/* * Copyright (c) 2003 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* * How to use this decoder: * SVQ3 data is transported within Apple Quicktime files. Quicktime files * have stsd atoms to describe media trak properties. A stsd atom for a * video trak contains 1 or more ImageDescription atoms. These atoms begin * with the 4-byte length of the atom followed by the codec fourcc. Some * decoders need information in this atom to operate correctly. Such * is the case with SVQ3. In order to get the best use out of this decoder, * the calling app must make the SVQ3 ImageDescription atom available * via the AVCodecContext's extradata[_size] field: * * AVCodecContext.extradata = pointer to ImageDescription, first characters * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length * AVCodecContext.extradata_size = size of ImageDescription atom memory * buffer (which will be the same as the ImageDescription atom size field * from the QT file, minus 4 bytes since the length is missing) * * You will know you have these parameters passed correctly when the decoder * correctly decodes this file: * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov */ #include #include "libavutil/attributes.h" #include "internal.h" #include "avcodec.h" #include "mpegutils.h" #include "h264dec.h" #include "h264data.h" #include "golomb.h" #include "hpeldsp.h" #include "mathops.h" #include "rectangle.h" #include "tpeldsp.h" #if CONFIG_ZLIB #include #endif #include "svq1.h" /** * @file * svq3 decoder. */ typedef struct SVQ3Frame { AVFrame *f; AVBufferRef *motion_val_buf[2]; int16_t (*motion_val[2])[2]; AVBufferRef *mb_type_buf; uint32_t *mb_type; AVBufferRef *ref_index_buf[2]; int8_t *ref_index[2]; } SVQ3Frame; typedef struct SVQ3Context { AVCodecContext *avctx; H264DSPContext h264dsp; H264PredContext hpc; HpelDSPContext hdsp; TpelDSPContext tdsp; VideoDSPContext vdsp; SVQ3Frame *cur_pic; SVQ3Frame *next_pic; SVQ3Frame *last_pic; GetBitContext gb; GetBitContext gb_slice; uint8_t *slice_buf; int slice_size; int halfpel_flag; int thirdpel_flag; int has_watermark; uint32_t watermark_key; uint8_t *buf; int buf_size; int adaptive_quant; int next_p_frame_damaged; int h_edge_pos; int v_edge_pos; int last_frame_output; int slice_num; int qscale; int cbp; int frame_num; int frame_num_offset; int prev_frame_num_offset; int prev_frame_num; enum AVPictureType pict_type; enum AVPictureType slice_type; int low_delay; int mb_x, mb_y; int mb_xy; int mb_width, mb_height; int mb_stride, mb_num; int b_stride; uint32_t *mb2br_xy; int chroma_pred_mode; int intra16x16_pred_mode; int8_t intra4x4_pred_mode_cache[5 * 8]; int8_t (*intra4x4_pred_mode); unsigned int top_samples_available; unsigned int topright_samples_available; unsigned int left_samples_available; uint8_t *edge_emu_buffer; DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2]; DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8]; DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2]; DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8]; uint32_t dequant4_coeff[QP_MAX_NUM + 1][16]; int block_offset[2 * (16 * 3)]; } SVQ3Context; #define FULLPEL_MODE 1 #define HALFPEL_MODE 2 #define THIRDPEL_MODE 3 #define PREDICT_MODE 4 /* dual scan (from some older H.264 draft) * o-->o-->o o * | /| * o o o / o * | / | |/ | * o o o o * / * o-->o-->o-->o */ static const uint8_t svq3_scan[16] = { 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4, 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4, }; static const uint8_t luma_dc_zigzag_scan[16] = { 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64, 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64, 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64, 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64, }; static const uint8_t svq3_pred_0[25][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 }, { 2, 0 }, { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 }, { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 }, { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 }, { 2, 4 }, { 3, 3 }, { 4, 2 }, { 4, 3 }, { 3, 4 }, { 4, 4 } }; static const int8_t svq3_pred_1[6][6][5] = { { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } }, { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 }, { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } }, { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } }, { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } }, { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 }, { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } }, { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 }, { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } }, }; static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = { { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 }, { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } }, { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 }, { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } } }; static const uint32_t svq3_dequant_coeff[32] = { 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718, 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873, 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683, 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533 }; static int svq3_decode_end(AVCodecContext *avctx); static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp) { const int qmul = svq3_dequant_coeff[qp]; #define stride 16 int i; int temp[16]; static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride }; for (i = 0; i < 4; i++) { const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]); const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]); const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3]; const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3]; temp[4 * i + 0] = z0 + z3; temp[4 * i + 1] = z1 + z2; temp[4 * i + 2] = z1 - z2; temp[4 * i + 3] = z0 - z3; } for (i = 0; i < 4; i++) { const int offset = x_offset[i]; const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]); const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]); const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i]; const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i]; output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20; output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20; output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20; output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20; } } #undef stride static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc) { const int qmul = svq3_dequant_coeff[qp]; int i; if (dc) { dc = 13 * 13 * (dc == 1 ? 1538 * block[0] : qmul * (block[0] >> 3) / 2); block[0] = 0; } for (i = 0; i < 4; i++) { const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]); const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]); const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i]; const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i]; block[0 + 4 * i] = z0 + z3; block[1 + 4 * i] = z1 + z2; block[2 + 4 * i] = z1 - z2; block[3 + 4 * i] = z0 - z3; } for (i = 0; i < 4; i++) { const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]); const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]); const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3]; const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3]; const int rr = (dc + 0x80000); dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20)); dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20)); dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20)); dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20)); } memset(block, 0, 16 * sizeof(int16_t)); } static inline int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type) { static const uint8_t *const scan_patterns[4] = { luma_dc_zigzag_scan, ff_zigzag_scan, svq3_scan, ff_h264_chroma_dc_scan }; int run, level, sign, limit; unsigned vlc; const int intra = 3 * type >> 2; const uint8_t *const scan = scan_patterns[type]; for (limit = (16 >> intra); index < 16; index = limit, limit += 8) { for (; (vlc = get_interleaved_ue_golomb(gb)) != 0; index++) { if ((int32_t)vlc < 0) return -1; sign = (vlc & 1) ? 0 : -1; vlc = vlc + 1 >> 1; if (type == 3) { if (vlc < 3) { run = 0; level = vlc; } else if (vlc < 4) { run = 1; level = 1; } else { run = vlc & 0x3; level = (vlc + 9 >> 2) - run; } } else { if (vlc < 16U) { run = svq3_dct_tables[intra][vlc].run; level = svq3_dct_tables[intra][vlc].level; } else if (intra) { run = vlc & 0x7; level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1))); } else { run = vlc & 0xF; level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0))); } } if ((index += run) >= limit) return -1; block[scan[index]] = (level ^ sign) - sign; } if (type != 2) { break; } } return 0; } static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width) { const int topright_ref = s->ref_cache[list][i - 8 + part_width]; if (topright_ref != PART_NOT_AVAILABLE) { *C = s->mv_cache[list][i - 8 + part_width]; return topright_ref; } else { *C = s->mv_cache[list][i - 8 - 1]; return s->ref_cache[list][i - 8 - 1]; } } /** * Get the predicted MV. * @param n the block index * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4) * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my) { const int index8 = scan8[n]; const int top_ref = s->ref_cache[list][index8 - 8]; const int left_ref = s->ref_cache[list][index8 - 1]; const int16_t *const A = s->mv_cache[list][index8 - 1]; const int16_t *const B = s->mv_cache[list][index8 - 8]; const int16_t *C; int diagonal_ref, match_count; /* mv_cache * B . . A T T T T * U . . L . . , . * U . . L . . . . * U . . L . . , . * . . . L . . . . */ diagonal_ref = svq3_fetch_diagonal_mv(s, &C, index8, list, part_width); match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref); if (match_count > 1) { //most common *mx = mid_pred(A[0], B[0], C[0]); *my = mid_pred(A[1], B[1], C[1]); } else if (match_count == 1) { if (left_ref == ref) { *mx = A[0]; *my = A[1]; } else if (top_ref == ref) { *mx = B[0]; *my = B[1]; } else { *mx = C[0]; *my = C[1]; } } else { if (top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE) { *mx = A[0]; *my = A[1]; } else { *mx = mid_pred(A[0], B[0], C[0]); *my = mid_pred(A[1], B[1], C[1]); } } } static inline void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg) { const SVQ3Frame *pic = (dir == 0) ? s->last_pic : s->next_pic; uint8_t *src, *dest; int i, emu = 0; int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2 int linesize = s->cur_pic->f->linesize[0]; int uvlinesize = s->cur_pic->f->linesize[1]; mx += x; my += y; if (mx < 0 || mx >= s->h_edge_pos - width - 1 || my < 0 || my >= s->v_edge_pos - height - 1) { emu = 1; mx = av_clip(mx, -16, s->h_edge_pos - width + 15); my = av_clip(my, -16, s->v_edge_pos - height + 15); } /* form component predictions */ dest = s->cur_pic->f->data[0] + x + y * linesize; src = pic->f->data[0] + mx + my * linesize; if (emu) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src, linesize, linesize, width + 1, height + 1, mx, my, s->h_edge_pos, s->v_edge_pos); src = s->edge_emu_buffer; } if (thirdpel) (avg ? s->tdsp.avg_tpel_pixels_tab : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src, linesize, width, height); else (avg ? s->hdsp.avg_pixels_tab : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, linesize, height); if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { mx = mx + (mx < (int) x) >> 1; my = my + (my < (int) y) >> 1; width = width >> 1; height = height >> 1; blocksize++; for (i = 1; i < 3; i++) { dest = s->cur_pic->f->data[i] + (x >> 1) + (y >> 1) * uvlinesize; src = pic->f->data[i] + mx + my * uvlinesize; if (emu) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src, uvlinesize, uvlinesize, width + 1, height + 1, mx, my, (s->h_edge_pos >> 1), s->v_edge_pos >> 1); src = s->edge_emu_buffer; } if (thirdpel) (avg ? s->tdsp.avg_tpel_pixels_tab : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src, uvlinesize, width, height); else (avg ? s->hdsp.avg_pixels_tab : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, uvlinesize, height); } } } static inline int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg) { int i, j, k, mx, my, dx, dy, x, y; const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1); const int part_height = 16 >> ((unsigned)(size + 1) / 3); const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0; const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width; const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width; for (i = 0; i < 16; i += part_height) for (j = 0; j < 16; j += part_width) { const int b_xy = (4 * s->mb_x + (j >> 2)) + (4 * s->mb_y + (i >> 2)) * s->b_stride; int dxy; x = 16 * s->mb_x + j; y = 16 * s->mb_y + i; k = (j >> 2 & 1) + (i >> 1 & 2) + (j >> 1 & 4) + (i & 8); if (mode != PREDICT_MODE) { svq3_pred_motion(s, k, part_width >> 2, dir, 1, &mx, &my); } else { mx = s->next_pic->motion_val[0][b_xy][0] << 1; my = s->next_pic->motion_val[0][b_xy][1] << 1; if (dir == 0) { mx = mx * s->frame_num_offset / s->prev_frame_num_offset + 1 >> 1; my = my * s->frame_num_offset / s->prev_frame_num_offset + 1 >> 1; } else { mx = mx * (s->frame_num_offset - s->prev_frame_num_offset) / s->prev_frame_num_offset + 1 >> 1; my = my * (s->frame_num_offset - s->prev_frame_num_offset) / s->prev_frame_num_offset + 1 >> 1; } } /* clip motion vector prediction to frame border */ mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x); my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y); /* get (optional) motion vector differential */ if (mode == PREDICT_MODE) { dx = dy = 0; } else { dy = get_interleaved_se_golomb(&s->gb_slice); dx = get_interleaved_se_golomb(&s->gb_slice); if (dx != (int16_t)dx || dy != (int16_t)dy) { av_log(s->avctx, AV_LOG_ERROR, "invalid MV vlc\n"); return -1; } } /* compute motion vector */ if (mode == THIRDPEL_MODE) { int fx, fy; mx = (mx + 1 >> 1) + dx; my = (my + 1 >> 1) + dy; fx = (unsigned)(mx + 0x30000) / 3 - 0x10000; fy = (unsigned)(my + 0x30000) / 3 - 0x10000; dxy = (mx - 3 * fx) + 4 * (my - 3 * fy); svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg); mx += mx; my += my; } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) { mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000; my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000; dxy = (mx & 1) + 2 * (my & 1); svq3_mc_dir_part(s, x, y, part_width, part_height, mx >> 1, my >> 1, dxy, 0, dir, avg); mx *= 3; my *= 3; } else { mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000; my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000; svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg); mx *= 6; my *= 6; } /* update mv_cache */ if (mode != PREDICT_MODE) { int32_t mv = pack16to32(mx, my); if (part_height == 8 && i < 8) { AV_WN32A(s->mv_cache[dir][scan8[k] + 1 * 8], mv); if (part_width == 8 && j < 8) AV_WN32A(s->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv); } if (part_width == 8 && j < 8) AV_WN32A(s->mv_cache[dir][scan8[k] + 1], mv); if (part_width == 4 || part_height == 4) AV_WN32A(s->mv_cache[dir][scan8[k]], mv); } /* write back motion vectors */ fill_rectangle(s->cur_pic->motion_val[dir][b_xy], part_width >> 2, part_height >> 2, s->b_stride, pack16to32(mx, my), 4); } return 0; } static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y) { int i; if (!IS_INTRA4x4(mb_type)) { for (i = 0; i < 16; i++) if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) { uint8_t *const ptr = dest_y + block_offset[i]; svq3_add_idct_c(ptr, s->mb + i * 16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y) { int i; int qscale = s->qscale; if (IS_INTRA4x4(mb_type)) { for (i = 0; i < 16; i++) { uint8_t *const ptr = dest_y + block_offset[i]; const int dir = s->intra4x4_pred_mode_cache[scan8[i]]; uint8_t *topright; int nnz, tr; if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) { const int topright_avail = (s->topright_samples_available << i) & 0x8000; av_assert2(s->mb_y || linesize <= block_offset[i]); if (!topright_avail) { tr = ptr[3 - linesize] * 0x01010101u; topright = (uint8_t *)&tr; } else topright = ptr + 4 - linesize; } else topright = NULL; s->hpc.pred4x4[dir](ptr, topright, linesize); nnz = s->non_zero_count_cache[scan8[i]]; if (nnz) { svq3_add_idct_c(ptr, s->mb + i * 16, linesize, qscale, 0); } } } else { s->hpc.pred16x16[s->intra16x16_pred_mode](dest_y, linesize); svq3_luma_dc_dequant_idct_c(s->mb, s->mb_luma_dc[0], qscale); } } static void hl_decode_mb(SVQ3Context *s) { const int mb_x = s->mb_x; const int mb_y = s->mb_y; const int mb_xy = s->mb_xy; const int mb_type = s->cur_pic->mb_type[mb_xy]; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize; int i, j; const int *block_offset = &s->block_offset[0]; const int block_h = 16 >> 1; linesize = s->cur_pic->f->linesize[0]; uvlinesize = s->cur_pic->f->linesize[1]; dest_y = s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16; dest_cb = s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h; dest_cr = s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h; s->vdsp.prefetch(dest_y + (s->mb_x & 3) * 4 * linesize + 64, linesize, 4); s->vdsp.prefetch(dest_cb + (s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2); if (IS_INTRA(mb_type)) { s->hpc.pred8x8[s->chroma_pred_mode](dest_cb, uvlinesize); s->hpc.pred8x8[s->chroma_pred_mode](dest_cr, uvlinesize); hl_decode_mb_predict_luma(s, mb_type, block_offset, linesize, dest_y); } hl_decode_mb_idct_luma(s, mb_type, block_offset, linesize, dest_y); if (s->cbp & 0x30) { uint8_t *dest[2] = { dest_cb, dest_cr }; s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 1, s->dequant4_coeff[4][0]); s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 2, s->dequant4_coeff[4][0]); for (j = 1; j < 3; j++) { for (i = j * 16; i < j * 16 + 4; i++) if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) { uint8_t *const ptr = dest[j - 1] + block_offset[i]; svq3_add_idct_c(ptr, s->mb + i * 16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2); } } } } static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type) { int i, j, k, m, dir, mode; int cbp = 0; uint32_t vlc; int8_t *top, *left; const int mb_xy = s->mb_xy; const int b_xy = 4 * s->mb_x + 4 * s->mb_y * s->b_stride; s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF; s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF; s->topright_samples_available = 0xFFFF; if (mb_type == 0) { /* SKIP */ if (s->pict_type == AV_PICTURE_TYPE_P || s->next_pic->mb_type[mb_xy] == -1) { svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0); if (s->pict_type == AV_PICTURE_TYPE_B) svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1); mb_type = MB_TYPE_SKIP; } else { mb_type = FFMIN(s->next_pic->mb_type[mb_xy], 6); if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 0, 0) < 0) return -1; if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 1, 1) < 0) return -1; mb_type = MB_TYPE_16x16; } } else if (mb_type < 8) { /* INTER */ if (s->thirdpel_flag && s->halfpel_flag == !get_bits1(&s->gb_slice)) mode = THIRDPEL_MODE; else if (s->halfpel_flag && s->thirdpel_flag == !get_bits1(&s->gb_slice)) mode = HALFPEL_MODE; else mode = FULLPEL_MODE; /* fill caches */ /* note ref_cache should contain here: * ???????? * ???11111 * N??11111 * N??11111 * N??11111 */ for (m = 0; m < 2; m++) { if (s->mb_x > 0 && s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6] != -1) { for (i = 0; i < 4; i++) AV_COPY32(s->mv_cache[m][scan8[0] - 1 + i * 8], s->cur_pic->motion_val[m][b_xy - 1 + i * s->b_stride]); } else { for (i = 0; i < 4; i++) AV_ZERO32(s->mv_cache[m][scan8[0] - 1 + i * 8]); } if (s->mb_y > 0) { memcpy(s->mv_cache[m][scan8[0] - 1 * 8], s->cur_pic->motion_val[m][b_xy - s->b_stride], 4 * 2 * sizeof(int16_t)); memset(&s->ref_cache[m][scan8[0] - 1 * 8], (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4); if (s->mb_x < s->mb_width - 1) { AV_COPY32(s->mv_cache[m][scan8[0] + 4 - 1 * 8], s->cur_pic->motion_val[m][b_xy - s->b_stride + 4]); s->ref_cache[m][scan8[0] + 4 - 1 * 8] = (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 || s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1; } else s->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE; if (s->mb_x > 0) { AV_COPY32(s->mv_cache[m][scan8[0] - 1 - 1 * 8], s->cur_pic->motion_val[m][b_xy - s->b_stride - 1]); s->ref_cache[m][scan8[0] - 1 - 1 * 8] = (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1; } else s->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE; } else memset(&s->ref_cache[m][scan8[0] - 1 * 8 - 1], PART_NOT_AVAILABLE, 8); if (s->pict_type != AV_PICTURE_TYPE_B) break; } /* decode motion vector(s) and form prediction(s) */ if (s->pict_type == AV_PICTURE_TYPE_P) { if (svq3_mc_dir(s, mb_type - 1, mode, 0, 0) < 0) return -1; } else { /* AV_PICTURE_TYPE_B */ if (mb_type != 2) { if (svq3_mc_dir(s, 0, mode, 0, 0) < 0) return -1; } else { for (i = 0; i < 4; i++) memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride], 0, 4 * 2 * sizeof(int16_t)); } if (mb_type != 1) { if (svq3_mc_dir(s, 0, mode, 1, mb_type == 3) < 0) return -1; } else { for (i = 0; i < 4; i++) memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride], 0, 4 * 2 * sizeof(int16_t)); } } mb_type = MB_TYPE_16x16; } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */ int8_t *i4x4 = s->intra4x4_pred_mode + s->mb2br_xy[s->mb_xy]; int8_t *i4x4_cache = s->intra4x4_pred_mode_cache; memset(s->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t)); if (mb_type == 8) { if (s->mb_x > 0) { for (i = 0; i < 4; i++) s->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6 - i]; if (s->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) s->left_samples_available = 0x5F5F; } if (s->mb_y > 0) { s->intra4x4_pred_mode_cache[4 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 0]; s->intra4x4_pred_mode_cache[5 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 1]; s->intra4x4_pred_mode_cache[6 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 2]; s->intra4x4_pred_mode_cache[7 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 3]; if (s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1) s->top_samples_available = 0x33FF; } /* decode prediction codes for luma blocks */ for (i = 0; i < 16; i += 2) { vlc = get_interleaved_ue_golomb(&s->gb_slice); if (vlc >= 25U) { av_log(s->avctx, AV_LOG_ERROR, "luma prediction:%"PRIu32"\n", vlc); return -1; } left = &s->intra4x4_pred_mode_cache[scan8[i] - 1]; top = &s->intra4x4_pred_mode_cache[scan8[i] - 8]; left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]]; left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]]; if (left[1] == -1 || left[2] == -1) { av_log(s->avctx, AV_LOG_ERROR, "weird prediction\n"); return -1; } } } else { /* mb_type == 33, DC_128_PRED block type */ for (i = 0; i < 4; i++) memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4); } AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4); i4x4[4] = i4x4_cache[7 + 8 * 3]; i4x4[5] = i4x4_cache[7 + 8 * 2]; i4x4[6] = i4x4_cache[7 + 8 * 1]; if (mb_type == 8) { ff_h264_check_intra4x4_pred_mode(s->intra4x4_pred_mode_cache, s->avctx, s->top_samples_available, s->left_samples_available); s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF; s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF; } else { for (i = 0; i < 4; i++) memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4); s->top_samples_available = 0x33FF; s->left_samples_available = 0x5F5F; } mb_type = MB_TYPE_INTRA4x4; } else { /* INTRA16x16 */ dir = ff_h264_i_mb_type_info[mb_type - 8].pred_mode; dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1; if ((s->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available, s->left_samples_available, dir, 0)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "ff_h264_check_intra_pred_mode < 0\n"); return s->intra16x16_pred_mode; } cbp = ff_h264_i_mb_type_info[mb_type - 8].cbp; mb_type = MB_TYPE_INTRA16x16; } if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) { for (i = 0; i < 4; i++) memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride], 0, 4 * 2 * sizeof(int16_t)); if (s->pict_type == AV_PICTURE_TYPE_B) { for (i = 0; i < 4; i++) memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride], 0, 4 * 2 * sizeof(int16_t)); } } if (!IS_INTRA4x4(mb_type)) { memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy], DC_PRED, 8); } if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) { memset(s->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t)); } if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) { if ((vlc = get_interleaved_ue_golomb(&s->gb_slice)) >= 48U){ av_log(s->avctx, AV_LOG_ERROR, "cbp_vlc=%"PRIu32"\n", vlc); return -1; } cbp = IS_INTRA(mb_type) ? ff_h264_golomb_to_intra4x4_cbp[vlc] : ff_h264_golomb_to_inter_cbp[vlc]; } if (IS_INTRA16x16(mb_type) || (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) { s->qscale += get_interleaved_se_golomb(&s->gb_slice); if (s->qscale > 31u) { av_log(s->avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale); return -1; } } if (IS_INTRA16x16(mb_type)) { AV_ZERO128(s->mb_luma_dc[0] + 0); AV_ZERO128(s->mb_luma_dc[0] + 8); if (svq3_decode_block(&s->gb_slice, s->mb_luma_dc[0], 0, 1)) { av_log(s->avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n"); return -1; } } if (cbp) { const int index = IS_INTRA16x16(mb_type) ? 1 : 0; const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1); for (i = 0; i < 4; i++) if ((cbp & (1 << i))) { for (j = 0; j < 4; j++) { k = index ? (1 * (j & 1) + 2 * (i & 1) + 2 * (j & 2) + 4 * (i & 2)) : (4 * i + j); s->non_zero_count_cache[scan8[k]] = 1; if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], index, type)) { av_log(s->avctx, AV_LOG_ERROR, "error while decoding block\n"); return -1; } } } if ((cbp & 0x30)) { for (i = 1; i < 3; ++i) if (svq3_decode_block(&s->gb_slice, &s->mb[16 * 16 * i], 0, 3)) { av_log(s->avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n"); return -1; } if ((cbp & 0x20)) { for (i = 1; i < 3; i++) { for (j = 0; j < 4; j++) { k = 16 * i + j; s->non_zero_count_cache[scan8[k]] = 1; if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], 1, 1)) { av_log(s->avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n"); return -1; } } } } } } s->cbp = cbp; s->cur_pic->mb_type[mb_xy] = mb_type; if (IS_INTRA(mb_type)) s->chroma_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available, s->left_samples_available, DC_PRED8x8, 1); return 0; } static int svq3_decode_slice_header(AVCodecContext *avctx) { SVQ3Context *s = avctx->priv_data; const int mb_xy = s->mb_xy; int i, header; unsigned slice_id; header = get_bits(&s->gb, 8); if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) { /* TODO: what? */ av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header); return -1; } else { int slice_bits, slice_bytes, slice_length; int length = header >> 5 & 3; slice_length = show_bits(&s->gb, 8 * length); slice_bits = slice_length * 8; slice_bytes = slice_length + length - 1; if (8LL*slice_bytes > get_bits_left(&s->gb)) { av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n"); return -1; } skip_bits(&s->gb, 8); av_fast_malloc(&s->slice_buf, &s->slice_size, slice_bytes + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->slice_buf) return AVERROR(ENOMEM); memcpy(s->slice_buf, s->gb.buffer + s->gb.index / 8, slice_bytes); init_get_bits(&s->gb_slice, s->slice_buf, slice_bits); if (s->watermark_key) { uint32_t header = AV_RL32(&s->gb_slice.buffer[1]); AV_WL32(&s->gb_slice.buffer[1], header ^ s->watermark_key); } if (length > 0) { memmove(s->slice_buf, &s->slice_buf[slice_length], length - 1); } skip_bits_long(&s->gb, slice_bytes * 8); } if ((slice_id = get_interleaved_ue_golomb(&s->gb_slice)) >= 3) { av_log(s->avctx, AV_LOG_ERROR, "illegal slice type %u \n", slice_id); return -1; } if (get_bits1(&s->gb_slice)) { avpriv_report_missing_feature(s->avctx, "Media key encryption"); return AVERROR_PATCHWELCOME; } s->slice_type = ff_h264_golomb_to_pict_type[slice_id]; if ((header & 0x9F) == 2) { i = (s->mb_num < 64) ? 5 : av_log2(s->mb_num - 1); get_bits(&s->gb_slice, i); } s->slice_num = get_bits(&s->gb_slice, 8); s->qscale = get_bits(&s->gb_slice, 5); s->adaptive_quant = get_bits1(&s->gb_slice); /* unknown fields */ skip_bits1(&s->gb_slice); if (s->has_watermark) skip_bits1(&s->gb_slice); skip_bits1(&s->gb_slice); skip_bits(&s->gb_slice, 2); if (skip_1stop_8data_bits(&s->gb_slice) < 0) return AVERROR_INVALIDDATA; /* reset intra predictors and invalidate motion vector references */ if (s->mb_x > 0) { memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - 1] + 3, -1, 4 * sizeof(int8_t)); memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_x], -1, 8 * sizeof(int8_t) * s->mb_x); } if (s->mb_y > 0) { memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_stride], -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x)); if (s->mb_x > 0) s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1; } return 0; } static void init_dequant4_coeff_table(SVQ3Context *s) { int q, x; const int max_qp = 51; for (q = 0; q < max_qp + 1; q++) { int shift = ff_h264_quant_div6[q] + 2; int idx = ff_h264_quant_rem6[q]; for (x = 0; x < 16; x++) s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] = ((uint32_t)ff_h264_dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * 16) << shift; } } static av_cold int svq3_decode_init(AVCodecContext *avctx) { SVQ3Context *s = avctx->priv_data; int m, x, y; unsigned char *extradata; unsigned char *extradata_end; unsigned int size; int marker_found = 0; int ret; s->cur_pic = av_mallocz(sizeof(*s->cur_pic)); s->last_pic = av_mallocz(sizeof(*s->last_pic)); s->next_pic = av_mallocz(sizeof(*s->next_pic)); if (!s->next_pic || !s->last_pic || !s->cur_pic) { ret = AVERROR(ENOMEM); goto fail; } s->cur_pic->f = av_frame_alloc(); s->last_pic->f = av_frame_alloc(); s->next_pic->f = av_frame_alloc(); if (!s->cur_pic->f || !s->last_pic->f || !s->next_pic->f) return AVERROR(ENOMEM); ff_h264dsp_init(&s->h264dsp, 8, 1); ff_h264_pred_init(&s->hpc, AV_CODEC_ID_SVQ3, 8, 1); ff_videodsp_init(&s->vdsp, 8); avctx->bits_per_raw_sample = 8; ff_hpeldsp_init(&s->hdsp, avctx->flags); ff_tpeldsp_init(&s->tdsp); avctx->pix_fmt = AV_PIX_FMT_YUVJ420P; avctx->color_range = AVCOL_RANGE_JPEG; s->avctx = avctx; s->halfpel_flag = 1; s->thirdpel_flag = 1; s->has_watermark = 0; /* prowl for the "SEQH" marker in the extradata */ extradata = (unsigned char *)avctx->extradata; extradata_end = avctx->extradata + avctx->extradata_size; if (extradata) { for (m = 0; m + 8 < avctx->extradata_size; m++) { if (!memcmp(extradata, "SEQH", 4)) { marker_found = 1; break; } extradata++; } } /* if a match was found, parse the extra data */ if (marker_found) { GetBitContext gb; int frame_size_code; int unk0, unk1, unk2, unk3, unk4; size = AV_RB32(&extradata[4]); if (size > extradata_end - extradata - 8) { ret = AVERROR_INVALIDDATA; goto fail; } init_get_bits(&gb, extradata + 8, size * 8); /* 'frame size code' and optional 'width, height' */ frame_size_code = get_bits(&gb, 3); switch (frame_size_code) { case 0: avctx->width = 160; avctx->height = 120; break; case 1: avctx->width = 128; avctx->height = 96; break; case 2: avctx->width = 176; avctx->height = 144; break; case 3: avctx->width = 352; avctx->height = 288; break; case 4: avctx->width = 704; avctx->height = 576; break; case 5: avctx->width = 240; avctx->height = 180; break; case 6: avctx->width = 320; avctx->height = 240; break; case 7: avctx->width = get_bits(&gb, 12); avctx->height = get_bits(&gb, 12); break; } s->halfpel_flag = get_bits1(&gb); s->thirdpel_flag = get_bits1(&gb); /* unknown fields */ unk0 = get_bits1(&gb); unk1 = get_bits1(&gb); unk2 = get_bits1(&gb); unk3 = get_bits1(&gb); s->low_delay = get_bits1(&gb); /* unknown field */ unk4 = get_bits1(&gb); av_log(avctx, AV_LOG_DEBUG, "Unknown fields %d %d %d %d %d\n", unk0, unk1, unk2, unk3, unk4); if (skip_1stop_8data_bits(&gb) < 0) { ret = AVERROR_INVALIDDATA; goto fail; } s->has_watermark = get_bits1(&gb); avctx->has_b_frames = !s->low_delay; if (s->has_watermark) { #if CONFIG_ZLIB unsigned watermark_width = get_interleaved_ue_golomb(&gb); unsigned watermark_height = get_interleaved_ue_golomb(&gb); int u1 = get_interleaved_ue_golomb(&gb); int u2 = get_bits(&gb, 8); int u3 = get_bits(&gb, 2); int u4 = get_interleaved_ue_golomb(&gb); unsigned long buf_len = watermark_width * watermark_height * 4; int offset = get_bits_count(&gb) + 7 >> 3; uint8_t *buf; if (watermark_height <= 0 || (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height) { ret = -1; goto fail; } buf = av_malloc(buf_len); if (!buf) { ret = AVERROR(ENOMEM); goto fail; } av_log(avctx, AV_LOG_DEBUG, "watermark size: %ux%u\n", watermark_width, watermark_height); av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset); if (uncompress(buf, &buf_len, extradata + 8 + offset, size - offset) != Z_OK) { av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n"); av_free(buf); ret = -1; goto fail; } s->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0); s->watermark_key = s->watermark_key << 16 | s->watermark_key; av_log(avctx, AV_LOG_DEBUG, "watermark key %#"PRIx32"\n", s->watermark_key); av_free(buf); #else av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n"); ret = -1; goto fail; #endif } } s->mb_width = (avctx->width + 15) / 16; s->mb_height = (avctx->height + 15) / 16; s->mb_stride = s->mb_width + 1; s->mb_num = s->mb_width * s->mb_height; s->b_stride = 4 * s->mb_width; s->h_edge_pos = s->mb_width * 16; s->v_edge_pos = s->mb_height * 16; s->intra4x4_pred_mode = av_mallocz(s->mb_stride * 2 * 8); if (!s->intra4x4_pred_mode) return AVERROR(ENOMEM); s->mb2br_xy = av_mallocz(s->mb_stride * (s->mb_height + 1) * sizeof(*s->mb2br_xy)); if (!s->mb2br_xy) return AVERROR(ENOMEM); for (y = 0; y < s->mb_height; y++) for (x = 0; x < s->mb_width; x++) { const int mb_xy = x + y * s->mb_stride; s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 * s->mb_stride)); } init_dequant4_coeff_table(s); return 0; fail: svq3_decode_end(avctx); return ret; } static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic) { int i; for (i = 0; i < 2; i++) { av_buffer_unref(&pic->motion_val_buf[i]); av_buffer_unref(&pic->ref_index_buf[i]); } av_buffer_unref(&pic->mb_type_buf); av_frame_unref(pic->f); } static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic) { SVQ3Context *s = avctx->priv_data; const int big_mb_num = s->mb_stride * (s->mb_height + 1) + 1; const int mb_array_size = s->mb_stride * s->mb_height; const int b4_stride = s->mb_width * 4 + 1; const int b4_array_size = b4_stride * s->mb_height * 4; int ret; if (!pic->motion_val_buf[0]) { int i; pic->mb_type_buf = av_buffer_allocz((big_mb_num + s->mb_stride) * sizeof(uint32_t)); if (!pic->mb_type_buf) return AVERROR(ENOMEM); pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * s->mb_stride + 1; for (i = 0; i < 2; i++) { pic->motion_val_buf[i] = av_buffer_allocz(2 * (b4_array_size + 4) * sizeof(int16_t)); pic->ref_index_buf[i] = av_buffer_allocz(4 * mb_array_size); if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) { ret = AVERROR(ENOMEM); goto fail; } pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4; pic->ref_index[i] = pic->ref_index_buf[i]->data; } } ret = ff_get_buffer(avctx, pic->f, (s->pict_type != AV_PICTURE_TYPE_B) ? AV_GET_BUFFER_FLAG_REF : 0); if (ret < 0) goto fail; if (!s->edge_emu_buffer) { s->edge_emu_buffer = av_mallocz_array(pic->f->linesize[0], 17); if (!s->edge_emu_buffer) return AVERROR(ENOMEM); } return 0; fail: free_picture(avctx, pic); return ret; } static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { SVQ3Context *s = avctx->priv_data; int buf_size = avpkt->size; int left; uint8_t *buf; int ret, m, i; /* special case for last picture */ if (buf_size == 0) { if (s->next_pic->f->data[0] && !s->low_delay && !s->last_frame_output) { ret = av_frame_ref(data, s->next_pic->f); if (ret < 0) return ret; s->last_frame_output = 1; *got_frame = 1; } return 0; } s->mb_x = s->mb_y = s->mb_xy = 0; if (s->watermark_key) { av_fast_padded_malloc(&s->buf, &s->buf_size, buf_size); if (!s->buf) return AVERROR(ENOMEM); memcpy(s->buf, avpkt->data, buf_size); buf = s->buf; } else { buf = avpkt->data; } ret = init_get_bits(&s->gb, buf, 8 * buf_size); if (ret < 0) return ret; if (svq3_decode_slice_header(avctx)) return -1; s->pict_type = s->slice_type; if (s->pict_type != AV_PICTURE_TYPE_B) FFSWAP(SVQ3Frame*, s->next_pic, s->last_pic); av_frame_unref(s->cur_pic->f); /* for skipping the frame */ s->cur_pic->f->pict_type = s->pict_type; s->cur_pic->f->key_frame = (s->pict_type == AV_PICTURE_TYPE_I); ret = get_buffer(avctx, s->cur_pic); if (ret < 0) return ret; for (i = 0; i < 16; i++) { s->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3); s->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3); } for (i = 0; i < 16; i++) { s->block_offset[16 + i] = s->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3); s->block_offset[48 + 16 + i] = s->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3); } if (s->pict_type != AV_PICTURE_TYPE_I) { if (!s->last_pic->f->data[0]) { av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n"); av_frame_unref(s->last_pic->f); ret = get_buffer(avctx, s->last_pic); if (ret < 0) return ret; memset(s->last_pic->f->data[0], 0, avctx->height * s->last_pic->f->linesize[0]); memset(s->last_pic->f->data[1], 0x80, (avctx->height / 2) * s->last_pic->f->linesize[1]); memset(s->last_pic->f->data[2], 0x80, (avctx->height / 2) * s->last_pic->f->linesize[2]); } if (s->pict_type == AV_PICTURE_TYPE_B && !s->next_pic->f->data[0]) { av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n"); av_frame_unref(s->next_pic->f); ret = get_buffer(avctx, s->next_pic); if (ret < 0) return ret; memset(s->next_pic->f->data[0], 0, avctx->height * s->next_pic->f->linesize[0]); memset(s->next_pic->f->data[1], 0x80, (avctx->height / 2) * s->next_pic->f->linesize[1]); memset(s->next_pic->f->data[2], 0x80, (avctx->height / 2) * s->next_pic->f->linesize[2]); } } if (avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n", av_get_picture_type_char(s->pict_type), s->halfpel_flag, s->thirdpel_flag, s->adaptive_quant, s->qscale, s->slice_num); if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B || avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I || avctx->skip_frame >= AVDISCARD_ALL) return 0; if (s->next_p_frame_damaged) { if (s->pict_type == AV_PICTURE_TYPE_B) return 0; else s->next_p_frame_damaged = 0; } if (s->pict_type == AV_PICTURE_TYPE_B) { s->frame_num_offset = s->slice_num - s->prev_frame_num; if (s->frame_num_offset < 0) s->frame_num_offset += 256; if (s->frame_num_offset == 0 || s->frame_num_offset >= s->prev_frame_num_offset) { av_log(s->avctx, AV_LOG_ERROR, "error in B-frame picture id\n"); return -1; } } else { s->prev_frame_num = s->frame_num; s->frame_num = s->slice_num; s->prev_frame_num_offset = s->frame_num - s->prev_frame_num; if (s->prev_frame_num_offset < 0) s->prev_frame_num_offset += 256; } for (m = 0; m < 2; m++) { int i; for (i = 0; i < 4; i++) { int j; for (j = -1; j < 4; j++) s->ref_cache[m][scan8[0] + 8 * i + j] = 1; if (i < 3) s->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE; } } for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { unsigned mb_type; s->mb_xy = s->mb_x + s->mb_y * s->mb_stride; if ((get_bits_left(&s->gb_slice)) <= 7) { if (((get_bits_count(&s->gb_slice) & 7) == 0 || show_bits(&s->gb_slice, get_bits_left(&s->gb_slice) & 7) == 0)) { if (svq3_decode_slice_header(avctx)) return -1; } if (s->slice_type != s->pict_type) { avpriv_request_sample(avctx, "non constant slice type"); } /* TODO: support s->mb_skip_run */ } mb_type = get_interleaved_ue_golomb(&s->gb_slice); if (s->pict_type == AV_PICTURE_TYPE_I) mb_type += 8; else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) mb_type += 4; if (mb_type > 33 || svq3_decode_mb(s, mb_type)) { av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); return -1; } if (mb_type != 0 || s->cbp) hl_decode_mb(s); if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) s->cur_pic->mb_type[s->mb_x + s->mb_y * s->mb_stride] = (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1; } ff_draw_horiz_band(avctx, s->cur_pic->f, s->last_pic->f->data[0] ? s->last_pic->f : NULL, 16 * s->mb_y, 16, PICT_FRAME, 0, s->low_delay); } left = buf_size*8 - get_bits_count(&s->gb_slice); if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) { av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left); //av_hex_dump(stderr, buf+buf_size-8, 8); } if (left < 0) { av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left); return -1; } if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) ret = av_frame_ref(data, s->cur_pic->f); else if (s->last_pic->f->data[0]) ret = av_frame_ref(data, s->last_pic->f); if (ret < 0) return ret; /* Do not output the last pic after seeking. */ if (s->last_pic->f->data[0] || s->low_delay) *got_frame = 1; if (s->pict_type != AV_PICTURE_TYPE_B) { FFSWAP(SVQ3Frame*, s->cur_pic, s->next_pic); } else { av_frame_unref(s->cur_pic->f); } return buf_size; } static av_cold int svq3_decode_end(AVCodecContext *avctx) { SVQ3Context *s = avctx->priv_data; free_picture(avctx, s->cur_pic); free_picture(avctx, s->next_pic); free_picture(avctx, s->last_pic); av_frame_free(&s->cur_pic->f); av_frame_free(&s->next_pic->f); av_frame_free(&s->last_pic->f); av_freep(&s->cur_pic); av_freep(&s->next_pic); av_freep(&s->last_pic); av_freep(&s->slice_buf); av_freep(&s->intra4x4_pred_mode); av_freep(&s->edge_emu_buffer); av_freep(&s->mb2br_xy); av_freep(&s->buf); s->buf_size = 0; return 0; } AVCodec ff_svq3_decoder = { .name = "svq3", .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_SVQ3, .priv_data_size = sizeof(SVQ3Context), .init = svq3_decode_init, .close = svq3_decode_end, .decode = svq3_decode_frame, .capabilities = AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_NONE}, };