/* * Copyright (c) 2002-2014 Michael Niedermayer * * see https://multimedia.cx/huffyuv.txt for a description of * the algorithm used * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA */ /** * @file * huffyuv encoder */ #include "config_components.h" #include "avcodec.h" #include "bswapdsp.h" #include "codec_internal.h" #include "encode.h" #include "huffyuv.h" #include "huffman.h" #include "huffyuvencdsp.h" #include "lossless_videoencdsp.h" #include "put_bits.h" #include "libavutil/emms.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" typedef struct HYuvEncContext { AVClass *class; AVCodecContext *avctx; PutBitContext pb; Predictor predictor; int interlaced; int decorrelate; int bitstream_bpp; int version; int bps; int n; // 1<bps <= 8) { s->llvidencdsp.diff_bytes(dst, src0, src1, w); } else { s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w); } } static inline int sub_left_prediction(HYuvEncContext *s, uint8_t *dst, const uint8_t *src, int w, int left) { int i; int min_width = FFMIN(w, 32); if (s->bps <= 8) { for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */ const int temp = src[i]; dst[i] = temp - left; left = temp; } if (w < 32) return left; s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32); return src[w-1]; } else { const uint16_t *src16 = (const uint16_t *)src; uint16_t *dst16 = ( uint16_t *)dst; for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */ const int temp = src16[i]; dst16[i] = temp - left; left = temp; } if (w < 32) return left; s->hencdsp.diff_int16(dst16 + 32, src16 + 32, src16 + 31, s->n - 1, w - 32); return src16[w-1]; } } static inline void sub_left_prediction_bgr32(HYuvEncContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha) { int i; int r, g, b, a; int min_width = FFMIN(w, 8); r = *red; g = *green; b = *blue; a = *alpha; for (i = 0; i < min_width; i++) { const int rt = src[i * 4 + R]; const int gt = src[i * 4 + G]; const int bt = src[i * 4 + B]; const int at = src[i * 4 + A]; dst[i * 4 + R] = rt - r; dst[i * 4 + G] = gt - g; dst[i * 4 + B] = bt - b; dst[i * 4 + A] = at - a; r = rt; g = gt; b = bt; a = at; } s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 32 - 4, w * 4 - 32); *red = src[(w - 1) * 4 + R]; *green = src[(w - 1) * 4 + G]; *blue = src[(w - 1) * 4 + B]; *alpha = src[(w - 1) * 4 + A]; } static inline void sub_left_prediction_rgb24(HYuvEncContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue) { int i; int r, g, b; r = *red; g = *green; b = *blue; for (i = 0; i < FFMIN(w, 16); i++) { const int rt = src[i * 3 + 0]; const int gt = src[i * 3 + 1]; const int bt = src[i * 3 + 2]; dst[i * 3 + 0] = rt - r; dst[i * 3 + 1] = gt - g; dst[i * 3 + 2] = bt - b; r = rt; g = gt; b = bt; } s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48); *red = src[(w - 1) * 3 + 0]; *green = src[(w - 1) * 3 + 1]; *blue = src[(w - 1) * 3 + 2]; } static void sub_median_prediction(HYuvEncContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top) { if (s->bps <= 8) { s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top); } else { s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top); } } static int store_table(HYuvEncContext *s, const uint8_t *len, uint8_t *buf) { int i; int index = 0; int n = s->vlc_n; for (i = 0; i < n;) { int val = len[i]; int repeat = 0; for (; i < n && len[i] == val && repeat < 255; i++) repeat++; av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0); if (repeat > 7) { buf[index++] = val; buf[index++] = repeat; } else { buf[index++] = val | (repeat << 5); } } return index; } static int store_huffman_tables(HYuvEncContext *s, uint8_t *buf) { int i, ret; int size = 0; int count = 3; if (s->version > 2) count = 1 + s->alpha + 2*s->chroma; for (i = 0; i < count; i++) { if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0) return ret; if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) { return -1; } size += store_table(s, s->len[i], buf + size); } return size; } static av_cold int encode_init(AVCodecContext *avctx) { HYuvEncContext *s = avctx->priv_data; int i, j; int ret; const AVPixFmtDescriptor *desc; s->avctx = avctx; s->flags = avctx->flags; ff_bswapdsp_init(&s->bdsp); ff_huffyuvencdsp_init(&s->hencdsp, avctx->pix_fmt); ff_llvidencdsp_init(&s->llvidencdsp); avctx->extradata = av_mallocz(3*MAX_N + 4); if (!avctx->extradata) return AVERROR(ENOMEM); if (s->flags&AV_CODEC_FLAG_PASS1) { #define STATS_OUT_SIZE 21*MAX_N*3 + 4 avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132 if (!avctx->stats_out) return AVERROR(ENOMEM); } s->version = 2; desc = av_pix_fmt_desc_get(avctx->pix_fmt); s->bps = desc->comp[0].depth; s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2; s->chroma = desc->nb_components > 2; s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA); s->chroma_h_shift = desc->log2_chroma_w; s->chroma_v_shift = desc->log2_chroma_h; switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV422P: if (avctx->width & 1) { av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n"); return AVERROR(EINVAL); } s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16; break; case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_YUV410P: case AV_PIX_FMT_YUV411P: case AV_PIX_FMT_YUV440P: case AV_PIX_FMT_GBRP: case AV_PIX_FMT_GBRP9: case AV_PIX_FMT_GBRP10: case AV_PIX_FMT_GBRP12: case AV_PIX_FMT_GBRP14: case AV_PIX_FMT_GBRP16: case AV_PIX_FMT_GRAY8: case AV_PIX_FMT_GRAY16: case AV_PIX_FMT_YUVA444P: case AV_PIX_FMT_YUVA420P: case AV_PIX_FMT_YUVA422P: case AV_PIX_FMT_GBRAP: case AV_PIX_FMT_YUV420P9: case AV_PIX_FMT_YUV420P10: case AV_PIX_FMT_YUV420P12: case AV_PIX_FMT_YUV420P14: case AV_PIX_FMT_YUV420P16: case AV_PIX_FMT_YUV422P9: case AV_PIX_FMT_YUV422P10: case AV_PIX_FMT_YUV422P12: case AV_PIX_FMT_YUV422P14: case AV_PIX_FMT_YUV422P16: case AV_PIX_FMT_YUV444P9: case AV_PIX_FMT_YUV444P10: case AV_PIX_FMT_YUV444P12: case AV_PIX_FMT_YUV444P14: case AV_PIX_FMT_YUV444P16: case AV_PIX_FMT_YUVA420P9: case AV_PIX_FMT_YUVA420P10: case AV_PIX_FMT_YUVA420P16: case AV_PIX_FMT_YUVA422P9: case AV_PIX_FMT_YUVA422P10: case AV_PIX_FMT_YUVA422P16: case AV_PIX_FMT_YUVA444P9: case AV_PIX_FMT_YUVA444P10: case AV_PIX_FMT_YUVA444P16: s->version = 3; break; case AV_PIX_FMT_RGB32: s->bitstream_bpp = 32; break; case AV_PIX_FMT_RGB24: s->bitstream_bpp = 24; break; default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR(EINVAL); } s->n = 1<bps; s->vlc_n = FFMIN(s->n, MAX_VLC_N); avctx->bits_per_coded_sample = s->bitstream_bpp; s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR); s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0; if (s->context) { if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) { av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with " "2 pass huffyuv encoding\n"); return AVERROR(EINVAL); } } if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) { if (s->interlaced != ( avctx->height > 288 )) av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n"); } if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) { av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n" "Use vstrict=-2 / -strict -2 to use it anyway.\n"); return AVERROR(EINVAL); } if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) { av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n"); return AVERROR(EINVAL); } avctx->extradata[0] = s->predictor | (s->decorrelate << 6); avctx->extradata[2] = s->interlaced ? 0x10 : 0x20; if (s->context) avctx->extradata[2] |= 0x40; if (s->version < 3) { avctx->extradata[1] = s->bitstream_bpp; avctx->extradata[3] = 0; } else { avctx->extradata[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2); if (s->chroma) avctx->extradata[2] |= s->yuv ? 1 : 2; if (s->alpha) avctx->extradata[2] |= 4; avctx->extradata[3] = 1; } avctx->extradata_size = 4; if (avctx->stats_in) { char *p = avctx->stats_in; for (i = 0; i < 4; i++) for (j = 0; j < s->vlc_n; j++) s->stats[i][j] = 1; for (;;) { for (i = 0; i < 4; i++) { char *next; for (j = 0; j < s->vlc_n; j++) { s->stats[i][j] += strtol(p, &next, 0); if (next == p) return -1; p = next; } } if (p[0] == 0 || p[1] == 0 || p[2] == 0) break; } } else { for (i = 0; i < 4; i++) for (j = 0; j < s->vlc_n; j++) { int d = FFMIN(j, s->vlc_n - j); s->stats[i][j] = 100000000 / (d*d + 1); } } ret = store_huffman_tables(s, avctx->extradata + avctx->extradata_size); if (ret < 0) return ret; avctx->extradata_size += ret; if (s->context) { for (i = 0; i < 4; i++) { int pels = avctx->width * avctx->height / (i ? 40 : 10); for (j = 0; j < s->vlc_n; j++) { int d = FFMIN(j, s->vlc_n - j); s->stats[i][j] = pels/(d*d + 1); } } } else { for (i = 0; i < 4; i++) for (j = 0; j < s->vlc_n; j++) s->stats[i][j]= 0; } ret = ff_huffyuv_alloc_temp(s->temp, s->temp16, avctx->width); if (ret < 0) return ret; s->picture_number=0; return 0; } static int encode_422_bitstream(HYuvEncContext *s, int offset, int count) { int i; const uint8_t *y = s->temp[0] + offset; const uint8_t *u = s->temp[1] + offset / 2; const uint8_t *v = s->temp[2] + offset / 2; if (put_bytes_left(&s->pb, 0) < 2 * 4 * count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD4\ int y0 = y[2 * i];\ int y1 = y[2 * i + 1];\ int u0 = u[i];\ int v0 = v[i]; count /= 2; if (s->flags & AV_CODEC_FLAG_PASS1) { for(i = 0; i < count; i++) { LOAD4; s->stats[0][y0]++; s->stats[1][u0]++; s->stats[0][y1]++; s->stats[2][v0]++; } } if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD4; s->stats[0][y0]++; put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]); s->stats[1][u0]++; put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); s->stats[0][y1]++; put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); s->stats[2][v0]++; put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } } else { for(i = 0; i < count; i++) { LOAD4; put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]); put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } } return 0; } static int encode_plane_bitstream(HYuvEncContext *s, int width, int plane) { int i, count = width/2; if (put_bytes_left(&s->pb, 0) < count * s->bps / 2) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOADEND\ int y0 = s->temp[0][width-1]; #define LOADEND_14\ int y0 = s->temp16[0][width-1] & mask; #define LOADEND_16\ int y0 = s->temp16[0][width-1]; #define STATEND\ s->stats[plane][y0]++; #define STATEND_16\ s->stats[plane][y0>>2]++; #define WRITEEND\ put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]); #define WRITEEND_16\ put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\ put_bits(&s->pb, 2, y0&3); #define LOAD2\ int y0 = s->temp[0][2 * i];\ int y1 = s->temp[0][2 * i + 1]; #define LOAD2_14\ int y0 = s->temp16[0][2 * i] & mask;\ int y1 = s->temp16[0][2 * i + 1] & mask; #define LOAD2_16\ int y0 = s->temp16[0][2 * i];\ int y1 = s->temp16[0][2 * i + 1]; #define STAT2\ s->stats[plane][y0]++;\ s->stats[plane][y1]++; #define STAT2_16\ s->stats[plane][y0>>2]++;\ s->stats[plane][y1>>2]++; #define WRITE2\ put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\ put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]); #define WRITE2_16\ put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\ put_bits(&s->pb, 2, y0&3);\ put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\ put_bits(&s->pb, 2, y1&3); if (s->bps <= 8) { if (s->flags & AV_CODEC_FLAG_PASS1) { for (i = 0; i < count; i++) { LOAD2; STAT2; } if (width&1) { LOADEND; STATEND; } } if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD2; STAT2; WRITE2; } if (width&1) { LOADEND; STATEND; WRITEEND; } } else { for (i = 0; i < count; i++) { LOAD2; WRITE2; } if (width&1) { LOADEND; WRITEEND; } } } else if (s->bps <= 14) { int mask = s->n - 1; if (s->flags & AV_CODEC_FLAG_PASS1) { for (i = 0; i < count; i++) { LOAD2_14; STAT2; } if (width&1) { LOADEND_14; STATEND; } } if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD2_14; STAT2; WRITE2; } if (width&1) { LOADEND_14; STATEND; WRITEEND; } } else { for (i = 0; i < count; i++) { LOAD2_14; WRITE2; } if (width&1) { LOADEND_14; WRITEEND; } } } else { if (s->flags & AV_CODEC_FLAG_PASS1) { for (i = 0; i < count; i++) { LOAD2_16; STAT2_16; } if (width&1) { LOADEND_16; STATEND_16; } } if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD2_16; STAT2_16; WRITE2_16; } if (width&1) { LOADEND_16; STATEND_16; WRITEEND_16; } } else { for (i = 0; i < count; i++) { LOAD2_16; WRITE2_16; } if (width&1) { LOADEND_16; WRITEEND_16; } } } #undef LOAD2 #undef STAT2 #undef WRITE2 return 0; } static int encode_gray_bitstream(HYuvEncContext *s, int count) { int i; if (put_bytes_left(&s->pb, 0) < 4 * count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD2\ int y0 = s->temp[0][2 * i];\ int y1 = s->temp[0][2 * i + 1]; #define STAT2\ s->stats[0][y0]++;\ s->stats[0][y1]++; #define WRITE2\ put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\ put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); count /= 2; if (s->flags & AV_CODEC_FLAG_PASS1) { for (i = 0; i < count; i++) { LOAD2; STAT2; } } if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD2; STAT2; WRITE2; } } else { for (i = 0; i < count; i++) { LOAD2; WRITE2; } } return 0; } static inline int encode_bgra_bitstream(HYuvEncContext *s, int count, int planes) { int i; if (put_bytes_left(&s->pb, 0) < 4 * planes * count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD_GBRA \ int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \ int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\ int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\ int a = s->temp[0][planes * i + A]; #define STAT_BGRA \ s->stats[0][b]++; \ s->stats[1][g]++; \ s->stats[2][r]++; \ if (planes == 4) \ s->stats[2][a]++; #define WRITE_GBRA \ put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \ put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \ put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \ if (planes == 4) \ put_bits(&s->pb, s->len[2][a], s->bits[2][a]); if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) { for (i = 0; i < count; i++) { LOAD_GBRA; STAT_BGRA; } } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) { for (i = 0; i < count; i++) { LOAD_GBRA; STAT_BGRA; WRITE_GBRA; } } else { for (i = 0; i < count; i++) { LOAD_GBRA; WRITE_GBRA; } } return 0; } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { HYuvEncContext *s = avctx->priv_data; const int width = avctx->width; const int width2 = avctx->width >> 1; const int height = avctx->height; const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0]; const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1]; const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2]; const AVFrame * const p = pict; int i, j, size = 0, ret; if ((ret = ff_alloc_packet(avctx, pkt, width * height * 3 * 4 + FF_INPUT_BUFFER_MIN_SIZE)) < 0) return ret; if (s->context) { size = store_huffman_tables(s, pkt->data); if (size < 0) return size; for (i = 0; i < 4; i++) for (j = 0; j < s->vlc_n; j++) s->stats[i][j] >>= 1; } init_put_bits(&s->pb, pkt->data + size, pkt->size - size); if (avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) { int lefty, leftu, leftv, y, cy; put_bits(&s->pb, 8, leftv = p->data[2][0]); put_bits(&s->pb, 8, lefty = p->data[0][1]); put_bits(&s->pb, 8, leftu = p->data[1][0]); put_bits(&s->pb, 8, p->data[0][0]); lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0); leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0); leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0); encode_422_bitstream(s, 2, width-2); if (s->predictor==MEDIAN) { int lefttopy, lefttopu, lefttopv; cy = y = 1; if (s->interlaced) { lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty); leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu); leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv); encode_422_bitstream(s, 0, width); y++; cy++; } lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty); leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu); leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv); encode_422_bitstream(s, 0, 4); lefttopy = p->data[0][3]; lefttopu = p->data[1][1]; lefttopv = p->data[2][1]; s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy); s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu); s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width - 4); y++; cy++; for (; y < height; y++,cy++) { const uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { while (2 * cy > y) { ydst = p->data[0] + p->linesize[0] * y; s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy); encode_gray_bitstream(s, width); y++; } if (y >= height) break; } ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy); s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu); s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width); } } else { for (cy = y = 1; y < height; y++, cy++) { const uint8_t *ydst, *udst, *vdst; /* encode a luma only line & y++ */ if (s->bitstream_bpp == 12) { ydst = p->data[0] + p->linesize[0] * y; if (s->predictor == PLANE && s->interlaced < y) { s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); } else { lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty); } encode_gray_bitstream(s, width); y++; if (y >= height) break; } ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; if (s->predictor == PLANE && s->interlaced < cy) { s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2); s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2); lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu); leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv); } else { lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty); leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu); leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv); } encode_422_bitstream(s, 0, width); } } } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) { const uint8_t *data = p->data[0] + (height - 1) * p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int leftr, leftg, leftb, lefta; put_bits(&s->pb, 8, lefta = data[A]); put_bits(&s->pb, 8, leftr = data[R]); put_bits(&s->pb, 8, leftg = data[G]); put_bits(&s->pb, 8, leftb = data[B]); sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb, &lefta); encode_bgra_bitstream(s, width - 1, 4); for (int y = 1; y < height; y++) { const uint8_t *dst = data + y*stride; if (s->predictor == PLANE && s->interlaced < y) { s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4); sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta); } else { sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta); } encode_bgra_bitstream(s, width, 4); } } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) { const uint8_t *data = p->data[0] + (height - 1) * p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int leftr, leftg, leftb; put_bits(&s->pb, 8, leftr = data[0]); put_bits(&s->pb, 8, leftg = data[1]); put_bits(&s->pb, 8, leftb = data[2]); put_bits(&s->pb, 8, 0); sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1, &leftr, &leftg, &leftb); encode_bgra_bitstream(s, width-1, 3); for (int y = 1; y < height; y++) { const uint8_t *dst = data + y * stride; if (s->predictor == PLANE && s->interlaced < y) { s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 3); sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb); } else { sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb); } encode_bgra_bitstream(s, width, 3); } } else if (s->version > 2) { int plane; for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) { int left, y; int w = width; int h = height; int fake_stride = fake_ystride; if (s->chroma && (plane == 1 || plane == 2)) { w >>= s->chroma_h_shift; h >>= s->chroma_v_shift; fake_stride = plane == 1 ? fake_ustride : fake_vstride; } left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0); encode_plane_bitstream(s, w, plane); if (s->predictor==MEDIAN) { int lefttop; y = 1; if (s->interlaced) { left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left); encode_plane_bitstream(s, w, plane); y++; } lefttop = p->data[plane][0]; for (; y < h; y++) { const uint8_t *dst = p->data[plane] + p->linesize[plane] * y; sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop); encode_plane_bitstream(s, w, plane); } } else { for (y = 1; y < h; y++) { const uint8_t *dst = p->data[plane] + p->linesize[plane] * y; if (s->predictor == PLANE && s->interlaced < y) { diff_bytes(s, s->temp[1], dst, dst - fake_stride, w); left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left); } else { left = sub_left_prediction(s, s->temp[0], dst, w , left); } encode_plane_bitstream(s, w, plane); } } } } else { av_log(avctx, AV_LOG_ERROR, "Format not supported!\n"); } emms_c(); size += (put_bits_count(&s->pb) + 31) / 8; put_bits(&s->pb, 16, 0); put_bits(&s->pb, 15, 0); size /= 4; if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) { int j; char *p = avctx->stats_out; char *end = p + STATS_OUT_SIZE; for (i = 0; i < 4; i++) { for (j = 0; j < s->vlc_n; j++) { snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]); p += strlen(p); s->stats[i][j]= 0; } snprintf(p, end-p, "\n"); p++; if (end <= p) return AVERROR(ENOMEM); } } else if (avctx->stats_out) avctx->stats_out[0] = '\0'; if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) { flush_put_bits(&s->pb); s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size); } s->picture_number++; pkt->size = size * 4; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { HYuvEncContext *s = avctx->priv_data; ff_huffyuv_common_end(s->temp, s->temp16); av_freep(&avctx->stats_out); return 0; } #define OFFSET(x) offsetof(HYuvEncContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM #define COMMON_OPTIONS \ { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \ OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 0 }, \ 0, 1, VE }, \ { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, .unit = "pred" }, \ { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, .unit = "pred" }, \ { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, .unit = "pred" }, \ { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, .unit = "pred" }, \ static const AVOption normal_options[] = { COMMON_OPTIONS { NULL }, }; static const AVOption ff_options[] = { COMMON_OPTIONS { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE }, { NULL }, }; static const AVClass normal_class = { .class_name = "huffyuv", .item_name = av_default_item_name, .option = normal_options, .version = LIBAVUTIL_VERSION_INT, }; static const AVClass ff_class = { .class_name = "ffvhuff", .item_name = av_default_item_name, .option = ff_options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_huffyuv_encoder = { .p.name = "huffyuv", CODEC_LONG_NAME("Huffyuv / HuffYUV"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_HUFFYUV, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .priv_data_size = sizeof(HYuvEncContext), .init = encode_init, FF_CODEC_ENCODE_CB(encode_frame), .close = encode_end, .p.priv_class = &normal_class, .p.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE }, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #if CONFIG_FFVHUFF_ENCODER const FFCodec ff_ffvhuff_encoder = { .p.name = "ffvhuff", CODEC_LONG_NAME("Huffyuv FFmpeg variant"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_FFVHUFF, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .priv_data_size = sizeof(HYuvEncContext), .init = encode_init, FF_CODEC_ENCODE_CB(encode_frame), .close = encode_end, .p.priv_class = &ff_class, .p.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE }, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif