/* * Copyright (C) 2004 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/intmath.h" #include "libavutil/log.h" #include "libavutil/opt.h" #include "avcodec.h" #include "snow_dwt.h" #include "internal.h" #include "snow.h" #include "rangecoder.h" #include "mathops.h" #include "mpegvideo.h" #include "h263.h" static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){ Plane *p= &s->plane[plane_index]; const int mb_w= s->b_width << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth; int x, y, mb_x; int block_size = MB_SIZE >> s->block_max_depth; int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth]; int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; int ref_stride= s->current_picture->linesize[plane_index]; uint8_t *dst8= s->current_picture->data[plane_index]; int w= p->width; int h= p->height; if(s->keyframe || (s->avctx->debug&512)){ if(mb_y==mb_h) return; if(add){ for(y=block_h*mb_y; yline[y]; for(x=0; x>= FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*ref_stride]= v; } } }else{ for(y=block_h*mb_y; yline[y]; for(x=0; xwidth; int y; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int new_index = 0; if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){ qadd= 0; qmul= 1<stride_line + b->buf_y_offset) + b->buf_x_offset; memset(line, 0, b->width*sizeof(IDWTELEM)); v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; while(x < w){ register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT; register int u= -(v&1); line[x] = (t^u) - u; v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; } } /* Save our variables for the next slice. */ save_state[0] = new_index; return; } static int decode_q_branch(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trxblock[index-w+(1<level + 2*top->level + tl->level + tr->level; int res; if(s->keyframe){ set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA); return 0; } if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){ int type, mx, my; int l = left->color[0]; int cb= left->color[1]; int cr= left->color[2]; unsigned ref = 0; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx)); int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my)); type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0; if(type){ pred_mv(s, &mx, &my, 0, left, top, tr); l += get_symbol(&s->c, &s->block_state[32], 1); if (s->nb_planes > 2) { cb+= get_symbol(&s->c, &s->block_state[64], 1); cr+= get_symbol(&s->c, &s->block_state[96], 1); } }else{ if(s->ref_frames > 1) ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0); if (ref >= s->ref_frames) { av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n"); return AVERROR_INVALIDDATA; } pred_mv(s, &mx, &my, ref, left, top, tr); mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1); my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1); } set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type); }else{ if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 || (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 || (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 || (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0) return res; } return 0; } static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){ const int w= b->width; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; if(s->qlog == LOSSLESS_QLOG) return; for(y=start_y; ystride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; x>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ line[x]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } } static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){ const int w= b->width; int x,y; IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning IDWTELEM * prev; if (start_y != 0) line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset; for(y=start_y; ystride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; xnb_planes; plane_index++){ for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ int q; if (plane_index==2) q= s->plane[1].band[level][orientation].qlog; else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog; else q= get_symbol(&s->c, s->header_state, 1); s->plane[plane_index].band[level][orientation].qlog= q; } } } } #define GET_S(dst, check) \ tmp= get_symbol(&s->c, s->header_state, 0);\ if(!(check)){\ av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\ return AVERROR_INVALIDDATA;\ }\ dst= tmp; static int decode_header(SnowContext *s){ int plane_index, tmp; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); s->keyframe= get_rac(&s->c, kstate); if(s->keyframe || s->always_reset){ ff_snow_reset_contexts(s); s->spatial_decomposition_type= s->qlog= s->qbias= s->mv_scale= s->block_max_depth= 0; } if(s->keyframe){ GET_S(s->version, tmp <= 0U) s->always_reset= get_rac(&s->c, s->header_state); s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0); s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0); GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS) s->colorspace_type= get_symbol(&s->c, s->header_state, 0); if (s->colorspace_type == 1) { s->avctx->pix_fmt= AV_PIX_FMT_GRAY8; s->nb_planes = 1; } else if(s->colorspace_type == 0) { s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0); s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0); if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){ s->avctx->pix_fmt= AV_PIX_FMT_YUV420P; }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){ s->avctx->pix_fmt= AV_PIX_FMT_YUV444P; }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){ s->avctx->pix_fmt= AV_PIX_FMT_YUV410P; } else { av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift); s->chroma_h_shift = s->chroma_v_shift = 1; s->avctx->pix_fmt= AV_PIX_FMT_YUV420P; return AVERROR_INVALIDDATA; } s->nb_planes = 3; } else { av_log(s, AV_LOG_ERROR, "unsupported color space\n"); s->chroma_h_shift = s->chroma_v_shift = 1; s->avctx->pix_fmt= AV_PIX_FMT_YUV420P; return AVERROR_INVALIDDATA; } s->spatial_scalability= get_rac(&s->c, s->header_state); // s->rate_scalability= get_rac(&s->c, s->header_state); GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES) s->max_ref_frames++; decode_qlogs(s); } if(!s->keyframe){ if(get_rac(&s->c, s->header_state)){ for(plane_index=0; plane_indexnb_planes, 2); plane_index++){ int htaps, i, sum=0; Plane *p= &s->plane[plane_index]; p->diag_mc= get_rac(&s->c, s->header_state); htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2; if((unsigned)htaps > HTAPS_MAX || htaps==0) return AVERROR_INVALIDDATA; p->htaps= htaps; for(i= htaps/2; i; i--){ p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1)); sum += p->hcoeff[i]; } p->hcoeff[0]= 32-sum; } s->plane[2].diag_mc= s->plane[1].diag_mc; s->plane[2].htaps = s->plane[1].htaps; memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff)); } if(get_rac(&s->c, s->header_state)){ GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS) decode_qlogs(s); } } s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1); if(s->spatial_decomposition_type > 1U){ av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type); return AVERROR_INVALIDDATA; } if(FFMIN(s->avctx-> width>>s->chroma_h_shift, s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){ av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count); return AVERROR_INVALIDDATA; } s->qlog += get_symbol(&s->c, s->header_state, 1); s->mv_scale += get_symbol(&s->c, s->header_state, 1); s->qbias += get_symbol(&s->c, s->header_state, 1); s->block_max_depth+= get_symbol(&s->c, s->header_state, 1); if(s->block_max_depth > 1 || s->block_max_depth < 0){ av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth); s->block_max_depth= 0; return AVERROR_INVALIDDATA; } return 0; } static av_cold int decode_init(AVCodecContext *avctx) { int ret; if ((ret = ff_snow_common_init(avctx)) < 0) { ff_snow_common_end(avctx->priv_data); return ret; } return 0; } static int decode_blocks(SnowContext *s){ int x, y; int w= s->b_width; int h= s->b_height; int res; for(y=0; ydata; int buf_size = avpkt->size; SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; int bytes_read; AVFrame *picture = data; int level, orientation, plane_index; int res; ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P if ((res = decode_header(s)) < 0) return res; if ((res=ff_snow_common_init_after_header(avctx)) < 0) return res; // realloc slice buffer for the case that spatial_decomposition_count changed ff_slice_buffer_destroy(&s->sb); if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height, (MB_SIZE >> s->block_max_depth) + s->spatial_decomposition_count * 11 + 1, s->plane[0].width, s->spatial_idwt_buffer)) < 0) return res; for(plane_index=0; plane_index < s->nb_planes; plane_index++){ Plane *p= &s->plane[plane_index]; p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40 && p->hcoeff[1]==-10 && p->hcoeff[2]==2; } ff_snow_alloc_blocks(s); if((res = ff_snow_frame_start(s)) < 0) return res; //keyframe flag duplication mess FIXME if(avctx->debug&FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d qbias: %d mvscale: %d " "decomposition_type:%d decomposition_count:%d\n", s->keyframe, s->qlog, s->qbias, s->mv_scale, s->spatial_decomposition_type, s->spatial_decomposition_count ); if ((res = decode_blocks(s)) < 0) return res; for(plane_index=0; plane_index < s->nb_planes; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */ if(s->avctx->debug&2048){ memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h); predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); for(y=0; ycurrent_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]; s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v; } } } { for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; unpack_coeffs(s, b, b->parent, orientation); } } } { const int mb_h= s->b_height << s->block_max_depth; const int block_size = MB_SIZE >> s->block_max_depth; const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; int mb_y; DWTCompose cs[MAX_DECOMPOSITIONS]; int yd=0, yq=0; int y; int end_y; ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count); for(mb_y=0; mb_y<=mb_h; mb_y++){ int slice_starty = block_h*mb_y; int slice_h = block_h*(mb_y+1); if (!(s->keyframe || s->avctx->debug&512)){ slice_starty = FFMAX(0, slice_starty - (block_h >> 1)); slice_h -= (block_h >> 1); } for(level=0; levelspatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; int start_y; int end_y; int our_mb_start = mb_y; int our_mb_end = (mb_y + 1); const int extra= 3; start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0); end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra); if (!(s->keyframe || s->avctx->debug&512)){ start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level))); end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level))); } start_y = FFMIN(b->height, start_y); end_y = FFMIN(b->height, end_y); if (start_y != end_y){ if (orientation == 0){ SubBand * correlate_band = &p->band[0][0]; int correlate_end_y = FFMIN(b->height, end_y + 1); int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0)); decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]); correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y); dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y); } else decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]); } } } for(; yddwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd); } if(s->qlog == LOSSLESS_QLOG){ for(; yqsb, yq); for(x=0; xsb, s->spatial_idwt_buffer, plane_index, 1, mb_y); y = FFMIN(p->height, slice_starty); end_y = FFMIN(p->height, slice_h); while(y < end_y) ff_slice_buffer_release(&s->sb, y++); } ff_slice_buffer_flush(&s->sb); } } emms_c(); ff_snow_release_buffer(avctx); if(!(s->avctx->debug&2048)) res = av_frame_ref(picture, s->current_picture); else res = av_frame_ref(picture, s->mconly_picture); if (res < 0) return res; *got_frame = 1; bytes_read= c->bytestream - c->bytestream_start; if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME return bytes_read; } static av_cold int decode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; ff_slice_buffer_destroy(&s->sb); ff_snow_common_end(s); return 0; } AVCodec ff_snow_decoder = { .name = "snow", .long_name = NULL_IF_CONFIG_SMALL("Snow"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_SNOW, .priv_data_size = sizeof(SnowContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/, };