/* * VVC inter prediction * * Copyright (C) 2022 Nuo Mi * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/frame.h" #include "data.h" #include "inter.h" #include "mvs.h" #include "refs.h" // +1 is enough, + 32 for asm alignment #define PROF_TEMP_OFFSET (MAX_PB_SIZE + 32) static const int bcw_w_lut[] = {4, 5, 3, 10, -2}; static void subpic_get_rect(VVCRect *r, const VVCFrame *src_frame, const int subpic_idx, const int is_chroma) { const VVCSPS *sps = src_frame->sps; const VVCPPS *pps = src_frame->pps; const int hs = sps->hshift[is_chroma]; const int vs = sps->vshift[is_chroma]; r->l = pps->subpic_x[subpic_idx] >> hs; r->t = pps->subpic_y[subpic_idx] >> vs; r->r = r->l + (pps->subpic_width[subpic_idx] >> hs); r->b = r->t + (pps->subpic_height[subpic_idx] >> vs); } // clip to subblock and subpicture process in 8.5.6.3.2 Luma sample interpolation filtering process static void clip_to_subpic(int *x_off, int *y_off, int *pic_width, int *pic_height, const VVCRect *subpic, const VVCRect *sb, const int dmvr_clip) { const int l = dmvr_clip ? FFMIN(FFMAX(subpic->l, sb->l), subpic->r - 1) : subpic->l; const int t = dmvr_clip ? FFMIN(FFMAX(subpic->t, sb->t), subpic->b - 1) : subpic->t; const int r = dmvr_clip ? FFMAX(FFMIN(subpic->r, sb->r), subpic->l + 1) : subpic->r; const int b = dmvr_clip ? FFMAX(FFMIN(subpic->b, sb->b), subpic->t + 1) : subpic->b; *x_off -= l; *y_off -= t; *pic_width = r - l; *pic_height = b - t; } static void emulated_edge_no_wrap(const VVCLocalContext *lc, uint8_t *dst, const uint8_t **src, ptrdiff_t *src_stride, int x_off, int y_off, const int block_w, const int block_h, const int extra_before, const int extra_after, const VVCRect *subpic, const VVCRect *sb, const int dmvr_clip) { const VVCFrameContext *fc = lc->fc; const int extra = extra_before + extra_after; int pic_width, pic_height; *src += y_off * *src_stride + (x_off * (1 << fc->ps.sps->pixel_shift)); clip_to_subpic(&x_off, &y_off, &pic_width, &pic_height, subpic, sb, dmvr_clip); if (dmvr_clip || x_off < extra_before || y_off < extra_before || x_off >= pic_width - block_w - extra_after || y_off >= pic_height - block_h - extra_after) { const int ps = fc->ps.sps->pixel_shift; const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << ps; const int offset = extra_before * *src_stride + (extra_before << ps); const int buf_offset = extra_before * edge_emu_stride + (extra_before << ps); fc->vdsp.emulated_edge_mc(dst, *src - offset, edge_emu_stride, *src_stride, block_w + extra, block_h + extra, x_off - extra_before, y_off - extra_before, pic_width, pic_height); *src = dst + buf_offset; *src_stride = edge_emu_stride; } } static void emulated_half(const VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride, const int ps, int x_off, int y_off, const int block_w, const int block_h, const VVCRect *subpic,const VVCRect *half_sb, const int dmvr_clip) { const VVCFrameContext *fc = lc->fc; int pic_width, pic_height; src += y_off * src_stride + x_off * (1 << ps); clip_to_subpic(&x_off, &y_off, &pic_width, &pic_height, subpic, half_sb, dmvr_clip); fc->vdsp.emulated_edge_mc(dst, src, dst_stride, src_stride, block_w, block_h, x_off, y_off, pic_width, pic_height); } static void sb_set_lr(VVCRect *sb, const int l, const int r) { sb->l = l; sb->r = r; } static void sb_wrap(VVCRect *sb, const int wrap) { sb_set_lr(sb, sb->l + wrap, sb->r + wrap); } static void emulated_edge(const VVCLocalContext *lc, uint8_t *dst, const uint8_t **src, ptrdiff_t *src_stride, const VVCFrame *src_frame, int x_sb, int y_sb, int x_off, int y_off, int block_w, int block_h, const int wrap_enabled, const int is_chroma, const int extra_before, const int extra_after) { const VVCSPS *sps = src_frame->sps; const VVCPPS *pps = src_frame->pps; const int ps = sps->pixel_shift; const int subpic_idx = lc->sc->sh.r->curr_subpic_idx; const int extra = extra_before + extra_after; const int dmvr_clip = x_sb != x_off || y_sb != y_off; const int dmvr_left = FFMAX(x_off, x_sb) - extra_before; const int dmvr_right = FFMIN(x_off, x_sb) + block_w + extra_after; const int left = x_off - extra_before; const int top = y_off - extra_before; const int pic_width = pps->width >> sps->hshift[is_chroma]; const int wrap = pps->ref_wraparound_offset << (sps->min_cb_log2_size_y - sps->hshift[is_chroma]); const ptrdiff_t dst_stride = EDGE_EMU_BUFFER_STRIDE << ps; VVCRect sb = { x_sb - extra_before, y_sb - extra_before, x_sb + block_w + extra_after, y_sb + block_h + extra_after }; VVCRect subpic; subpic_get_rect(&subpic, src_frame, subpic_idx, is_chroma); if (!wrap_enabled || (dmvr_left >= 0 && dmvr_right <= pic_width)) { emulated_edge_no_wrap(lc, dst, src, src_stride, x_off, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip); return; } if (dmvr_right <= 0) { sb_wrap(&sb, wrap); emulated_edge_no_wrap(lc, dst, src, src_stride, x_off + wrap, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip); return; } if (dmvr_left >= pic_width) { sb_wrap(&sb, -wrap); emulated_edge_no_wrap(lc, dst, src, src_stride, x_off - wrap, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip); return; } block_w += extra; block_h += extra; // half block are wrapped if (dmvr_left < 0 ) { const int w = -left; VVCRect half_sb = { sb.l + wrap, sb.t, 0 + wrap, sb.b }; emulated_half(lc, dst, dst_stride, *src, *src_stride, ps, left + wrap, top, w, block_h, &subpic, &half_sb, dmvr_clip); sb_set_lr(&half_sb, 0, sb.r); emulated_half(lc, dst + (w << ps), dst_stride, *src, *src_stride, ps, 0, top, block_w - w, block_h, &subpic, &half_sb, dmvr_clip); } else { const int w = pic_width - left; VVCRect half_sb = { sb.l, sb.t, pic_width, sb.b }; emulated_half(lc, dst, dst_stride, *src, *src_stride, ps, left, top, w, block_h, &subpic, &half_sb, dmvr_clip); sb_set_lr(&half_sb, pic_width - wrap, sb.r - wrap); emulated_half(lc, dst + (w << ps), dst_stride, *src, *src_stride, ps, pic_width - wrap , top, block_w - w, block_h, &subpic, &half_sb, dmvr_clip); } *src = dst + extra_before * dst_stride + (extra_before << ps); *src_stride = dst_stride; } #define MC_EMULATED_EDGE(dst, src, src_stride, x_off, y_off) \ emulated_edge(lc, dst, src, src_stride, ref, x_off, y_off, x_off, y_off, block_w, block_h, wrap_enabled, is_chroma, \ is_chroma ? CHROMA_EXTRA_BEFORE : LUMA_EXTRA_BEFORE, is_chroma ? CHROMA_EXTRA_AFTER : LUMA_EXTRA_AFTER) #define MC_EMULATED_EDGE_DMVR(dst, src, src_stride, x_sb, y_sb, x_off, y_off) \ emulated_edge(lc, dst, src, src_stride, ref, x_sb, y_sb, x_off, y_off, block_w, block_h, wrap_enabled, is_chroma, \ is_chroma ? CHROMA_EXTRA_BEFORE : LUMA_EXTRA_BEFORE, is_chroma ? CHROMA_EXTRA_AFTER : LUMA_EXTRA_AFTER) #define MC_EMULATED_EDGE_BILINEAR(dst, src, src_stride, x_off, y_off) \ emulated_edge(lc, dst, src, src_stride, ref, x_off, y_off, x_off, y_off, pred_w, pred_h, wrap_enabled, 0, \ BILINEAR_EXTRA_BEFORE, BILINEAR_EXTRA_AFTER) // part of 8.5.6.6 Weighted sample prediction process static int derive_weight_uni(int *denom, int *wx, int *ox, const VVCLocalContext *lc, const MvField *mvf, const int c_idx) { const VVCFrameContext *fc = lc->fc; const VVCPPS *pps = fc->ps.pps; const VVCSH *sh = &lc->sc->sh; const int weight_flag = (IS_P(sh->r) && pps->r->pps_weighted_pred_flag) || (IS_B(sh->r) && pps->r->pps_weighted_bipred_flag); if (weight_flag) { const int lx = mvf->pred_flag - PF_L0; const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &fc->ps.ph.pwt : &sh->pwt; *denom = w->log2_denom[c_idx > 0]; *wx = w->weight[lx][c_idx][mvf->ref_idx[lx]]; *ox = w->offset[lx][c_idx][mvf->ref_idx[lx]]; } return weight_flag; } // part of 8.5.6.6 Weighted sample prediction process static int derive_weight(int *denom, int *w0, int *w1, int *o0, int *o1, const VVCLocalContext *lc, const MvField *mvf, const int c_idx, const int dmvr_flag) { const VVCFrameContext *fc = lc->fc; const VVCPPS *pps = fc->ps.pps; const VVCSH *sh = &lc->sc->sh; const int bcw_idx = mvf->bcw_idx; const int weight_flag = (IS_P(sh->r) && pps->r->pps_weighted_pred_flag) || (IS_B(sh->r) && pps->r->pps_weighted_bipred_flag && !dmvr_flag); if ((!weight_flag && !bcw_idx) || (bcw_idx && lc->cu->ciip_flag)) return 0; if (bcw_idx) { *denom = 2; *w1 = bcw_w_lut[bcw_idx]; *w0 = 8 - *w1; *o0 = *o1 = 0; } else { const VVCPPS *pps = fc->ps.pps; const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &fc->ps.ph.pwt : &sh->pwt; *denom = w->log2_denom[c_idx > 0]; *w0 = w->weight[L0][c_idx][mvf->ref_idx[L0]]; *w1 = w->weight[L1][c_idx][mvf->ref_idx[L1]]; *o0 = w->offset[L0][c_idx][mvf->ref_idx[L0]]; *o1 = w->offset[L1][c_idx][mvf->ref_idx[L1]]; } return 1; } #define INTER_FILTER(t, frac) (is_chroma ? ff_vvc_inter_chroma_filters[t][frac] : ff_vvc_inter_luma_filters[t][frac]) static void mc(VVCLocalContext *lc, int16_t *dst, const VVCFrame *ref, const Mv *mv, int x_off, int y_off, const int block_w, const int block_h, const int c_idx) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const uint8_t *src = ref->frame->data[c_idx]; ptrdiff_t src_stride = ref->frame->linesize[c_idx]; const int is_chroma = !!c_idx; const int hs = fc->ps.sps->hshift[c_idx]; const int vs = fc->ps.sps->vshift[c_idx]; const int idx = av_log2(block_w) - 1; const intptr_t mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs); const intptr_t my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs); const int hpel_if_idx = (is_chroma || pu->merge_gpm_flag) ? 0 : pu->mi.hpel_if_idx; const int8_t *hf = INTER_FILTER(hpel_if_idx, mx); const int8_t *vf = INTER_FILTER(hpel_if_idx, my); const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; x_off += mv->x >> (4 + hs); y_off += mv->y >> (4 + vs); MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off); fc->vvcdsp.inter.put[is_chroma][idx][!!my][!!mx](dst, src, src_stride, block_h, hf, vf, block_w); } static void mc_uni(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCFrame *ref, const MvField *mvf, int x_off, int y_off, const int block_w, const int block_h, const int c_idx) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const uint8_t *src = ref->frame->data[c_idx]; ptrdiff_t src_stride = ref->frame->linesize[c_idx]; const int lx = mvf->pred_flag - PF_L0; const int hs = fc->ps.sps->hshift[c_idx]; const int vs = fc->ps.sps->vshift[c_idx]; const int idx = av_log2(block_w) - 1; const Mv *mv = &mvf->mv[lx]; const int is_chroma = !!c_idx; const intptr_t mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs); const intptr_t my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs); const int hpel_if_idx = is_chroma ? 0 : pu->mi.hpel_if_idx; const int8_t *hf = INTER_FILTER(hpel_if_idx, mx); const int8_t *vf = INTER_FILTER(hpel_if_idx, my); const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; int denom, wx, ox; x_off += mv->x >> (4 + hs); y_off += mv->y >> (4 + vs); MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off); if (derive_weight_uni(&denom, &wx, &ox, lc, mvf, c_idx)) { fc->vvcdsp.inter.put_uni_w[is_chroma][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, denom, wx, ox, hf, vf, block_w); } else { fc->vvcdsp.inter.put_uni[is_chroma][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, hf, vf, block_w); } } static void mc_bi(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCFrame *ref0, const VVCFrame *ref1, const MvField *mvf, const MvField *orig_mv, const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx, const int sb_bdof_flag) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const int hs = fc->ps.sps->hshift[c_idx]; const int vs = fc->ps.sps->vshift[c_idx]; const int idx = av_log2(block_w) - 1; const VVCFrame *refs[] = { ref0, ref1 }; int16_t *tmp[] = { lc->tmp + sb_bdof_flag * PROF_TEMP_OFFSET, lc->tmp1 + sb_bdof_flag * PROF_TEMP_OFFSET }; int denom, w0, w1, o0, o1; const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, c_idx, pu->dmvr_flag); const int is_chroma = !!c_idx; const int hpel_if_idx = is_chroma ? 0 : pu->mi.hpel_if_idx; for (int i = L0; i <= L1; i++) { const Mv *mv = mvf->mv + i; const int mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs); const int my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs); const int ox = x_off + (mv->x >> (4 + hs)); const int oy = y_off + (mv->y >> (4 + vs)); const VVCFrame *ref = refs[i]; ptrdiff_t src_stride = ref->frame->linesize[c_idx]; const uint8_t *src = ref->frame->data[c_idx]; const int8_t *hf = INTER_FILTER(hpel_if_idx, mx); const int8_t *vf = INTER_FILTER(hpel_if_idx, my); const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; if (pu->dmvr_flag) { const int x_sb = x_off + (orig_mv->mv[i].x >> (4 + hs)); const int y_sb = y_off + (orig_mv->mv[i].y >> (4 + vs)); MC_EMULATED_EDGE_DMVR(lc->edge_emu_buffer, &src, &src_stride, x_sb, y_sb, ox, oy); } else { MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, ox, oy); } fc->vvcdsp.inter.put[is_chroma][idx][!!my][!!mx](tmp[i], src, src_stride, block_h, hf, vf, block_w); if (sb_bdof_flag) fc->vvcdsp.inter.bdof_fetch_samples(tmp[i], src, src_stride, mx, my, block_w, block_h); } if (sb_bdof_flag) fc->vvcdsp.inter.apply_bdof(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h); else if (weight_flag) fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1); else fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h); } static const int8_t* inter_filter_scaled(const int scale, const int is_chroma, const int is_affine) { #define SCALE_THRESHOLD_1 20480 #define SCALE_THRESHOLD_2 28672 const int i = (scale > SCALE_THRESHOLD_2) + (scale > SCALE_THRESHOLD_1); if (!is_chroma) { if (!is_affine) return &ff_vvc_inter_luma_filters[i + !!i][0][0]; //hpel 1 is not needed for scaled return &ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE + i][0][0]; } return &ff_vvc_inter_chroma_filters[i][0][0]; } #define INTER_FILTER_SCALED(scale) inter_filter_scaled(scale, is_chroma, is_affine) #define SCALED_CHROMA_ADDIN(scale, collocated_flag) (is_chroma ? (collocated_flag ? 0 : 8 * (scale - (1 << 14))) : 0) #define SCALED_REF_SB(off, scaling_off, ref_mv, scale, add, shift) ((((off - (scaling_off << shift)) << (4 + shift)) + ref_mv) * scale + add) #define SCALED_REF(ref_sb, offset, shift) (FFSIGN(ref_sb) * ((FFABS(ref_sb) + (128 << is_chroma)) >> (8 + is_chroma)) + (offset << (10 - shift)) + (32 >> is_chroma)) #define SCALED_STEP(scale) ((scale + 8) >> 4) static void scaled_ref_pos_and_step(const VVCLocalContext *lc, const VVCRefPic *refp, const Mv *mv, const int x_off, const int y_off, const int c_idx, int *x, int *y, int *dx, int *dy) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const int is_chroma = !!c_idx; const int hs = sps->hshift[c_idx]; const int vs = sps->vshift[c_idx]; const int left_offset = fc->ref->scaling_win.left_offset; const int top_offset = fc->ref->scaling_win.top_offset; const int addx = SCALED_CHROMA_ADDIN(refp->scale[0], sps->r->sps_chroma_horizontal_collocated_flag); const int addy = SCALED_CHROMA_ADDIN(refp->scale[1], sps->r->sps_chroma_vertical_collocated_flag); const int refx_sb = SCALED_REF_SB(x_off, left_offset, mv->x, refp->scale[0], addx, hs); const int refy_sb = SCALED_REF_SB(y_off, top_offset, mv->y, refp->scale[1], addy, vs); *x = SCALED_REF(refx_sb, left_offset, hs); *y = SCALED_REF(refy_sb, top_offset, vs); *dx = SCALED_STEP(refp->scale[0]); *dy = SCALED_STEP(refp->scale[1]); } static void emulated_edge_scaled(VVCLocalContext *lc, const uint8_t **src, ptrdiff_t *src_stride, int *src_height, const VVCFrame *ref, const int x, const int y, const int dx, const int dy, const int w, const int h, const int is_chroma) { const int x_off = SCALED_INT(x); const int y_off = SCALED_INT(y); const int x_end = SCALED_INT(x + w * dx); const int y_end = SCALED_INT(y + h * dy); const int x_last = SCALED_INT(x + (w - 1) * dx); const int y_last = SCALED_INT(y + (h - 1) * dy); const int block_w = x_end - x_off + (x_end == x_last); const int block_h = *src_height = y_end - y_off + (y_end == y_last); const int wrap_enabled = 0; MC_EMULATED_EDGE(lc->edge_emu_buffer, src, src_stride, x_off, y_off); } static void mc_scaled(VVCLocalContext *lc, int16_t *dst, const VVCRefPic *refp, const Mv *mv, int x_off, int y_off, const int block_w, const int block_h, const int c_idx) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const uint8_t *src = refp->ref->frame->data[c_idx]; ptrdiff_t src_stride = refp->ref->frame->linesize[c_idx]; const int is_affine = pu->inter_affine_flag; const int is_chroma = !!c_idx; const int idx = av_log2(block_w) - 1; const int8_t *hf = INTER_FILTER_SCALED(refp->scale[0]); const int8_t *vf = INTER_FILTER_SCALED(refp->scale[1]); int x, y, dx, dy, src_height; scaled_ref_pos_and_step(lc, refp, mv, x_off, y_off, c_idx, &x, &y, &dx, &dy); emulated_edge_scaled(lc, &src, &src_stride, &src_height, refp->ref, x, y, dx, dy, block_w, block_h, is_chroma); fc->vvcdsp.inter.put_scaled[is_chroma][idx](dst, src, src_stride, src_height, x, y, dx, dy, block_h, hf, vf, block_w); } static void mc_uni_scaled(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCRefPic *refp, const MvField *mvf, const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const uint8_t *src = refp->ref->frame->data[c_idx]; ptrdiff_t src_stride = refp->ref->frame->linesize[c_idx]; const int lx = mvf->pred_flag - PF_L0; const Mv *mv = &mvf->mv[lx]; const int is_affine = pu->inter_affine_flag; const int is_chroma = !!c_idx; const int idx = av_log2(block_w) - 1; const int8_t *hf = INTER_FILTER_SCALED(refp->scale[0]); const int8_t *vf = INTER_FILTER_SCALED(refp->scale[1]); int denom, wx, ox, x, y, dx, dy, src_height; scaled_ref_pos_and_step(lc, refp, mv, x_off, y_off, c_idx, &x, &y, &dx, &dy); emulated_edge_scaled(lc, &src, &src_stride, &src_height, refp->ref, x, y, dx, dy, block_w, block_h, is_chroma); if (derive_weight_uni(&denom, &wx, &ox, lc, mvf, c_idx)) { fc->vvcdsp.inter.put_uni_w_scaled[is_chroma][idx](dst, dst_stride, src, src_stride, src_height, x, y, dx, dy, block_h, denom, wx, ox, hf, vf, block_w); } else { fc->vvcdsp.inter.put_uni_scaled[is_chroma][idx](dst, dst_stride, src, src_stride, src_height, x, y, dx, dy, block_h, hf, vf, block_w); } } static void mc_bi_scaled(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCRefPic *refp0, const VVCRefPic *refp1, const MvField *mvf, const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx) { int denom, w0, w1, o0, o1; const VVCFrameContext *fc = lc->fc; const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, c_idx, lc->cu->pu.dmvr_flag); const VVCRefPic *refps[] = { refp0, refp1 }; int16_t *tmp[] = { lc->tmp, lc->tmp1 }; for (int i = L0; i <= L1; i++) { const Mv *mv = mvf->mv + i; const VVCRefPic *refp = refps[i]; if (refp->is_scaled) mc_scaled(lc, tmp[i], refp, mv, x_off, y_off, block_w, block_h, c_idx); else mc(lc, tmp[i], refp->ref, mv, x_off, y_off, block_w, block_h, c_idx); } if (weight_flag) fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1); else fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h); } static void luma_prof_uni(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCFrame *ref, const MvField *mvf, int x_off, int y_off, const int block_w, const int block_h, const int cb_prof_flag, const int16_t *diff_mv_x, const int16_t *diff_mv_y) { const VVCFrameContext *fc = lc->fc; const uint8_t *src = ref->frame->data[LUMA]; ptrdiff_t src_stride = ref->frame->linesize[LUMA]; uint16_t *prof_tmp = lc->tmp + PROF_TEMP_OFFSET; const int idx = av_log2(block_w) - 1; const int lx = mvf->pred_flag - PF_L0; const Mv *mv = mvf->mv + lx; const int mx = mv->x & 0xf; const int my = mv->y & 0xf; const int8_t *hf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][mx]; const int8_t *vf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][my]; int denom, wx, ox; const int weight_flag = derive_weight_uni(&denom, &wx, &ox, lc, mvf, LUMA); const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; const int is_chroma = 0; x_off += mv->x >> 4; y_off += mv->y >> 4; MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off); if (cb_prof_flag) { fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](prof_tmp, src, src_stride, AFFINE_MIN_BLOCK_SIZE, hf, vf, AFFINE_MIN_BLOCK_SIZE); fc->vvcdsp.inter.fetch_samples(prof_tmp, src, src_stride, mx, my); if (!weight_flag) fc->vvcdsp.inter.apply_prof_uni(dst, dst_stride, prof_tmp, diff_mv_x, diff_mv_y); else fc->vvcdsp.inter.apply_prof_uni_w(dst, dst_stride, prof_tmp, diff_mv_x, diff_mv_y, denom, wx, ox); } else { if (!weight_flag) fc->vvcdsp.inter.put_uni[LUMA][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, hf, vf, block_w); else fc->vvcdsp.inter.put_uni_w[LUMA][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, denom, wx, ox, hf, vf, block_w); } } static void luma_prof(VVCLocalContext *lc, int16_t *dst, const VVCFrame *ref, const Mv *mv , const int x_off, const int y_off, const int block_w, const int block_h, const int lx) { const VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; const int mx = mv->x & 0xf; const int my = mv->y & 0xf; const int ox = x_off + (mv->x >> 4); const int oy = y_off + (mv->y >> 4); const int idx = av_log2(block_w) - 1; const int is_chroma = 0; uint16_t *prof_tmp = lc->tmp2 + PROF_TEMP_OFFSET; ptrdiff_t src_stride = ref->frame->linesize[LUMA]; const uint8_t *src = ref->frame->data[LUMA]; const int8_t *hf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][mx]; const int8_t *vf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][my]; const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, ox, oy); if (!pu->cb_prof_flag[lx]) { fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](dst, src, src_stride, block_h, hf, vf, block_w); } else { fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](prof_tmp, src, src_stride, AFFINE_MIN_BLOCK_SIZE, hf, vf, AFFINE_MIN_BLOCK_SIZE); fc->vvcdsp.inter.fetch_samples(prof_tmp, src, src_stride, mx, my); fc->vvcdsp.inter.apply_prof(dst, prof_tmp, pu->diff_mv_x[lx], pu->diff_mv_y[lx]); } } static void luma_prof_bi(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCRefPic *ref0, const VVCRefPic *ref1, const MvField *mvf, const int x_off, const int y_off, const int block_w, const int block_h) { const VVCFrameContext *fc = lc->fc; const VVCRefPic *refps[] = { ref0, ref1 }; int16_t *tmp[] = { lc->tmp, lc->tmp1 }; int denom, w0, w1, o0, o1; const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, LUMA, 0); for (int i = L0; i <= L1; i++) { const VVCRefPic *refp = refps[i]; const Mv *mv = mvf->mv + i; if (refp->is_scaled) mc_scaled(lc, tmp[i], refp, mv, x_off, y_off, block_w, block_h, LUMA); else luma_prof(lc, tmp[i], refp->ref, mv, x_off, y_off, block_w, block_h, i); } if (weight_flag) fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1); else fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h); } static int pred_get_refs(const VVCLocalContext *lc, VVCRefPic *refp[2], const MvField *mv) { RefPicList *rpl = lc->sc->rpl; for (int mask = PF_L0; mask <= PF_L1; mask++) { if (mv->pred_flag & mask) { const int lx = mask - PF_L0; refp[lx] = rpl[lx].refs + mv->ref_idx[lx]; if (!refp[lx]->ref) return AVERROR_INVALIDDATA; } } return 0; } #define POS(c_idx, x, y) \ &fc->frame->data[c_idx][((y) >> fc->ps.sps->vshift[c_idx]) * fc->frame->linesize[c_idx] + \ (((x) >> fc->ps.sps->hshift[c_idx]) << fc->ps.sps->pixel_shift)] static void pred_gpm_blk(VVCLocalContext *lc) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const PredictionUnit *pu = &cu->pu; const uint8_t angle_idx = ff_vvc_gpm_angle_idx[pu->gpm_partition_idx]; const uint8_t weights_idx = ff_vvc_gpm_angle_to_weights_idx[angle_idx]; const int w = av_log2(cu->cb_width) - 3; const int h = av_log2(cu->cb_height) - 3; const uint8_t off_x = ff_vvc_gpm_weights_offset_x[pu->gpm_partition_idx][h][w]; const uint8_t off_y = ff_vvc_gpm_weights_offset_y[pu->gpm_partition_idx][h][w]; const uint8_t mirror_type = ff_vvc_gpm_angle_to_mirror[angle_idx]; const uint8_t *weights; const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? 3 : 1; int16_t *tmp[2] = {lc->tmp, lc->tmp1}; for (int c_idx = 0; c_idx < c_end; c_idx++) { const int hs = fc->ps.sps->hshift[c_idx]; const int vs = fc->ps.sps->vshift[c_idx]; const int x = lc->cu->x0 >> hs; const int y = lc->cu->y0 >> vs; const int width = cu->cb_width >> hs; const int height = cu->cb_height >> vs; uint8_t *dst = POS(c_idx, lc->cu->x0, lc->cu->y0); ptrdiff_t dst_stride = fc->frame->linesize[c_idx]; int step_x = 1 << hs; int step_y = VVC_GPM_WEIGHT_SIZE << vs; if (!mirror_type) { weights = &ff_vvc_gpm_weights[weights_idx][off_y * VVC_GPM_WEIGHT_SIZE + off_x]; } else if (mirror_type == 1) { step_x = -step_x; weights = &ff_vvc_gpm_weights[weights_idx][off_y * VVC_GPM_WEIGHT_SIZE + VVC_GPM_WEIGHT_SIZE - 1- off_x]; } else { step_y = -step_y; weights = &ff_vvc_gpm_weights[weights_idx][(VVC_GPM_WEIGHT_SIZE - 1 - off_y) * VVC_GPM_WEIGHT_SIZE + off_x]; } for (int i = 0; i < 2; i++) { const MvField *mv = pu->gpm_mv + i; const int lx = mv->pred_flag - PF_L0; VVCRefPic *refp = lc->sc->rpl[lx].refs + mv->ref_idx[lx]; if (!refp->ref) return; if (refp->is_scaled) mc_scaled(lc, tmp[i], refp, mv->mv + lx, x, y, width, height, c_idx); else mc(lc, tmp[i], refp->ref, mv->mv + lx, x, y, width, height, c_idx); } fc->vvcdsp.inter.put_gpm(dst, dst_stride, width, height, tmp[0], tmp[1], weights, step_x, step_y); } return; } static int ciip_derive_intra_weight(const VVCLocalContext *lc, const int x0, const int y0, const int width, const int height) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const int x0b = av_zero_extend(x0, sps->ctb_log2_size_y); const int y0b = av_zero_extend(y0, sps->ctb_log2_size_y); const int available_l = lc->ctb_left_flag || x0b; const int available_u = lc->ctb_up_flag || y0b; const int min_pu_width = fc->ps.pps->min_pu_width; int w = 1; if (available_u &&fc->tab.mvf[((y0 - 1) >> MIN_PU_LOG2) * min_pu_width + ((x0 - 1 + width)>> MIN_PU_LOG2)].pred_flag == PF_INTRA) w++; if (available_l && fc->tab.mvf[((y0 - 1 + height)>> MIN_PU_LOG2) * min_pu_width + ((x0 - 1) >> MIN_PU_LOG2)].pred_flag == PF_INTRA) w++; return w; } static void pred_regular(VVCLocalContext *lc, const MvField *mvf, const MvField *orig_mvf, const int x0, const int y0, const int sbw, const int sbh, const int sb_bdof_flag, const int c_start) { const VVCFrameContext *fc = lc->fc; const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? CR : LUMA; VVCRefPic *refp[2]; if (pred_get_refs(lc, refp, mvf) < 0) return; for (int c_idx = c_start; c_idx <= c_end; c_idx++) { uint8_t *dst = POS(c_idx, x0, y0); const ptrdiff_t dst_stride = fc->frame->linesize[c_idx]; const int hs = fc->ps.sps->hshift[c_idx]; const int vs = fc->ps.sps->vshift[c_idx]; const int x = x0 >> hs; const int y = y0 >> vs; const int w = sbw >> hs; const int h = sbh >> vs; const int is_luma = !c_idx; const int do_ciip = lc->cu->ciip_flag && (is_luma || (w > 2)); uint8_t *inter = do_ciip ? (uint8_t *)lc->ciip_tmp : dst; const ptrdiff_t inter_stride = do_ciip ? (MAX_PB_SIZE * sizeof(uint16_t)) : dst_stride; const int do_bdof = is_luma && sb_bdof_flag; if (mvf->pred_flag != PF_BI) { const int lx = mvf->pred_flag - PF_L0; if (refp[lx]->is_scaled) { mc_uni_scaled(lc, inter, inter_stride, refp[lx], mvf, x, y, w, h, c_idx); } else { mc_uni(lc, inter, inter_stride, refp[lx]->ref, mvf, x, y, w, h, c_idx); } } else { if (refp[L0]->is_scaled || refp[L1]->is_scaled) { mc_bi_scaled(lc, inter, inter_stride, refp[L0], refp[L1], mvf, x, y, w, h, c_idx); } else { mc_bi(lc, inter, inter_stride, refp[L0]->ref, refp[L1]->ref, mvf, orig_mvf, x, y, w, h, c_idx, do_bdof); } } if (do_ciip) { const int intra_weight = ciip_derive_intra_weight(lc, x0, y0, sbw, sbh); fc->vvcdsp.intra.intra_pred(lc, x0, y0, sbw, sbh, c_idx); if (!c_idx && lc->sc->sh.r->sh_lmcs_used_flag) fc->vvcdsp.lmcs.filter(inter, inter_stride, w, h, &fc->ps.lmcs.fwd_lut); fc->vvcdsp.inter.put_ciip(dst, dst_stride, w, h, inter, inter_stride, intra_weight); } } } // 8.5.3.5 Parametric motion vector refinement process static int parametric_mv_refine(const int *sad, const int stride) { const int sad_minus = sad[-stride]; const int sad_center = sad[0]; const int sad_plus = sad[stride]; int dmvc; int denom = (( sad_minus + sad_plus) - (sad_center << 1 ) ) << 3; if (!denom) dmvc = 0; else { if (sad_minus == sad_center) dmvc = -8; else if (sad_plus == sad_center) dmvc = 8; else { int num = ( sad_minus - sad_plus ) * (1 << 4); int sign_num = 0; int quotient = 0; int counter = 3; if (num < 0 ) { num = - num; sign_num = 1; } while (counter > 0) { counter = counter - 1; quotient = quotient << 1; if ( num >= denom ) { num = num - denom; quotient = quotient + 1; } denom = (denom >> 1); } if (sign_num == 1 ) dmvc = -quotient; else dmvc = quotient; } } return dmvc; } #define SAD_ARRAY_SIZE 5 //8.5.3 Decoder-side motion vector refinement process static void dmvr_mv_refine(VVCLocalContext *lc, MvField *mvf, MvField *orig_mv, int *sb_bdof_flag, const VVCFrame *ref0, const VVCFrame *ref1, const int x_off, const int y_off, const int block_w, const int block_h) { const VVCFrameContext *fc = lc->fc; const int sr_range = 2; const VVCFrame *refs[] = { ref0, ref1 }; int16_t *tmp[] = { lc->tmp, lc->tmp1 }; int sad[SAD_ARRAY_SIZE][SAD_ARRAY_SIZE]; int min_dx, min_dy, min_sad, dx, dy; *orig_mv = *mvf; min_dx = min_dy = dx = dy = 2; for (int i = L0; i <= L1; i++) { const int pred_w = block_w + 2 * sr_range; const int pred_h = block_h + 2 * sr_range; const Mv *mv = mvf->mv + i; const int mx = mv->x & 0xf; const int my = mv->y & 0xf; const int ox = x_off + (mv->x >> 4) - sr_range; const int oy = y_off + (mv->y >> 4) - sr_range; const VVCFrame *ref = refs[i]; ptrdiff_t src_stride = ref->frame->linesize[LUMA]; const uint8_t *src = ref->frame->data[LUMA]; const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag; MC_EMULATED_EDGE_BILINEAR(lc->edge_emu_buffer, &src, &src_stride, ox, oy); fc->vvcdsp.inter.dmvr[!!my][!!mx](tmp[i], src, src_stride, pred_h, mx, my, pred_w); } min_sad = fc->vvcdsp.inter.sad(tmp[L0], tmp[L1], dx, dy, block_w, block_h); min_sad -= min_sad >> 2; sad[dy][dx] = min_sad; if (min_sad >= block_w * block_h) { int dmv[2]; // 8.5.3.4 Array entry selection process for (dy = 0; dy < SAD_ARRAY_SIZE; dy++) { for (dx = 0; dx < SAD_ARRAY_SIZE; dx++) { if (dx != sr_range || dy != sr_range) { sad[dy][dx] = fc->vvcdsp.inter.sad(lc->tmp, lc->tmp1, dx, dy, block_w, block_h); if (sad[dy][dx] < min_sad) { min_sad = sad[dy][dx]; min_dx = dx; min_dy = dy; } } } } dmv[0] = (min_dx - sr_range) * (1 << 4); dmv[1] = (min_dy - sr_range) * (1 << 4); if (min_dx != 0 && min_dx != 4 && min_dy != 0 && min_dy != 4) { dmv[0] += parametric_mv_refine(&sad[min_dy][min_dx], 1); dmv[1] += parametric_mv_refine(&sad[min_dy][min_dx], SAD_ARRAY_SIZE); } for (int i = L0; i <= L1; i++) { Mv *mv = mvf->mv + i; mv->x += (1 - 2 * i) * dmv[0]; mv->y += (1 - 2 * i) * dmv[1]; ff_vvc_clip_mv(mv); } } if (min_sad < 2 * block_w * block_h) { *sb_bdof_flag = 0; } } static void set_dmvr_info(VVCFrameContext *fc, const int x0, const int y0, const int width, const int height, const MvField *mvf) { const VVCPPS *pps = fc->ps.pps; for (int y = y0; y < y0 + height; y += MIN_PU_SIZE) { for (int x = x0; x < x0 + width; x += MIN_PU_SIZE) { const int idx = pps->min_pu_width * (y >> MIN_PU_LOG2) + (x >> MIN_PU_LOG2); fc->ref->tab_dmvr_mvf[idx] = *mvf; } } } static void derive_sb_mv(VVCLocalContext *lc, MvField *mv, MvField *orig_mv, int *sb_bdof_flag, const int x0, const int y0, const int sbw, const int sbh) { VVCFrameContext *fc = lc->fc; const PredictionUnit *pu = &lc->cu->pu; *orig_mv = *mv = *ff_vvc_get_mvf(fc, x0, y0); if (pu->bdof_flag) *sb_bdof_flag = 1; if (pu->dmvr_flag) { VVCRefPic *refp[2]; if (pred_get_refs(lc, refp, mv) < 0) return; dmvr_mv_refine(lc, mv, orig_mv, sb_bdof_flag, refp[L0]->ref, refp[L1]->ref, x0, y0, sbw, sbh); set_dmvr_info(fc, x0, y0, sbw, sbh, mv); } } static void pred_regular_blk(VVCLocalContext *lc, const int skip_ciip) { const CodingUnit *cu = lc->cu; PredictionUnit *pu = &lc->cu->pu; const MotionInfo *mi = &pu->mi; MvField mv, orig_mv; int sbw, sbh, sb_bdof_flag = 0; if (cu->ciip_flag && skip_ciip) return; sbw = cu->cb_width / mi->num_sb_x; sbh = cu->cb_height / mi->num_sb_y; for (int sby = 0; sby < mi->num_sb_y; sby++) { for (int sbx = 0; sbx < mi->num_sb_x; sbx++) { const int x0 = cu->x0 + sbx * sbw; const int y0 = cu->y0 + sby * sbh; if (cu->ciip_flag) ff_vvc_set_neighbour_available(lc, x0, y0, sbw, sbh); derive_sb_mv(lc, &mv, &orig_mv, &sb_bdof_flag, x0, y0, sbw, sbh); pred_regular(lc, &mv, &orig_mv, x0, y0, sbw, sbh, sb_bdof_flag, LUMA); } } } static void derive_affine_mvc(MvField *mvc, const VVCFrameContext *fc, const MvField *mv, const int x0, const int y0, const int sbw, const int sbh) { const int hs = fc->ps.sps->hshift[1]; const int vs = fc->ps.sps->vshift[1]; const MvField* mv2 = ff_vvc_get_mvf(fc, x0 + hs * sbw, y0 + vs * sbh); *mvc = *mv; // Due to different pred_flag, one of the motion vectors may have an invalid value. // Cast them to an unsigned type to avoid undefined behavior. mvc->mv[0].x += (unsigned int)mv2->mv[0].x; mvc->mv[0].y += (unsigned int)mv2->mv[0].y; mvc->mv[1].x += (unsigned int)mv2->mv[1].x; mvc->mv[1].y += (unsigned int)mv2->mv[1].y; ff_vvc_round_mv(mvc->mv + 0, 0, 1); ff_vvc_round_mv(mvc->mv + 1, 0, 1); } static void pred_affine_blk(VVCLocalContext *lc) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const PredictionUnit *pu = &cu->pu; const MotionInfo *mi = &pu->mi; const int x0 = cu->x0; const int y0 = cu->y0; const int sbw = cu->cb_width / mi->num_sb_x; const int sbh = cu->cb_height / mi->num_sb_y; const int hs = fc->ps.sps->hshift[1]; const int vs = fc->ps.sps->vshift[1]; const int dst_stride = fc->frame->linesize[LUMA]; for (int sby = 0; sby < mi->num_sb_y; sby++) { for (int sbx = 0; sbx < mi->num_sb_x; sbx++) { const int x = x0 + sbx * sbw; const int y = y0 + sby * sbh; uint8_t *dst0 = POS(0, x, y); const MvField *mv = ff_vvc_get_mvf(fc, x, y); VVCRefPic *refp[2]; if (pred_get_refs(lc, refp, mv) < 0) return; if (mi->pred_flag != PF_BI) { const int lx = mi->pred_flag - PF_L0; if (refp[lx]->is_scaled) { mc_uni_scaled(lc, dst0, dst_stride, refp[lx], mv, x, y, sbw, sbh, LUMA); } else { luma_prof_uni(lc, dst0, dst_stride, refp[lx]->ref, mv, x, y, sbw, sbh, pu->cb_prof_flag[lx], pu->diff_mv_x[lx], pu->diff_mv_y[lx]); } } else { luma_prof_bi(lc, dst0, dst_stride, refp[L0], refp[L1], mv, x, y, sbw, sbh); } if (fc->ps.sps->r->sps_chroma_format_idc) { if (!av_zero_extend(sby, vs) && !av_zero_extend(sbx, hs)) { MvField mvc; derive_affine_mvc(&mvc, fc, mv, x, y, sbw, sbh); pred_regular(lc, &mvc, NULL, x, y, sbw << hs, sbh << vs, 0, CB); } } } } } static void predict_inter(VVCLocalContext *lc) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const PredictionUnit *pu = &cu->pu; if (pu->merge_gpm_flag) pred_gpm_blk(lc); else if (pu->inter_affine_flag) pred_affine_blk(lc); else pred_regular_blk(lc, 1); //intra block is not ready yet, skip ciip if (lc->sc->sh.r->sh_lmcs_used_flag && !cu->ciip_flag) { uint8_t* dst0 = POS(0, cu->x0, cu->y0); fc->vvcdsp.lmcs.filter(dst0, fc->frame->linesize[LUMA], cu->cb_width, cu->cb_height, &fc->ps.lmcs.fwd_lut); } } static int has_inter_luma(const CodingUnit *cu) { return (cu->pred_mode == MODE_INTER || cu->pred_mode == MODE_SKIP) && cu->tree_type != DUAL_TREE_CHROMA; } int ff_vvc_predict_inter(VVCLocalContext *lc, const int rs) { const VVCFrameContext *fc = lc->fc; const CTU *ctu = fc->tab.ctus + rs; CodingUnit *cu = ctu->cus; while (cu) { lc->cu = cu; if (has_inter_luma(cu)) predict_inter(lc); cu = cu->next; } return 0; } void ff_vvc_predict_ciip(VVCLocalContext *lc) { av_assert0(lc->cu->ciip_flag); //todo: refact out ciip from pred_regular_blk pred_regular_blk(lc, 0); } #undef POS