(filter_value + 4) >> 3]; first_pixel[-1] = av_clip_uint8(first_pixel[-1] + filter_value); first_pixel[ 0] = av_clip_uint8(first_pixel[ 0] - filter_value); } } static void vertical_filter(unsigned char *first_pixel, int stride, int *bounding_values) { unsigned char *end; int filter_value; const int nstride= -stride; for (end= first_pixel + 8; first_pixel < end; first_pixel++) { filter_value = (first_pixel[2 * nstride] - first_pixel[ stride]) +3*(first_pixel[0 ] - first_pixel[nstride]); filter_value = bounding_values[(filter_value + 4) >> 3]; first_pixel[nstride] = av_clip_uint8(first_pixel[nstride] + filter_value); first_pixel[0] = av_clip_uint8(first_pixel[0] - filter_value); } } static void apply_loop_filter(Vp3DecodeContext *s) { int plane; int x, y; int *bounding_values= s->bounding_values_array+127; #if 0 int bounding_values_array[256]; int filter_limit; /* find the right loop limit value */ for (x = 63; x >= 0; x--) { if (vp31_ac_scale_factor[x] >= s->quality_index) break; } filter_limit = vp31_filter_limit_values[s->quality_index]; /* set up the bounding values */ memset(bounding_values_array, 0, 256 * sizeof(int)); for (x = 0; x < filter_limit; x++) { bounding_values[-x - filter_limit] = -filter_limit + x; bounding_values[-x] = -x; bounding_values[x] = x; bounding_values[x + filter_limit] = filter_limit - x; } #endif for (plane = 0; plane < 3; plane++) { int width = s->fragment_width >> !!plane; int height = s->fragment_height >> !!plane; int fragment = s->fragment_start [plane]; int stride = s->current_frame.linesize[plane]; uint8_t *plane_data = s->current_frame.data [plane]; if (!s->flipped_image) stride = -stride; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { START_TIMER /* do not perform left edge filter for left columns frags */ if ((x > 0) && (s->all_fragments[fragment].coding_method != MODE_COPY)) { horizontal_filter( plane_data + s->all_fragments[fragment].first_pixel, stride, bounding_values); } /* do not perform top edge filter for top row fragments */ if ((y > 0) && (s->all_fragments[fragment].coding_method != MODE_COPY)) { vertical_filter( plane_data + s->all_fragments[fragment].first_pixel, stride, bounding_values); } /* do not perform right edge filter for right column * fragments or if right fragment neighbor is also coded * in this frame (it will be filtered in next iteration) */ if ((x < width - 1) && (s->all_fragments[fragment].coding_method != MODE_COPY) && (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { horizontal_filter( plane_data + s->all_fragments[fragment + 1].first_pixel, stride, bounding_values); } /* do not perform bottom edge filter for bottom row * fragments or if bottom fragment neighbor is also coded * in this frame (it will be filtered in the next row) */ if ((y < height - 1) && (s->all_fragments[fragment].coding_method != MODE_COPY) && (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { vertical_filter( plane_data + s->all_fragments[fragment + width].first_pixel, stride, bounding_values); } fragment++; STOP_TIMER("loop filter") } } } } /* * This function computes the first pixel addresses for each fragment. * This function needs to be invoked after the first frame is allocated * so that it has access to the plane strides. */ static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) { int i, x, y; /* figure out the first pixel addresses for each of the fragments */ /* Y plane */ i = 0; for (y = s->fragment_height; y > 0; y--) { for (x = 0; x < s->fragment_width; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[0] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } /* U plane */ i = s->fragment_start[1]; for (y = s->fragment_height / 2; y > 0; y--) { for (x = 0; x < s->fragment_width / 2; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[1] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } /* V plane */ i = s->fragment_start[2]; for (y = s->fragment_height / 2; y > 0; y--) { for (x = 0; x < s->fragment_width / 2; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[2] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } } /* FIXME: this should be merged with the above! */ static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) { int i, x, y; /* figure out the first pixel addresses for each of the fragments */ /* Y plane */ i = 0; for (y = 1; y <= s->fragment_height; y++) { for (x = 0; x < s->fragment_width; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[0] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } /* U plane */ i = s->fragment_start[1]; for (y = 1; y <= s->fragment_height / 2; y++) { for (x = 0; x < s->fragment_width / 2; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[1] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } /* V plane */ i = s->fragment_start[2]; for (y = 1; y <= s->fragment_height / 2; y++) { for (x = 0; x < s->fragment_width / 2; x++) { s->all_fragments[i++].first_pixel = s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - s->golden_frame.linesize[2] + x * FRAGMENT_PIXELS; debug_init(" fragment %d, first pixel @ %d\n", i-1, s->all_fragments[i-1].first_pixel); } } } /* * This is the ffmpeg/libavcodec API init function. */ static av_cold int vp3_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int i, inter, plane; int c_width; int c_height; int y_superblock_count; int c_superblock_count; if (avctx->codec_tag == MKTAG('V','P','3','0')) s->version = 0; else s->version = 1; s->avctx = avctx; s->width = (avctx->width + 15) & 0xFFFFFFF0; s->height = (avctx->height + 15) & 0xFFFFFFF0; avctx->pix_fmt = PIX_FMT_YUV420P; if(avctx->idct_algo==FF_IDCT_AUTO) avctx->idct_algo=FF_IDCT_VP3; dsputil_init(&s->dsp, avctx); ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct); /* initialize to an impossible value which will force a recalculation * in the first frame decode */ s->quality_index = -1; s->y_superblock_width = (s->width + 31) / 32; s->y_superblock_height = (s->height + 31) / 32; y_superblock_count = s->y_superblock_width * s->y_superblock_height; /* work out the dimensions for the C planes */ c_width = s->width / 2; c_height = s->height / 2; s->c_superblock_width = (c_width + 31) / 32; s->c_superblock_height = (c_height + 31) / 32; c_superblock_count = s->c_superblock_width * s->c_superblock_height; s->superblock_count = y_superblock_count + (c_superblock_count * 2); s->u_superblock_start = y_superblock_count; s->v_superblock_start = s->u_superblock_start + c_superblock_count; s->superblock_coding = av_malloc(s->superblock_count); s->macroblock_width = (s->width + 15) / 16; s->macroblock_height = (s->height + 15) / 16; s->macroblock_count = s->macroblock_width * s->macroblock_height; s->fragment_width = s->width / FRAGMENT_PIXELS; s->fragment_height = s->height / FRAGMENT_PIXELS; /* fragment count covers all 8x8 blocks for all 3 planes */ s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; s->fragment_start[1] = s->fragment_width * s->fragment_height; s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4; debug_init(" Y plane: %d x %d\n", s->width, s->height); debug_init(" C plane: %d x %d\n", c_width, c_height); debug_init(" Y superblocks: %d x %d, %d total\n", s->y_superblock_width, s->y_superblock_height, y_superblock_count); debug_init(" C superblocks: %d x %d, %d total\n", s->c_superblock_width, s->c_superblock_height, c_superblock_count); debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n", s->superblock_count, s->u_superblock_start, s->v_superblock_start); debug_init(" macroblocks: %d x %d, %d total\n", s->macroblock_width, s->macroblock_height, s->macroblock_count); debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n", s->fragment_count, s->fragment_width, s->fragment_height, s->fragment_start[1], s->fragment_start[2]); s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65); s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); s->pixel_addresses_initialized = 0; if (!s->theora_tables) { for (i = 0; i < 64; i++) { s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; s->base_matrix[0][i] = vp31_intra_y_dequant[i]; s->base_matrix[1][i] = vp31_intra_c_dequant[i]; s->base_matrix[2][i] = vp31_inter_dequant[i]; s->filter_limit_values[i] = vp31_filter_limit_values[i]; } for(inter=0; inter<2; inter++){ for(plane=0; plane<3; plane++){ s->qr_count[inter][plane]= 1; s->qr_size [inter][plane][0]= 63; s->qr_base [inter][plane][0]= s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; } } /* init VLC tables */ for (i = 0; i < 16; i++) { /* DC histograms */ init_vlc(&s->dc_vlc[i], 5, 32, &dc_bias[i][0][1], 4, 2, &dc_bias[i][0][0], 4, 2, 0); /* group 1 AC histograms */ init_vlc(&s->ac_vlc_1[i], 5, 32, &ac_bias_0[i][0][1], 4, 2, &ac_bias_0[i][0][0], 4, 2, 0); /* group 2 AC histograms */ init_vlc(&s->ac_vlc_2[i], 5, 32, &ac_bias_1[i][0][1], 4, 2, &ac_bias_1[i][0][0], 4, 2, 0); /* group 3 AC histograms */ init_vlc(&s->ac_vlc_3[i], 5, 32, &ac_bias_2[i][0][1], 4, 2, &ac_bias_2[i][0][0], 4, 2, 0); /* group 4 AC histograms */ init_vlc(&s->ac_vlc_4[i], 5, 32, &ac_bias_3[i][0][1], 4, 2, &ac_bias_3[i][0][0], 4, 2, 0); } } else { for (i = 0; i < 16; i++) { /* DC histograms */ init_vlc(&s->dc_vlc[i], 5, 32, &s->huffman_table[i][0][1], 4, 2, &s->huffman_table[i][0][0], 4, 2, 0); /* group 1 AC histograms */ init_vlc(&s->ac_vlc_1[i], 5, 32, &s->huffman_table[i+16][0][1], 4, 2, &s->huffman_table[i+16][0][0], 4, 2, 0); /* group 2 AC histograms */ init_vlc(&s->ac_vlc_2[i], 5, 32, &s->huffman_table[i+16*2][0][1], 4, 2, &s->huffman_table[i+16*2][0][0], 4, 2, 0); /* group 3 AC histograms */ init_vlc(&s->ac_vlc_3[i], 5, 32, &s->huffman_table[i+16*3][0][1], 4, 2, &s->huffman_table[i+16*3][0][0], 4, 2, 0); /* group 4 AC histograms */ init_vlc(&s->ac_vlc_4[i], 5, 32, &s->huffman_table[i+16*4][0][1], 4, 2, &s->huffman_table[i+16*4][0][0], 4, 2, 0); } } init_vlc(&s->superblock_run_length_vlc, 6, 34, &superblock_run_length_vlc_table[0][1], 4, 2, &superblock_run_length_vlc_table[0][0], 4, 2, 0); init_vlc(&s->fragment_run_length_vlc, 5, 30, &fragment_run_length_vlc_table[0][1], 4, 2, &fragment_run_length_vlc_table[0][0], 4, 2, 0); init_vlc(&s->mode_code_vlc, 3, 8, &mode_code_vlc_table[0][1], 2, 1, &mode_code_vlc_table[0][0], 2, 1, 0); init_vlc(&s->motion_vector_vlc, 6, 63, &motion_vector_vlc_table[0][1], 2, 1, &motion_vector_vlc_table[0][0], 2, 1, 0); /* work out the block mapping tables */ s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); s->macroblock_coding = av_malloc(s->macroblock_count + 1); init_block_mapping(s); for (i = 0; i < 3; i++) { s->current_frame.data[i] = NULL; s->last_frame.data[i] = NULL; s->golden_frame.data[i] = NULL; } return 0; } /* * This is the ffmpeg/libavcodec API frame decode function. */ static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *data_size, const uint8_t *buf, int buf_size) { Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; static int counter = 0; int i; init_get_bits(&gb, buf, buf_size * 8); if (s->theora && get_bits1(&gb)) { av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); return -1; } s->keyframe = !get_bits1(&gb); if (!s->theora) skip_bits(&gb, 1); s->last_quality_index = s->quality_index; s->nqis=0; do{ s->qis[s->nqis++]= get_bits(&gb, 6); } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb)); s->quality_index= s->qis[0]; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", s->keyframe?"key":"", counter, s->quality_index); counter++; if (s->quality_index != s->last_quality_index) { init_dequantizer(s); init_loop_filter(s); } if (s->keyframe) { if (!s->theora) { skip_bits(&gb, 4); /* width code */ skip_bits(&gb, 4); /* height code */ if (s->version) { s->version = get_bits(&gb, 5); if (counter == 1) av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); } } if (s->version || s->theora) { if (get_bits1(&gb)) av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); skip_bits(&gb, 2); /* reserved? */ } if (s->last_frame.data[0] == s->golden_frame.data[0]) { if (s->golden_frame.data[0]) avctx->release_buffer(avctx, &s->golden_frame); s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */ } else { if (s->golden_frame.data[0]) avctx->release_buffer(avctx, &s->golden_frame); if (s->last_frame.data[0]) avctx->release_buffer(avctx, &s->last_frame); } s->golden_frame.reference = 3; if(avctx->get_buffer(avctx, &s->golden_frame) < 0) { av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); return -1; } /* golden frame is also the current frame */ s->current_frame= s->golden_frame; /* time to figure out pixel addresses? */ if (!s->pixel_addresses_initialized) { if (!s->flipped_image) vp3_calculate_pixel_addresses(s); else theora_calculate_pixel_addresses(s); s->pixel_addresses_initialized = 1; } } else { /* allocate a new current frame */ s->current_frame.reference = 3; if (!s->pixel_addresses_initialized) { av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n"); return -1; } if(avctx->get_buffer(avctx, &s->current_frame) < 0) { av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); return -1; } } s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame s->current_frame.qstride= 0; {START_TIMER init_frame(s, &gb); STOP_TIMER("init_frame")} #if KEYFRAMES_ONLY if (!s->keyframe) { memcpy(s->current_frame.data[0], s->golden_frame.data[0], s->current_frame.linesize[0] * s->height); memcpy(s->current_frame.data[1], s->golden_frame.data[1], s->current_frame.linesize[1] * s->height / 2); memcpy(s->current_frame.data[2], s->golden_frame.data[2], s->current_frame.linesize[2] * s->height / 2); } else { #endif {START_TIMER if (unpack_superblocks(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); return -1; } STOP_TIMER("unpack_superblocks")} {START_TIMER if (unpack_modes(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); return -1; } STOP_TIMER("unpack_modes")} {START_TIMER if (unpack_vectors(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); return -1; } STOP_TIMER("unpack_vectors")} {START_TIMER if (unpack_dct_coeffs(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); return -1; } STOP_TIMER("unpack_dct_coeffs")} {START_TIMER reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height); if ((avctx->flags & CODEC_FLAG_GRAY) == 0) { reverse_dc_prediction(s, s->fragment_start[1], s->fragment_width / 2, s->fragment_height / 2); reverse_dc_prediction(s, s->fragment_start[2], s->fragment_width / 2, s->fragment_height / 2); } STOP_TIMER("reverse_dc_prediction")} {START_TIMER for (i = 0; i < s->macroblock_height; i++) render_slice(s, i); STOP_TIMER("render_fragments")} {START_TIMER apply_loop_filter(s); STOP_TIMER("apply_loop_filter")} #if KEYFRAMES_ONLY } #endif *data_size=sizeof(AVFrame); *(AVFrame*)data= s->current_frame; /* release the last frame, if it is allocated and if it is not the * golden frame */ if ((s->last_frame.data[0]) && (s->last_frame.data[0] != s->golden_frame.data[0])) avctx->release_buffer(avctx, &s->last_frame); /* shuffle frames (last = current) */ s->last_frame= s->current_frame; s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */ return buf_size; } /* * This is the ffmpeg/libavcodec API module cleanup function. */ static av_cold int vp3_decode_end(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int i; av_free(s->superblock_coding); av_free(s->all_fragments); av_free(s->coeffs); av_free(s->coded_fragment_list); av_free(s->superblock_fragments); av_free(s->superblock_macroblocks); av_free(s->macroblock_fragments); av_free(s->macroblock_coding); for (i = 0; i < 16; i++) { free_vlc(&s->dc_vlc[i]); free_vlc(&s->ac_vlc_1[i]); free_vlc(&s->ac_vlc_2[i]); free_vlc(&s->ac_vlc_3[i]); free_vlc(&s->ac_vlc_4[i]); } free_vlc(&s->superblock_run_length_vlc); free_vlc(&s->fragment_run_length_vlc); free_vlc(&s->mode_code_vlc); free_vlc(&s->motion_vector_vlc); /* release all frames */ if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0]) avctx->release_buffer(avctx, &s->golden_frame); if (s->last_frame.data[0]) avctx->release_buffer(avctx, &s->last_frame); /* no need to release the current_frame since it will always be pointing * to the same frame as either the golden or last frame */ return 0; } static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; if (get_bits1(gb)) { int token; if (s->entries >= 32) { /* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } token = get_bits(gb, 5); //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size); s->huffman_table[s->hti][token][0] = s->hbits; s->huffman_table[s->hti][token][1] = s->huff_code_size; s->entries++; } else { if (s->huff_code_size >= 32) {/* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } s->huff_code_size++; s->hbits <<= 1; read_huffman_tree(avctx, gb); s->hbits |= 1; read_huffman_tree(avctx, gb); s->hbits >>= 1; s->huff_code_size--; } return 0; } #ifdef CONFIG_THEORA_DECODER static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int visible_width, visible_height; s->theora = get_bits_long(gb, 24); av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ /* but previous versions have the image flipped relative to vp3 */ if (s->theora < 0x030200) { s->flipped_image = 1; av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); } s->width = get_bits(gb, 16) << 4; s->height = get_bits(gb, 16) << 4; if(avcodec_check_dimensions(avctx, s->width, s->height)){ av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height); s->width= s->height= 0; return -1; } if (s->theora >= 0x030400) { skip_bits(gb, 32); /* total number of superblocks in a frame */ // fixme, the next field is 36bits long skip_bits(gb, 32); /* total number of blocks in a frame */ skip_bits(gb, 4); /* total number of blocks in a frame */ skip_bits(gb, 32); /* total number of macroblocks in a frame */ } visible_width = get_bits_long(gb, 24); visible_height = get_bits_long(gb, 24); if (s->theora >= 0x030200) { skip_bits(gb, 8); /* offset x */ skip_bits(gb, 8); /* offset y */ } skip_bits(gb, 32); /* fps numerator */ skip_bits(gb, 32); /* fps denumerator */ skip_bits(gb, 24); /* aspect numerator */ skip_bits(gb, 24); /* aspect denumerator */ if (s->theora < 0x030200) skip_bits(gb, 5); /* keyframe frequency force */ skip_bits(gb, 8); /* colorspace */ if (s->theora >= 0x030400) skip_bits(gb, 2); /* pixel format: 420,res,422,444 */ skip_bits(gb, 24); /* bitrate */ skip_bits(gb, 6); /* quality hint */ if (s->theora >= 0x030200) { skip_bits(gb, 5); /* keyframe frequency force */ if (s->theora < 0x030400) skip_bits(gb, 5); /* spare bits */ } // align_get_bits(gb); if ( visible_width <= s->width && visible_width > s->width-16 && visible_height <= s->height && visible_height > s->height-16) avcodec_set_dimensions(avctx, visible_width, visible_height); else avcodec_set_dimensions(avctx, s->width, s->height); return 0; } static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int i, n, matrices, inter, plane; if (s->theora >= 0x030200) { n = get_bits(gb, 3); /* loop filter limit values table */ for (i = 0; i < 64; i++) s->filter_limit_values[i] = get_bits(gb, n); } if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* quality threshold table */ for (i = 0; i < 64; i++) s->coded_ac_scale_factor[i] = get_bits(gb, n); if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* dc scale factor table */ for (i = 0; i < 64; i++) s->coded_dc_scale_factor[i] = get_bits(gb, n); if (s->theora >= 0x030200) matrices = get_bits(gb, 9) + 1; else matrices = 3; if(matrices > 384){ av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); return -1; } for(n=0; n<matrices; n++){ for (i = 0; i < 64; i++) s->base_matrix[n][i]= get_bits(gb, 8); } for (inter = 0; inter <= 1; inter++) { for (plane = 0; plane <= 2; plane++) { int newqr= 1; if (inter || plane > 0) newqr = get_bits1(gb); if (!newqr) { int qtj, plj; if(inter && get_bits1(gb)){ qtj = 0; plj = plane; }else{ qtj= (3*inter + plane - 1) / 3; plj= (plane + 2) % 3; } s->qr_count[inter][plane]= s->qr_count[qtj][plj]; memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); } else { int qri= 0; int qi = 0; for(;;){ i= get_bits(gb, av_log2(matrices-1)+1); if(i>= matrices){ av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); return -1; } s->qr_base[inter][plane][qri]= i; if(qi >= 63) break; i = get_bits(gb, av_log2(63-qi)+1) + 1; s->qr_size[inter][plane][qri++]= i; qi += i; } if (qi > 63) { av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); return -1; } s->qr_count[inter][plane]= qri; } } } /* Huffman tables */ for (s->hti = 0; s->hti < 80; s->hti++) { s->entries = 0; s->huff_code_size = 1; if (!get_bits1(gb)) { s->hbits = 0; read_huffman_tree(avctx, gb); s->hbits = 1; read_huffman_tree(avctx, gb); } } s->theora_tables = 1; return 0; } static int theora_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; int ptype; uint8_t *header_start[3]; int header_len[3]; int i; s->theora = 1; if (!avctx->extradata_size) { av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); return -1; } if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size, 42, header_start, header_len) < 0) { av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); return -1; } for(i=0;i<3;i++) { init_get_bits(&gb, header_start[i], header_len[i]); ptype = get_bits(&gb, 8); debug_vp3("Theora headerpacket type: %x\n", ptype); if (!(ptype & 0x80)) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); // return -1; } // FIXME: Check for this as well. skip_bits(&gb, 6*8); /* "theora" */ switch(ptype) { case 0x80: theora_decode_header(avctx, &gb); break; case 0x81: // FIXME: is this needed? it breaks sometimes // theora_decode_comments(avctx, gb); break; case 0x82: theora_decode_tables(avctx, &gb); break; default: av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); break; } if(8*header_len[i] != get_bits_count(&gb)) av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); if (s->theora < 0x030200) break; } vp3_decode_init(avctx); return 0; } AVCodec theora_decoder = { "theora", CODEC_TYPE_VIDEO, CODEC_ID_THEORA, sizeof(Vp3DecodeContext), theora_decode_init, NULL, vp3_decode_end, vp3_decode_frame, 0, NULL }; #endif AVCodec vp3_decoder = { "vp3", CODEC_TYPE_VIDEO, CODEC_ID_VP3, sizeof(Vp3DecodeContext), vp3_decode_init, NULL, vp3_decode_end, vp3_decode_frame, 0, NULL };