/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * misc image utilities */ #include "avassert.h" #include "common.h" #include "imgutils.h" #include "imgutils_internal.h" #include "internal.h" #include "intreadwrite.h" #include "log.h" #include "mathematics.h" #include "pixdesc.h" #include "rational.h" void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc) { int i; memset(max_pixsteps, 0, 4*sizeof(max_pixsteps[0])); if (max_pixstep_comps) memset(max_pixstep_comps, 0, 4*sizeof(max_pixstep_comps[0])); for (i = 0; i < 4; i++) { const AVComponentDescriptor *comp = &(pixdesc->comp[i]); if (comp->step > max_pixsteps[comp->plane]) { max_pixsteps[comp->plane] = comp->step; if (max_pixstep_comps) max_pixstep_comps[comp->plane] = i; } } } static inline int image_get_linesize(int width, int plane, int max_step, int max_step_comp, const AVPixFmtDescriptor *desc) { int s, shifted_w, linesize; if (!desc) return AVERROR(EINVAL); if (width < 0) return AVERROR(EINVAL); s = (max_step_comp == 1 || max_step_comp == 2) ? desc->log2_chroma_w : 0; shifted_w = ((width + (1 << s) - 1)) >> s; if (shifted_w && max_step > INT_MAX / shifted_w) return AVERROR(EINVAL); linesize = max_step * shifted_w; if (desc->flags & AV_PIX_FMT_FLAG_BITSTREAM) linesize = (linesize + 7) >> 3; return linesize; } int av_image_get_linesize(enum AVPixelFormat pix_fmt, int width, int plane) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int max_step [4]; /* max pixel step for each plane */ int max_step_comp[4]; /* the component for each plane which has the max pixel step */ if (!desc || desc->flags & AV_PIX_FMT_FLAG_HWACCEL) return AVERROR(EINVAL); av_image_fill_max_pixsteps(max_step, max_step_comp, desc); return image_get_linesize(width, plane, max_step[plane], max_step_comp[plane], desc); } int av_image_fill_linesizes(int linesizes[4], enum AVPixelFormat pix_fmt, int width) { int i, ret; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int max_step [4]; /* max pixel step for each plane */ int max_step_comp[4]; /* the component for each plane which has the max pixel step */ memset(linesizes, 0, 4*sizeof(linesizes[0])); if (!desc || desc->flags & AV_PIX_FMT_FLAG_HWACCEL) return AVERROR(EINVAL); av_image_fill_max_pixsteps(max_step, max_step_comp, desc); for (i = 0; i < 4; i++) { if ((ret = image_get_linesize(width, i, max_step[i], max_step_comp[i], desc)) < 0) return ret; linesizes[i] = ret; } return 0; } int av_image_fill_plane_sizes(size_t sizes[4], enum AVPixelFormat pix_fmt, int height, const ptrdiff_t linesizes[4]) { int i, has_plane[4] = { 0 }; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); memset(sizes , 0, sizeof(sizes[0])*4); if (!desc || desc->flags & AV_PIX_FMT_FLAG_HWACCEL) return AVERROR(EINVAL); if (linesizes[0] > SIZE_MAX / height) return AVERROR(EINVAL); sizes[0] = linesizes[0] * (size_t)height; if (desc->flags & AV_PIX_FMT_FLAG_PAL || desc->flags & FF_PSEUDOPAL) { sizes[1] = 256 * 4; /* palette is stored here as 256 32 bits words */ return 0; } for (i = 0; i < 4; i++) has_plane[desc->comp[i].plane] = 1; for (i = 1; i < 4 && has_plane[i]; i++) { int h, s = (i == 1 || i == 2) ? desc->log2_chroma_h : 0; h = (height + (1 << s) - 1) >> s; if (linesizes[i] > SIZE_MAX / h) return AVERROR(EINVAL); sizes[i] = (size_t)h * linesizes[i]; } return 0; } int av_image_fill_pointers(uint8_t *data[4], enum AVPixelFormat pix_fmt, int height, uint8_t *ptr, const int linesizes[4]) { int i, ret; ptrdiff_t linesizes1[4]; size_t sizes[4]; for (i = 0; i < 4; i++) linesizes1[i] = linesizes[i]; ret = av_image_fill_plane_sizes(sizes, pix_fmt, height, linesizes1); if (ret < 0) return ret; ret = 0; for (i = 0; i < 4; i++) { if (sizes[i] > INT_MAX - ret) return AVERROR(EINVAL); ret += sizes[i]; } memset(data , 0, sizeof(data[0])*4); data[0] = ptr; for (i = 1; i < 4 && sizes[i]; i++) data[i] = data[i - 1] + sizes[i - 1]; return ret; } int avpriv_set_systematic_pal2(uint32_t pal[256], enum AVPixelFormat pix_fmt) { int i; for (i = 0; i < 256; i++) { int r, g, b; switch (pix_fmt) { case AV_PIX_FMT_RGB8: r = (i>>5 )*36; g = ((i>>2)&7)*36; b = (i&3 )*85; break; case AV_PIX_FMT_BGR8: b = (i>>6 )*85; g = ((i>>3)&7)*36; r = (i&7 )*36; break; case AV_PIX_FMT_RGB4_BYTE: r = (i>>3 )*255; g = ((i>>1)&3)*85; b = (i&1 )*255; break; case AV_PIX_FMT_BGR4_BYTE: b = (i>>3 )*255; g = ((i>>1)&3)*85; r = (i&1 )*255; break; case AV_PIX_FMT_GRAY8: r = b = g = i; break; default: return AVERROR(EINVAL); } pal[i] = b + (g << 8) + (r << 16) + (0xFFU << 24); } return 0; } int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int i, ret; ptrdiff_t linesizes1[4]; size_t total_size, sizes[4]; uint8_t *buf; if (!desc) return AVERROR(EINVAL); if ((ret = av_image_check_size(w, h, 0, NULL)) < 0) return ret; if ((ret = av_image_fill_linesizes(linesizes, pix_fmt, align>7 ? FFALIGN(w, 8) : w)) < 0) return ret; for (i = 0; i < 4; i++) { linesizes[i] = FFALIGN(linesizes[i], align); linesizes1[i] = linesizes[i]; } if ((ret = av_image_fill_plane_sizes(sizes, pix_fmt, h, linesizes1)) < 0) return ret; total_size = align; for (i = 0; i < 4; i++) { if (total_size > SIZE_MAX - sizes[i]) return AVERROR(EINVAL); total_size += sizes[i]; } buf = av_malloc(total_size); if (!buf) return AVERROR(ENOMEM); if ((ret = av_image_fill_pointers(pointers, pix_fmt, h, buf, linesizes)) < 0) { av_free(buf); return ret; } if (desc->flags & AV_PIX_FMT_FLAG_PAL || (desc->flags & FF_PSEUDOPAL && pointers[1])) { avpriv_set_systematic_pal2((uint32_t*)pointers[1], pix_fmt); if (align < 4) { av_log(NULL, AV_LOG_ERROR, "Formats with a palette require a minimum alignment of 4\n"); av_free(buf); return AVERROR(EINVAL); } } if ((desc->flags & AV_PIX_FMT_FLAG_PAL || desc->flags & FF_PSEUDOPAL) && pointers[1] && pointers[1] - pointers[0] > linesizes[0] * h) { /* zero-initialize the padding before the palette */ memset(pointers[0] + linesizes[0] * h, 0, pointers[1] - pointers[0] - linesizes[0] * h); } return ret; } typedef struct ImgUtils { const AVClass *class; int log_offset; void *log_ctx; } ImgUtils; static const AVClass imgutils_class = { .class_name = "IMGUTILS", .item_name = av_default_item_name, .option = NULL, .version = LIBAVUTIL_VERSION_INT, .log_level_offset_offset = offsetof(ImgUtils, log_offset), .parent_log_context_offset = offsetof(ImgUtils, log_ctx), }; int av_image_check_size2(unsigned int w, unsigned int h, int64_t max_pixels, enum AVPixelFormat pix_fmt, int log_offset, void *log_ctx) { ImgUtils imgutils = { .class = &imgutils_class, .log_offset = log_offset, .log_ctx = log_ctx, }; int64_t stride = av_image_get_linesize(pix_fmt, w, 0); if (stride <= 0) stride = 8LL*w; stride += 128*8; if ((int)w<=0 || (int)h<=0 || stride >= INT_MAX || stride*(uint64_t)(h+128) >= INT_MAX) { av_log(&imgutils, AV_LOG_ERROR, "Picture size %ux%u is invalid\n", w, h); return AVERROR(EINVAL); } if (max_pixels < INT64_MAX) { if (w*(int64_t)h > max_pixels) { av_log(&imgutils, AV_LOG_ERROR, "Picture size %ux%u exceeds specified max pixel count %"PRId64", see the documentation if you wish to increase it\n", w, h, max_pixels); return AVERROR(EINVAL); } } return 0; } int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx) { return av_image_check_size2(w, h, INT64_MAX, AV_PIX_FMT_NONE, log_offset, log_ctx); } int av_image_check_sar(unsigned int w, unsigned int h, AVRational sar) { int64_t scaled_dim; if (sar.den <= 0 || sar.num < 0) return AVERROR(EINVAL); if (!sar.num || sar.num == sar.den) return 0; if (sar.num < sar.den) scaled_dim = av_rescale_rnd(w, sar.num, sar.den, AV_ROUND_ZERO); else scaled_dim = av_rescale_rnd(h, sar.den, sar.num, AV_ROUND_ZERO); if (scaled_dim > 0) return 0; return AVERROR(EINVAL); } static void image_copy_plane(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, ptrdiff_t bytewidth, int height) { if (!dst || !src) return; av_assert0(FFABS(src_linesize) >= bytewidth); av_assert0(FFABS(dst_linesize) >= bytewidth); for (;height > 0; height--) { memcpy(dst, src, bytewidth); dst += dst_linesize; src += src_linesize; } } static void image_copy_plane_uc_from(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, ptrdiff_t bytewidth, int height) { int ret = -1; #if ARCH_X86 ret = ff_image_copy_plane_uc_from_x86(dst, dst_linesize, src, src_linesize, bytewidth, height); #endif if (ret < 0) image_copy_plane(dst, dst_linesize, src, src_linesize, bytewidth, height); } void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height) { image_copy_plane(dst, dst_linesize, src, src_linesize, bytewidth, height); } static void image_copy(uint8_t *dst_data[4], const ptrdiff_t dst_linesizes[4], const uint8_t *src_data[4], const ptrdiff_t src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height, void (*copy_plane)(uint8_t *, ptrdiff_t, const uint8_t *, ptrdiff_t, ptrdiff_t, int)) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); if (!desc || desc->flags & AV_PIX_FMT_FLAG_HWACCEL) return; if (desc->flags & AV_PIX_FMT_FLAG_PAL || desc->flags & FF_PSEUDOPAL) { copy_plane(dst_data[0], dst_linesizes[0], src_data[0], src_linesizes[0], width, height); /* copy the palette */ if ((desc->flags & AV_PIX_FMT_FLAG_PAL) || (dst_data[1] && src_data[1])) memcpy(dst_data[1], src_data[1], 4*256); } else { int i, planes_nb = 0; for (i = 0; i < desc->nb_components; i++) planes_nb = FFMAX(planes_nb, desc->comp[i].plane + 1); for (i = 0; i < planes_nb; i++) { int h = height; ptrdiff_t bwidth = av_image_get_linesize(pix_fmt, width, i); if (bwidth < 0) { av_log(NULL, AV_LOG_ERROR, "av_image_get_linesize failed\n"); return; } if (i == 1 || i == 2) { h = AV_CEIL_RSHIFT(height, desc->log2_chroma_h); } copy_plane(dst_data[i], dst_linesizes[i], src_data[i], src_linesizes[i], bwidth, h); } } } void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height) { ptrdiff_t dst_linesizes1[4], src_linesizes1[4]; int i; for (i = 0; i < 4; i++) { dst_linesizes1[i] = dst_linesizes[i]; src_linesizes1[i] = src_linesizes[i]; } image_copy(dst_data, dst_linesizes1, src_data, src_linesizes1, pix_fmt, width, height, image_copy_plane); } void av_image_copy_uc_from(uint8_t *dst_data[4], const ptrdiff_t dst_linesizes[4], const uint8_t *src_data[4], const ptrdiff_t src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height) { image_copy(dst_data, dst_linesizes, src_data, src_linesizes, pix_fmt, width, height, image_copy_plane_uc_from); } int av_image_fill_arrays(uint8_t *dst_data[4], int dst_linesize[4], const uint8_t *src, enum AVPixelFormat pix_fmt, int width, int height, int align) { int ret, i; ret = av_image_check_size(width, height, 0, NULL); if (ret < 0) return ret; ret = av_image_fill_linesizes(dst_linesize, pix_fmt, width); if (ret < 0) return ret; for (i = 0; i < 4; i++) dst_linesize[i] = FFALIGN(dst_linesize[i], align); return av_image_fill_pointers(dst_data, pix_fmt, height, (uint8_t *)src, dst_linesize); } int av_image_get_buffer_size(enum AVPixelFormat pix_fmt, int width, int height, int align) { int ret, i; int linesize[4]; ptrdiff_t aligned_linesize[4]; size_t sizes[4]; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); if (!desc) return AVERROR(EINVAL); ret = av_image_check_size(width, height, 0, NULL); if (ret < 0) return ret; // do not include palette for these pseudo-paletted formats if (desc->flags & FF_PSEUDOPAL) return FFALIGN(width, align) * height; ret = av_image_fill_linesizes(linesize, pix_fmt, width); if (ret < 0) return ret; for (i = 0; i < 4; i++) aligned_linesize[i] = FFALIGN(linesize[i], align); ret = av_image_fill_plane_sizes(sizes, pix_fmt, height, aligned_linesize); if (ret < 0) return ret; ret = 0; for (i = 0; i < 4; i++) { if (sizes[i] > INT_MAX - ret) return AVERROR(EINVAL); ret += sizes[i]; } return ret; } int av_image_copy_to_buffer(uint8_t *dst, int dst_size, const uint8_t * const src_data[4], const int src_linesize[4], enum AVPixelFormat pix_fmt, int width, int height, int align) { int i, j, nb_planes = 0, linesize[4]; int size = av_image_get_buffer_size(pix_fmt, width, height, align); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int ret; if (size > dst_size || size < 0 || !desc) return AVERROR(EINVAL); for (i = 0; i < desc->nb_components; i++) nb_planes = FFMAX(desc->comp[i].plane, nb_planes); nb_planes++; ret = av_image_fill_linesizes(linesize, pix_fmt, width); av_assert0(ret >= 0); // was checked previously for (i = 0; i < nb_planes; i++) { int h, shift = (i == 1 || i == 2) ? desc->log2_chroma_h : 0; const uint8_t *src = src_data[i]; h = (height + (1 << shift) - 1) >> shift; for (j = 0; j < h; j++) { memcpy(dst, src, linesize[i]); dst += FFALIGN(linesize[i], align); src += src_linesize[i]; } } if (desc->flags & AV_PIX_FMT_FLAG_PAL) { uint32_t *d32 = (uint32_t *)dst; for (i = 0; i<256; i++) AV_WL32(d32 + i, AV_RN32(src_data[1] + 4*i)); } return size; } // Fill dst[0..dst_size] with the bytes in clear[0..clear_size]. The clear // bytes are repeated until dst_size is reached. If dst_size is unaligned (i.e. // dst_size%clear_size!=0), the remaining data will be filled with the beginning // of the clear data only. static void memset_bytes(uint8_t *dst, size_t dst_size, uint8_t *clear, size_t clear_size) { int same = 1; int i; if (!clear_size) return; // Reduce to memset() if possible. for (i = 0; i < clear_size; i++) { if (clear[i] != clear[0]) { same = 0; break; } } if (same) clear_size = 1; if (clear_size == 1) { memset(dst, clear[0], dst_size); } else { if (clear_size > dst_size) clear_size = dst_size; memcpy(dst, clear, clear_size); av_memcpy_backptr(dst + clear_size, clear_size, dst_size - clear_size); } } // Maximum size in bytes of a plane element (usually a pixel, or multiple pixels // if it's a subsampled packed format). #define MAX_BLOCK_SIZE 32 int av_image_fill_black(uint8_t *dst_data[4], const ptrdiff_t dst_linesize[4], enum AVPixelFormat pix_fmt, enum AVColorRange range, int width, int height) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int nb_planes = av_pix_fmt_count_planes(pix_fmt); // A pixel or a group of pixels on each plane, with a value that represents black. // Consider e.g. AV_PIX_FMT_UYVY422 for non-trivial cases. uint8_t clear_block[4][MAX_BLOCK_SIZE] = {{0}}; // clear padding with 0 int clear_block_size[4] = {0}; ptrdiff_t plane_line_bytes[4] = {0}; int rgb, limited; int plane, c; if (!desc || nb_planes < 1 || nb_planes > 4 || desc->flags & AV_PIX_FMT_FLAG_HWACCEL) return AVERROR(EINVAL); rgb = !!(desc->flags & AV_PIX_FMT_FLAG_RGB); limited = !rgb && range != AVCOL_RANGE_JPEG; if (desc->flags & AV_PIX_FMT_FLAG_BITSTREAM) { ptrdiff_t bytewidth = av_image_get_linesize(pix_fmt, width, 0); uint8_t *data; int mono = pix_fmt == AV_PIX_FMT_MONOWHITE || pix_fmt == AV_PIX_FMT_MONOBLACK; int fill = pix_fmt == AV_PIX_FMT_MONOWHITE ? 0xFF : 0; if (nb_planes != 1 || !(rgb || mono) || bytewidth < 1) return AVERROR(EINVAL); if (!dst_data) return 0; data = dst_data[0]; // (Bitstream + alpha will be handled incorrectly - it'll remain transparent.) for (;height > 0; height--) { memset(data, fill, bytewidth); data += dst_linesize[0]; } return 0; } for (c = 0; c < desc->nb_components; c++) { const AVComponentDescriptor comp = desc->comp[c]; // We try to operate on entire non-subsampled pixel groups (for // AV_PIX_FMT_UYVY422 this would mean two consecutive pixels). clear_block_size[comp.plane] = FFMAX(clear_block_size[comp.plane], comp.step); if (clear_block_size[comp.plane] > MAX_BLOCK_SIZE) return AVERROR(EINVAL); } // Create a byte array for clearing 1 pixel (sometimes several pixels). for (c = 0; c < desc->nb_components; c++) { const AVComponentDescriptor comp = desc->comp[c]; // (Multiple pixels happen e.g. with AV_PIX_FMT_UYVY422.) int w = clear_block_size[comp.plane] / comp.step; uint8_t *c_data[4]; const int c_linesize[4] = {0}; uint16_t src_array[MAX_BLOCK_SIZE]; uint16_t src = 0; int x; if (comp.depth > 16) return AVERROR(EINVAL); if (!rgb && comp.depth < 8) return AVERROR(EINVAL); if (w < 1) return AVERROR(EINVAL); if (c == 0 && limited) { src = 16 << (comp.depth - 8); } else if ((c == 1 || c == 2) && !rgb) { src = 128 << (comp.depth - 8); } else if (c == 3) { // (Assume even limited YUV uses full range alpha.) src = (1 << comp.depth) - 1; } for (x = 0; x < w; x++) src_array[x] = src; for (x = 0; x < 4; x++) c_data[x] = &clear_block[x][0]; av_write_image_line(src_array, c_data, c_linesize, desc, 0, 0, c, w); } for (plane = 0; plane < nb_planes; plane++) { plane_line_bytes[plane] = av_image_get_linesize(pix_fmt, width, plane); if (plane_line_bytes[plane] < 0) return AVERROR(EINVAL); } if (!dst_data) return 0; for (plane = 0; plane < nb_planes; plane++) { size_t bytewidth = plane_line_bytes[plane]; uint8_t *data = dst_data[plane]; int chroma_div = plane == 1 || plane == 2 ? desc->log2_chroma_h : 0; int plane_h = ((height + ( 1 << chroma_div) - 1)) >> chroma_div; for (; plane_h > 0; plane_h--) { memset_bytes(data, bytewidth, &clear_block[plane][0], clear_block_size[plane]); data += dst_linesize[plane]; } } return 0; }