/* * AAC encoder TNS * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder temporal noise shaping * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #include "aacenc.h" #include "aacenc_tns.h" #include "aactab.h" #include "aacenc_utils.h" #include "aacenc_quantization.h" static inline int compress_coef(int *coefs, int num) { int i, c = 0; for (i = 0; i < num; i++) c += coefs[i] < 4 || coefs[i] > 11; return c == num; } /** * Encode TNS data. * Coefficient compression saves a single bit per coefficient. */ void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce) { int i, w, filt, coef_len, coef_compress; const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; if (!sce->tns.present) return; for (i = 0; i < sce->ics.num_windows; i++) { put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]); if (sce->tns.n_filt[i]) { put_bits(&s->pb, 1, 1); for (filt = 0; filt < sce->tns.n_filt[i]; filt++) { put_bits(&s->pb, 6 - 2 * is8, sce->tns.length[i][filt]); put_bits(&s->pb, 5 - 2 * is8, sce->tns.order[i][filt]); if (sce->tns.order[i][filt]) { coef_compress = compress_coef(sce->tns.coef_idx[i][filt], sce->tns.order[i][filt]); put_bits(&s->pb, 1, !!sce->tns.direction[i][filt]); put_bits(&s->pb, 1, !!coef_compress); coef_len = 4 - coef_compress; for (w = 0; w < sce->tns.order[i][filt]; w++) put_bits(&s->pb, coef_len, sce->tns.coef_idx[i][filt][w]); } } } } } static void process_tns_coeffs(TemporalNoiseShaping *tns, double *coef_raw, int *order_p, int w, int filt) { int i, j, order = *order_p; int *idx = tns->coef_idx[w][filt]; float *lpc = tns->coef[w][filt]; float temp[TNS_MAX_ORDER] = {0.0f}, out[TNS_MAX_ORDER] = {0.0f}; if (!order) return; /* Not what the specs say, but it's better */ for (i = 0; i < order; i++) { idx[i] = quant_array_idx(coef_raw[i], tns_tmp2_map_0_4, 16); lpc[i] = tns_tmp2_map_0_4[idx[i]]; } /* Trim any coeff less than 0.1f from the end */ for (i = order-1; i > -1; i--) { lpc[i] = (fabs(lpc[i]) > 0.1f) ? lpc[i] : 0.0f; if (lpc[i] != 0.0 ) { order = i; break; } } order = av_clip(order, 0, TNS_MAX_ORDER - 1); *order_p = order; if (!order) return; /* Step up procedure, convert to LPC coeffs */ out[0] = 1.0f; for (i = 1; i <= order; i++) { for (j = 1; j < i; j++) { temp[j] = out[j] + lpc[i]*out[i-j]; } for (j = 1; j <= i; j++) { out[j] = temp[j]; } out[i] = lpc[i-1]; } memcpy(lpc, out, TNS_MAX_ORDER*sizeof(float)); } /* Apply TNS filter */ void ff_aac_apply_tns(SingleChannelElement *sce) { const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb); float *coef = sce->pcoeffs; TemporalNoiseShaping *tns = &sce->tns; int w, filt, m, i; int bottom, top, order, start, end, size, inc; float *lpc, tmp[TNS_MAX_ORDER+1]; for (w = 0; w < sce->ics.num_windows; w++) { bottom = sce->ics.num_swb; for (filt = 0; filt < tns->n_filt[w]; filt++) { top = bottom; bottom = FFMAX(0, top - tns->length[w][filt]); order = tns->order[w][filt]; lpc = tns->coef[w][filt]; if (!order) continue; start = sce->ics.swb_offset[FFMIN(bottom, mmm)]; end = sce->ics.swb_offset[FFMIN( top, mmm)]; if ((size = end - start) <= 0) continue; if (tns->direction[w][filt]) { inc = -1; start = end - 1; } else { inc = 1; } start += w * 128; if (!sce->ics.ltp.present) { // ar filter for (m = 0; m < size; m++, start += inc) for (i = 1; i <= FFMIN(m, order); i++) coef[start] += coef[start - i * inc]*lpc[i - 1]; } else { // ma filter for (m = 0; m < size; m++, start += inc) { tmp[0] = coef[start]; for (i = 1; i <= FFMIN(m, order); i++) coef[start] += tmp[i]*lpc[i - 1]; for (i = order; i > 0; i--) tmp[i] = tmp[i - 1]; } } } } } void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce) { TemporalNoiseShaping *tns = &sce->tns; int w, g, w2, prev_end_sfb = 0, count = 0; const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; const int tns_max_order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER; for (w = 0; w < sce->ics.num_windows; w++) { int order = 0, filters = 1; int sfb_start = 0, sfb_len = 0; int coef_start = 0, coef_len = 0; float energy = 0.0f, threshold = 0.0f; double coefs[MAX_LPC_ORDER][MAX_LPC_ORDER] = {{0}}; for (g = 0; g < sce->ics.num_swb; g++) { if (!sfb_start && w*16+g > TNS_LOW_LIMIT && w*16+g > prev_end_sfb) { sfb_start = w*16+g; coef_start = sce->ics.swb_offset[sfb_start]; } if (sfb_start) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (!sfb_len && band->energy < band->threshold*1.3f) { sfb_len = (w+w2)*16+g - sfb_start; prev_end_sfb = sfb_start + sfb_len; coef_len = sce->ics.swb_offset[sfb_start + sfb_len] - coef_start; break; } energy += band->energy; threshold += band->threshold; } if (!sfb_len) { sfb_len = (w+1)*16+g - sfb_start - 1; coef_len = sce->ics.swb_offset[sfb_start + sfb_len] - coef_start; } } } if (sfb_len <= 0 || coef_len <= 0) continue; if (coef_start + coef_len >= 1024) coef_len = 1024 - coef_start; /* LPC */ order = ff_lpc_calc_levinson(&s->lpc, &sce->coeffs[coef_start], coef_len, coefs, 0, tns_max_order, ORDER_METHOD_LOG); if (energy > threshold) { int direction = 0; tns->n_filt[w] = filters++; for (g = 0; g < tns->n_filt[w]; g++) { process_tns_coeffs(tns, coefs[order], &order, w, g); tns->order[w][g] = order; tns->length[w][g] = sfb_len; tns->direction[w][g] = direction; } count++; } } sce->tns.present = !!count; }