/* * MPEG Audio decoder * Copyright (c) 2001, 2002 Fabrice Bellard. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file mpegaudiodec.c * MPEG Audio decoder. */ //#define DEBUG #include "avcodec.h" #include "bitstream.h" #include "dsputil.h" /* * TODO: * - in low precision mode, use more 16 bit multiplies in synth filter * - test lsf / mpeg25 extensively. */ /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg audio decoder */ #ifdef CONFIG_MPEGAUDIO_HP # define USE_HIGHPRECISION #endif #include "mpegaudio.h" #define FRAC_ONE (1 << FRAC_BITS) #ifdef ARCH_X86 # define MULL(ra, rb) \ ({ int rt, dummy; asm (\ "imull %3 \n\t"\ "shrdl %4, %%edx, %%eax \n\t"\ : "=a"(rt), "=d"(dummy)\ : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\ rt; }) # define MUL64(ra, rb) \ ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; }) # define MULH(ra, rb) \ ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; }) #elif defined(ARCH_ARMV4L) # define MULL(a, b) \ ({ int lo, hi;\ asm("smull %0, %1, %2, %3 \n\t"\ "mov %0, %0, lsr %4\n\t"\ "add %1, %0, %1, lsl %5\n\t"\ : "=&r"(lo), "=&r"(hi)\ : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\ hi; }) # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b)) # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; }) #else # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b)) //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this static always_inline int MULH(int a, int b){ return ((int64_t)(a) * (int64_t)(b))>>32; } #endif #define FIX(a) ((int)((a) * FRAC_ONE)) /* WARNING: only correct for posititive numbers */ #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS) #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) /****************/ #define HEADER_SIZE 4 #define BACKSTEP_SIZE 512 #define EXTRABYTES 24 struct GranuleDef; typedef struct MPADecodeContext { DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]); int last_buf_size; int frame_size; int free_format_frame_size; /* frame size in case of free format (zero if currently unknown) */ /* next header (used in free format parsing) */ uint32_t free_format_next_header; int error_protection; int layer; int sample_rate; int sample_rate_index; /* between 0 and 8 */ int bit_rate; GetBitContext gb; GetBitContext in_gb; int nb_channels; int mode; int mode_ext; int lsf; MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16))); int synth_buf_offset[MPA_MAX_CHANNELS]; int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16))); int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ #ifdef DEBUG int frame_count; #endif void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g); int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3 unsigned int dither_state; } MPADecodeContext; /** * Context for MP3On4 decoder */ typedef struct MP3On4DecodeContext { int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) int chan_cfg; ///< channel config number MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance } MP3On4DecodeContext; /* layer 3 "granule" */ typedef struct GranuleDef { uint8_t scfsi; int part2_3_length; int big_values; int global_gain; int scalefac_compress; uint8_t block_type; uint8_t switch_point; int table_select[3]; int subblock_gain[3]; uint8_t scalefac_scale; uint8_t count1table_select; int region_size[3]; /* number of huffman codes in each region */ int preflag; int short_start, long_end; /* long/short band indexes */ uint8_t scale_factors[40]; int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */ } GranuleDef; #define MODE_EXT_MS_STEREO 2 #define MODE_EXT_I_STEREO 1 /* layer 3 huffman tables */ typedef struct HuffTable { int xsize; const uint8_t *bits; const uint16_t *codes; } HuffTable; #include "mpegaudiodectab.h" static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g); static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g); /* vlc structure for decoding layer 3 huffman tables */ static VLC huff_vlc[16]; static VLC huff_quad_vlc[2]; /* computed from band_size_long */ static uint16_t band_index_long[9][23]; /* XXX: free when all decoders are closed */ #define TABLE_4_3_SIZE (8191 + 16)*4 static int8_t *table_4_3_exp; static uint32_t *table_4_3_value; static uint32_t exp_table[512]; static uint32_t expval_table[512][16]; /* intensity stereo coef table */ static int32_t is_table[2][16]; static int32_t is_table_lsf[2][2][16]; static int32_t csa_table[8][4]; static float csa_table_float[8][4]; static int32_t mdct_win[8][36]; /* lower 2 bits: modulo 3, higher bits: shift */ static uint16_t scale_factor_modshift[64]; /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ static int32_t scale_factor_mult[15][3]; /* mult table for layer 2 group quantization */ #define SCALE_GEN(v) \ { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) } static const int32_t scale_factor_mult2[3][3] = { SCALE_GEN(4.0 / 3.0), /* 3 steps */ SCALE_GEN(4.0 / 5.0), /* 5 steps */ SCALE_GEN(4.0 / 9.0), /* 9 steps */ }; static MPA_INT window[512] __attribute__((aligned(16))); /* layer 1 unscaling */ /* n = number of bits of the mantissa minus 1 */ static inline int l1_unscale(int n, int mant, int scale_factor) { int shift, mod; int64_t val; shift = scale_factor_modshift[scale_factor]; mod = shift & 3; shift >>= 2; val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); shift += n; /* NOTE: at this point, 1 <= shift >= 21 + 15 */ return (int)((val + (1LL << (shift - 1))) >> shift); } static inline int l2_unscale_group(int steps, int mant, int scale_factor) { int shift, mod, val; shift = scale_factor_modshift[scale_factor]; mod = shift & 3; shift >>= 2; val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; /* NOTE: at this point, 0 <= shift <= 21 */ if (shift > 0) val = (val + (1 << (shift - 1))) >> shift; return val; } /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ static inline int l3_unscale(int value, int exponent) { unsigned int m; int e; e = table_4_3_exp [4*value + (exponent&3)]; m = table_4_3_value[4*value + (exponent&3)]; e -= (exponent >> 2); assert(e>=1); if (e > 31) return 0; m = (m + (1 << (e-1))) >> e; return m; } /* all integer n^(4/3) computation code */ #define DEV_ORDER 13 #define POW_FRAC_BITS 24 #define POW_FRAC_ONE (1 << POW_FRAC_BITS) #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS) static int dev_4_3_coefs[DEV_ORDER]; #if 0 /* unused */ static int pow_mult3[3] = { POW_FIX(1.0), POW_FIX(1.25992104989487316476), POW_FIX(1.58740105196819947474), }; #endif static void int_pow_init(void) { int i, a; a = POW_FIX(1.0); for(i=0;i= 0; j--) a1 = POW_MULL(a, dev_4_3_coefs[j] + a1); a = (1 << POW_FRAC_BITS) + a1; /* exponent compute (exact) */ e = e * 4; er = e % 3; eq = e / 3; a = POW_MULL(a, pow_mult3[er]); while (a >= 2 * POW_FRAC_ONE) { a = a >> 1; eq++; } /* convert to float */ while (a < POW_FRAC_ONE) { a = a << 1; eq--; } /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */ #if POW_FRAC_BITS > FRAC_BITS a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS); /* correct overflow */ if (a >= 2 * (1 << FRAC_BITS)) { a = a >> 1; eq++; } #endif *exp_ptr = eq; return a; } #endif static int decode_init(AVCodecContext * avctx) { MPADecodeContext *s = avctx->priv_data; static int init=0; int i, j, k; #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT) avctx->sample_fmt= SAMPLE_FMT_S32; #else avctx->sample_fmt= SAMPLE_FMT_S16; #endif if(avctx->antialias_algo != FF_AA_FLOAT) s->compute_antialias= compute_antialias_integer; else s->compute_antialias= compute_antialias_float; if (!init && !avctx->parse_only) { /* scale factors table for layer 1/2 */ for(i=0;i<64;i++) { int shift, mod; /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ shift = (i / 3); mod = i % 3; scale_factor_modshift[i] = mod | (shift << 2); } /* scale factor multiply for layer 1 */ for(i=0;i<15;i++) { int n, norm; n = i + 2; norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm); scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm); scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm); dprintf("%d: norm=%x s=%x %x %x\n", i, norm, scale_factor_mult[i][0], scale_factor_mult[i][1], scale_factor_mult[i][2]); } ff_mpa_synth_init(window); /* huffman decode tables */ for(i=1;i<16;i++) { const HuffTable *h = &mpa_huff_tables[i]; int xsize, x, y; unsigned int n; uint8_t tmp_bits [512]; uint16_t tmp_codes[512]; memset(tmp_bits , 0, sizeof(tmp_bits )); memset(tmp_codes, 0, sizeof(tmp_codes)); xsize = h->xsize; n = xsize * xsize; j = 0; for(x=0;xbits [j ]; tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; } } /* XXX: fail test */ init_vlc(&huff_vlc[i], 7, 512, tmp_bits, 1, 1, tmp_codes, 2, 2, 1); } for(i=0;i<2;i++) { init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1); } for(i=0;i<9;i++) { k = 0; for(j=0;j<22;j++) { band_index_long[i][j] = k; k += band_size_long[i][j]; } band_index_long[i][22] = k; } /* compute n ^ (4/3) and store it in mantissa/exp format */ table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0])); if(!table_4_3_exp) return -1; table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0])); if(!table_4_3_value) return -1; int_pow_init(); for(i=1;i>4); double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5); expval_table[exponent][i&15]= lrintf(f); if((i&15)==1) exp_table[exponent]= lrintf(f); } for(i=0;i<7;i++) { float f; int v; if (i != 6) { f = tan((double)i * M_PI / 12.0); v = FIXR(f / (1.0 + f)); } else { v = FIXR(1.0); } is_table[0][i] = v; is_table[1][6 - i] = v; } /* invalid values */ for(i=7;i<16;i++) is_table[0][i] = is_table[1][i] = 0.0; for(i=0;i<16;i++) { double f; int e, k; for(j=0;j<2;j++) { e = -(j + 1) * ((i + 1) >> 1); f = pow(2.0, e / 4.0); k = i & 1; is_table_lsf[j][k ^ 1][i] = FIXR(f); is_table_lsf[j][k][i] = FIXR(1.0); dprintf("is_table_lsf %d %d: %x %x\n", i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); } } for(i=0;i<8;i++) { float ci, cs, ca; ci = ci_table[i]; cs = 1.0 / sqrt(1.0 + ci * ci); ca = cs * ci; csa_table[i][0] = FIXHR(cs/4); csa_table[i][1] = FIXHR(ca/4); csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); csa_table_float[i][0] = cs; csa_table_float[i][1] = ca; csa_table_float[i][2] = ca + cs; csa_table_float[i][3] = ca - cs; // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca)); // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs); } /* compute mdct windows */ for(i=0;i<36;i++) { for(j=0; j<4; j++){ double d; if(j==2 && i%3 != 1) continue; d= sin(M_PI * (i + 0.5) / 36.0); if(j==1){ if (i>=30) d= 0; else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0); else if(i>=18) d= 1; }else if(j==3){ if (i< 6) d= 0; else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0); else if(i< 18) d= 1; } //merge last stage of imdct into the window coefficients d*= 0.5 / cos(M_PI*(2*i + 19)/72); if(j==2) mdct_win[j][i/3] = FIXHR((d / (1<<5))); else mdct_win[j][i ] = FIXHR((d / (1<<5))); // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5)); } } /* NOTE: we do frequency inversion adter the MDCT by changing the sign of the right window coefs */ for(j=0;j<4;j++) { for(i=0;i<36;i+=2) { mdct_win[j + 4][i] = mdct_win[j][i]; mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; } } #if defined(DEBUG) for(j=0;j<8;j++) { av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j); for(i=0;i<36;i++) av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE); av_log(avctx, AV_LOG_DEBUG, "\n"); } #endif init = 1; } #ifdef DEBUG s->frame_count = 0; #endif if (avctx->codec_id == CODEC_ID_MP3ADU) s->adu_mode = 1; return 0; } /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */ /* cos(i*pi/64) */ #define COS0_0 FIXHR(0.50060299823519630134/2) #define COS0_1 FIXHR(0.50547095989754365998/2) #define COS0_2 FIXHR(0.51544730992262454697/2) #define COS0_3 FIXHR(0.53104259108978417447/2) #define COS0_4 FIXHR(0.55310389603444452782/2) #define COS0_5 FIXHR(0.58293496820613387367/2) #define COS0_6 FIXHR(0.62250412303566481615/2) #define COS0_7 FIXHR(0.67480834145500574602/2) #define COS0_8 FIXHR(0.74453627100229844977/2) #define COS0_9 FIXHR(0.83934964541552703873/2) #define COS0_10 FIXHR(0.97256823786196069369/2) #define COS0_11 FIXHR(1.16943993343288495515/4) #define COS0_12 FIXHR(1.48416461631416627724/4) #define COS0_13 FIXHR(2.05778100995341155085/8) #define COS0_14 FIXHR(3.40760841846871878570/8) #define COS0_15 FIXHR(10.19000812354805681150/32) #define COS1_0 FIXHR(0.50241928618815570551/2) #define COS1_1 FIXHR(0.52249861493968888062/2) #define COS1_2 FIXHR(0.56694403481635770368/2) #define COS1_3 FIXHR(0.64682178335999012954/2) #define COS1_4 FIXHR(0.78815462345125022473/2) #define COS1_5 FIXHR(1.06067768599034747134/4) #define COS1_6 FIXHR(1.72244709823833392782/4) #define COS1_7 FIXHR(5.10114861868916385802/16) #define COS2_0 FIXHR(0.50979557910415916894/2) #define COS2_1 FIXHR(0.60134488693504528054/2) #define COS2_2 FIXHR(0.89997622313641570463/2) #define COS2_3 FIXHR(2.56291544774150617881/8) #define COS3_0 FIXHR(0.54119610014619698439/2) #define COS3_1 FIXHR(1.30656296487637652785/4) #define COS4_0 FIXHR(0.70710678118654752439/2) /* butterfly operator */ #define BF(a, b, c, s)\ {\ tmp0 = tab[a] + tab[b];\ tmp1 = tab[a] - tab[b];\ tab[a] = tmp0;\ tab[b] = MULH(tmp1<<(s), c);\ } #define BF1(a, b, c, d)\ {\ BF(a, b, COS4_0, 1);\ BF(c, d,-COS4_0, 1);\ tab[c] += tab[d];\ } #define BF2(a, b, c, d)\ {\ BF(a, b, COS4_0, 1);\ BF(c, d,-COS4_0, 1);\ tab[c] += tab[d];\ tab[a] += tab[c];\ tab[c] += tab[b];\ tab[b] += tab[d];\ } #define ADD(a, b) tab[a] += tab[b] /* DCT32 without 1/sqrt(2) coef zero scaling. */ static void dct32(int32_t *out, int32_t *tab) { int tmp0, tmp1; /* pass 1 */ BF( 0, 31, COS0_0 , 1); BF(15, 16, COS0_15, 5); /* pass 2 */ BF( 0, 15, COS1_0 , 1); BF(16, 31,-COS1_0 , 1); /* pass 1 */ BF( 7, 24, COS0_7 , 1); BF( 8, 23, COS0_8 , 1); /* pass 2 */ BF( 7, 8, COS1_7 , 4); BF(23, 24,-COS1_7 , 4); /* pass 3 */ BF( 0, 7, COS2_0 , 1); BF( 8, 15,-COS2_0 , 1); BF(16, 23, COS2_0 , 1); BF(24, 31,-COS2_0 , 1); /* pass 1 */ BF( 3, 28, COS0_3 , 1); BF(12, 19, COS0_12, 2); /* pass 2 */ BF( 3, 12, COS1_3 , 1); BF(19, 28,-COS1_3 , 1); /* pass 1 */ BF( 4, 27, COS0_4 , 1); BF(11, 20, COS0_11, 2); /* pass 2 */ BF( 4, 11, COS1_4 , 1); BF(20, 27,-COS1_4 , 1); /* pass 3 */ BF( 3, 4, COS2_3 , 3); BF(11, 12,-COS2_3 , 3); BF(19, 20, COS2_3 , 3); BF(27, 28,-COS2_3 , 3); /* pass 4 */ BF( 0, 3, COS3_0 , 1); BF( 4, 7,-COS3_0 , 1); BF( 8, 11, COS3_0 , 1); BF(12, 15,-COS3_0 , 1); BF(16, 19, COS3_0 , 1); BF(20, 23,-COS3_0 , 1); BF(24, 27, COS3_0 , 1); BF(28, 31,-COS3_0 , 1); /* pass 1 */ BF( 1, 30, COS0_1 , 1); BF(14, 17, COS0_14, 3); /* pass 2 */ BF( 1, 14, COS1_1 , 1); BF(17, 30,-COS1_1 , 1); /* pass 1 */ BF( 6, 25, COS0_6 , 1); BF( 9, 22, COS0_9 , 1); /* pass 2 */ BF( 6, 9, COS1_6 , 2); BF(22, 25,-COS1_6 , 2); /* pass 3 */ BF( 1, 6, COS2_1 , 1); BF( 9, 14,-COS2_1 , 1); BF(17, 22, COS2_1 , 1); BF(25, 30,-COS2_1 , 1); /* pass 1 */ BF( 2, 29, COS0_2 , 1); BF(13, 18, COS0_13, 3); /* pass 2 */ BF( 2, 13, COS1_2 , 1); BF(18, 29,-COS1_2 , 1); /* pass 1 */ BF( 5, 26, COS0_5 , 1); BF(10, 21, COS0_10, 1); /* pass 2 */ BF( 5, 10, COS1_5 , 2); BF(21, 26,-COS1_5 , 2); /* pass 3 */ BF( 2, 5, COS2_2 , 1); BF(10, 13,-COS2_2 , 1); BF(18, 21, COS2_2 , 1); BF(26, 29,-COS2_2 , 1); /* pass 4 */ BF( 1, 2, COS3_1 , 2); BF( 5, 6,-COS3_1 , 2); BF( 9, 10, COS3_1 , 2); BF(13, 14,-COS3_1 , 2); BF(17, 18, COS3_1 , 2); BF(21, 22,-COS3_1 , 2); BF(25, 26, COS3_1 , 2); BF(29, 30,-COS3_1 , 2); /* pass 5 */ BF1( 0, 1, 2, 3); BF2( 4, 5, 6, 7); BF1( 8, 9, 10, 11); BF2(12, 13, 14, 15); BF1(16, 17, 18, 19); BF2(20, 21, 22, 23); BF1(24, 25, 26, 27); BF2(28, 29, 30, 31); /* pass 6 */ ADD( 8, 12); ADD(12, 10); ADD(10, 14); ADD(14, 9); ADD( 9, 13); ADD(13, 11); ADD(11, 15); out[ 0] = tab[0]; out[16] = tab[1]; out[ 8] = tab[2]; out[24] = tab[3]; out[ 4] = tab[4]; out[20] = tab[5]; out[12] = tab[6]; out[28] = tab[7]; out[ 2] = tab[8]; out[18] = tab[9]; out[10] = tab[10]; out[26] = tab[11]; out[ 6] = tab[12]; out[22] = tab[13]; out[14] = tab[14]; out[30] = tab[15]; ADD(24, 28); ADD(28, 26); ADD(26, 30); ADD(30, 25); ADD(25, 29); ADD(29, 27); ADD(27, 31); out[ 1] = tab[16] + tab[24]; out[17] = tab[17] + tab[25]; out[ 9] = tab[18] + tab[26]; out[25] = tab[19] + tab[27]; out[ 5] = tab[20] + tab[28]; out[21] = tab[21] + tab[29]; out[13] = tab[22] + tab[30]; out[29] = tab[23] + tab[31]; out[ 3] = tab[24] + tab[20]; out[19] = tab[25] + tab[21]; out[11] = tab[26] + tab[22]; out[27] = tab[27] + tab[23]; out[ 7] = tab[28] + tab[18]; out[23] = tab[29] + tab[19]; out[15] = tab[30] + tab[17]; out[31] = tab[31]; } #if FRAC_BITS <= 15 static inline int round_sample(int *sum) { int sum1; sum1 = (*sum) >> OUT_SHIFT; *sum &= (1< OUT_MAX) sum1 = OUT_MAX; return sum1; } # if defined(ARCH_POWERPC_405) /* signed 16x16 -> 32 multiply add accumulate */ # define MACS(rt, ra, rb) \ asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb)); /* signed 16x16 -> 32 multiply */ # define MULS(ra, rb) \ ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; }) # else /* signed 16x16 -> 32 multiply add accumulate */ # define MACS(rt, ra, rb) rt += (ra) * (rb) /* signed 16x16 -> 32 multiply */ # define MULS(ra, rb) ((ra) * (rb)) # endif #else static inline int round_sample(int64_t *sum) { int sum1; sum1 = (int)((*sum) >> OUT_SHIFT); *sum &= (1< OUT_MAX) sum1 = OUT_MAX; return sum1; } # define MULS(ra, rb) MUL64(ra, rb) #endif #define SUM8(sum, op, w, p) \ { \ sum op MULS((w)[0 * 64], p[0 * 64]);\ sum op MULS((w)[1 * 64], p[1 * 64]);\ sum op MULS((w)[2 * 64], p[2 * 64]);\ sum op MULS((w)[3 * 64], p[3 * 64]);\ sum op MULS((w)[4 * 64], p[4 * 64]);\ sum op MULS((w)[5 * 64], p[5 * 64]);\ sum op MULS((w)[6 * 64], p[6 * 64]);\ sum op MULS((w)[7 * 64], p[7 * 64]);\ } #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ { \ int tmp;\ tmp = p[0 * 64];\ sum1 op1 MULS((w1)[0 * 64], tmp);\ sum2 op2 MULS((w2)[0 * 64], tmp);\ tmp = p[1 * 64];\ sum1 op1 MULS((w1)[1 * 64], tmp);\ sum2 op2 MULS((w2)[1 * 64], tmp);\ tmp = p[2 * 64];\ sum1 op1 MULS((w1)[2 * 64], tmp);\ sum2 op2 MULS((w2)[2 * 64], tmp);\ tmp = p[3 * 64];\ sum1 op1 MULS((w1)[3 * 64], tmp);\ sum2 op2 MULS((w2)[3 * 64], tmp);\ tmp = p[4 * 64];\ sum1 op1 MULS((w1)[4 * 64], tmp);\ sum2 op2 MULS((w2)[4 * 64], tmp);\ tmp = p[5 * 64];\ sum1 op1 MULS((w1)[5 * 64], tmp);\ sum2 op2 MULS((w2)[5 * 64], tmp);\ tmp = p[6 * 64];\ sum1 op1 MULS((w1)[6 * 64], tmp);\ sum2 op2 MULS((w2)[6 * 64], tmp);\ tmp = p[7 * 64];\ sum1 op1 MULS((w1)[7 * 64], tmp);\ sum2 op2 MULS((w2)[7 * 64], tmp);\ } void ff_mpa_synth_init(MPA_INT *window) { int i; /* max = 18760, max sum over all 16 coefs : 44736 */ for(i=0;i<257;i++) { int v; v = mpa_enwindow[i]; #if WFRAC_BITS < 16 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); #endif window[i] = v; if ((i & 63) != 0) v = -v; if (i != 0) window[512 - i] = v; } } /* 32 sub band synthesis filter. Input: 32 sub band samples, Output: 32 samples. */ /* XXX: optimize by avoiding ring buffer usage */ void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset, MPA_INT *window, int *dither_state, OUT_INT *samples, int incr, int32_t sb_samples[SBLIMIT]) { int32_t tmp[32]; register MPA_INT *synth_buf; register const MPA_INT *w, *w2, *p; int j, offset, v; OUT_INT *samples2; #if FRAC_BITS <= 15 int sum, sum2; #else int64_t sum, sum2; #endif dct32(tmp, sb_samples); offset = *synth_buf_offset; synth_buf = synth_buf_ptr + offset; for(j=0;j<32;j++) { v = tmp[j]; #if FRAC_BITS <= 15 /* NOTE: can cause a loss in precision if very high amplitude sound */ if (v > 32767) v = 32767; else if (v < -32768) v = -32768; #endif synth_buf[j] = v; } /* copy to avoid wrap */ memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT)); samples2 = samples + 31 * incr; w = window; w2 = window + 31; sum = *dither_state; p = synth_buf + 16; SUM8(sum, +=, w, p); p = synth_buf + 48; SUM8(sum, -=, w + 32, p); *samples = round_sample(&sum); samples += incr; w++; /* we calculate two samples at the same time to avoid one memory access per two sample */ for(j=1;j<16;j++) { sum2 = 0; p = synth_buf + 16 + j; SUM8P2(sum, +=, sum2, -=, w, w2, p); p = synth_buf + 48 - j; SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p); *samples = round_sample(&sum); samples += incr; sum += sum2; *samples2 = round_sample(&sum); samples2 -= incr; w++; w2--; } p = synth_buf + 32; SUM8(sum, -=, w + 32, p); *samples = round_sample(&sum); *dither_state= sum; offset = (offset - 32) & 511; *synth_buf_offset = offset; } #define C3 FIXHR(0.86602540378443864676/2) /* 0.5 / cos(pi*(2*i+1)/36) */ static const int icos36[9] = { FIXR(0.50190991877167369479), FIXR(0.51763809020504152469), //0 FIXR(0.55168895948124587824), FIXR(0.61038729438072803416), FIXR(0.70710678118654752439), //1 FIXR(0.87172339781054900991), FIXR(1.18310079157624925896), FIXR(1.93185165257813657349), //2 FIXR(5.73685662283492756461), }; /* 0.5 / cos(pi*(2*i+1)/36) */ static const int icos36h[9] = { FIXHR(0.50190991877167369479/2), FIXHR(0.51763809020504152469/2), //0 FIXHR(0.55168895948124587824/2), FIXHR(0.61038729438072803416/2), FIXHR(0.70710678118654752439/2), //1 FIXHR(0.87172339781054900991/2), FIXHR(1.18310079157624925896/4), FIXHR(1.93185165257813657349/4), //2 // FIXHR(5.73685662283492756461), }; /* 12 points IMDCT. We compute it "by hand" by factorizing obvious cases. */ static void imdct12(int *out, int *in) { int in0, in1, in2, in3, in4, in5, t1, t2; in0= in[0*3]; in1= in[1*3] + in[0*3]; in2= in[2*3] + in[1*3]; in3= in[3*3] + in[2*3]; in4= in[4*3] + in[3*3]; in5= in[5*3] + in[4*3]; in5 += in3; in3 += in1; in2= MULH(2*in2, C3); in3= MULH(4*in3, C3); t1 = in0 - in4; t2 = MULH(2*(in1 - in5), icos36h[4]); out[ 7]= out[10]= t1 + t2; out[ 1]= out[ 4]= t1 - t2; in0 += in4>>1; in4 = in0 + in2; in5 += 2*in1; in1 = MULH(in5 + in3, icos36h[1]); out[ 8]= out[ 9]= in4 + in1; out[ 2]= out[ 3]= in4 - in1; in0 -= in2; in5 = MULH(2*(in5 - in3), icos36h[7]); out[ 0]= out[ 5]= in0 - in5; out[ 6]= out[11]= in0 + in5; } /* cos(pi*i/18) */ #define C1 FIXHR(0.98480775301220805936/2) #define C2 FIXHR(0.93969262078590838405/2) #define C3 FIXHR(0.86602540378443864676/2) #define C4 FIXHR(0.76604444311897803520/2) #define C5 FIXHR(0.64278760968653932632/2) #define C6 FIXHR(0.5/2) #define C7 FIXHR(0.34202014332566873304/2) #define C8 FIXHR(0.17364817766693034885/2) /* using Lee like decomposition followed by hand coded 9 points DCT */ static void imdct36(int *out, int *buf, int *in, int *win) { int i, j, t0, t1, t2, t3, s0, s1, s2, s3; int tmp[18], *tmp1, *in1; for(i=17;i>=1;i--) in[i] += in[i-1]; for(i=17;i>=3;i-=2) in[i] += in[i-2]; for(j=0;j<2;j++) { tmp1 = tmp + j; in1 = in + j; #if 0 //more accurate but slower int64_t t0, t1, t2, t3; t2 = in1[2*4] + in1[2*8] - in1[2*2]; t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32; t1 = in1[2*0] - in1[2*6]; tmp1[ 6] = t1 - (t2>>1); tmp1[16] = t1 + t2; t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2); t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8); t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4); tmp1[10] = (t3 - t0 - t2) >> 32; tmp1[ 2] = (t3 + t0 + t1) >> 32; tmp1[14] = (t3 + t2 - t1) >> 32; tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3); t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1); t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7); t0 = MUL64(2*in1[2*3], C3); t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5); tmp1[ 0] = (t2 + t3 + t0) >> 32; tmp1[12] = (t2 + t1 - t0) >> 32; tmp1[ 8] = (t3 - t1 - t0) >> 32; #else t2 = in1[2*4] + in1[2*8] - in1[2*2]; t3 = in1[2*0] + (in1[2*6]>>1); t1 = in1[2*0] - in1[2*6]; tmp1[ 6] = t1 - (t2>>1); tmp1[16] = t1 + t2; t0 = MULH(2*(in1[2*2] + in1[2*4]), C2); t1 = MULH( in1[2*4] - in1[2*8] , -2*C8); t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4); tmp1[10] = t3 - t0 - t2; tmp1[ 2] = t3 + t0 + t1; tmp1[14] = t3 + t2 - t1; tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3); t2 = MULH(2*(in1[2*1] + in1[2*5]), C1); t3 = MULH( in1[2*5] - in1[2*7] , -2*C7); t0 = MULH(2*in1[2*3], C3); t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5); tmp1[ 0] = t2 + t3 + t0; tmp1[12] = t2 + t1 - t0; tmp1[ 8] = t3 - t1 - t0; #endif } i = 0; for(j=0;j<4;j++) { t0 = tmp[i]; t1 = tmp[i + 2]; s0 = t1 + t0; s2 = t1 - t0; t2 = tmp[i + 1]; t3 = tmp[i + 3]; s1 = MULH(2*(t3 + t2), icos36h[j]); s3 = MULL(t3 - t2, icos36[8 - j]); t0 = s0 + s1; t1 = s0 - s1; out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j]; out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j]; buf[9 + j] = MULH(t0, win[18 + 9 + j]); buf[8 - j] = MULH(t0, win[18 + 8 - j]); t0 = s2 + s3; t1 = s2 - s3; out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j]; out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j]; buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]); buf[ + j] = MULH(t0, win[18 + j]); i += 4; } s0 = tmp[16]; s1 = MULH(2*tmp[17], icos36h[4]); t0 = s0 + s1; t1 = s0 - s1; out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4]; out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4]; buf[9 + 4] = MULH(t0, win[18 + 9 + 4]); buf[8 - 4] = MULH(t0, win[18 + 8 - 4]); } /* header decoding. MUST check the header before because no consistency check is done there. Return 1 if free format found and that the frame size must be computed externally */ static int decode_header(MPADecodeContext *s, uint32_t header) { int sample_rate, frame_size, mpeg25, padding; int sample_rate_index, bitrate_index; if (header & (1<<20)) { s->lsf = (header & (1<<19)) ? 0 : 1; mpeg25 = 0; } else { s->lsf = 1; mpeg25 = 1; } s->layer = 4 - ((header >> 17) & 3); /* extract frequency */ sample_rate_index = (header >> 10) & 3; sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); sample_rate_index += 3 * (s->lsf + mpeg25); s->sample_rate_index = sample_rate_index; s->error_protection = ((header >> 16) & 1) ^ 1; s->sample_rate = sample_rate; bitrate_index = (header >> 12) & 0xf; padding = (header >> 9) & 1; //extension = (header >> 8) & 1; s->mode = (header >> 6) & 3; s->mode_ext = (header >> 4) & 3; //copyright = (header >> 3) & 1; //original = (header >> 2) & 1; //emphasis = header & 3; if (s->mode == MPA_MONO) s->nb_channels = 1; else s->nb_channels = 2; if (bitrate_index != 0) { frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; s->bit_rate = frame_size * 1000; switch(s->layer) { case 1: frame_size = (frame_size * 12000) / sample_rate; frame_size = (frame_size + padding) * 4; break; case 2: frame_size = (frame_size * 144000) / sample_rate; frame_size += padding; break; default: case 3: frame_size = (frame_size * 144000) / (sample_rate << s->lsf); frame_size += padding; break; } s->frame_size = frame_size; } else { /* if no frame size computed, signal it */ if (!s->free_format_frame_size) return 1; /* free format: compute bitrate and real frame size from the frame size we extracted by reading the bitstream */ s->frame_size = s->free_format_frame_size; switch(s->layer) { case 1: s->frame_size += padding * 4; s->bit_rate = (s->frame_size * sample_rate) / 48000; break; case 2: s->frame_size += padding; s->bit_rate = (s->frame_size * sample_rate) / 144000; break; default: case 3: s->frame_size += padding; s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; break; } } #if defined(DEBUG) dprintf("layer%d, %d Hz, %d kbits/s, ", s->layer, s->sample_rate, s->bit_rate); if (s->nb_channels == 2) { if (s->layer == 3) { if (s->mode_ext & MODE_EXT_MS_STEREO) dprintf("ms-"); if (s->mode_ext & MODE_EXT_I_STEREO) dprintf("i-"); } dprintf("stereo"); } else { dprintf("mono"); } dprintf("\n"); #endif return 0; } /* useful helper to get mpeg audio stream infos. Return -1 if error in header, otherwise the coded frame size in bytes */ int mpa_decode_header(AVCodecContext *avctx, uint32_t head) { MPADecodeContext s1, *s = &s1; if (ff_mpa_check_header(head) != 0) return -1; if (decode_header(s, head) != 0) { return -1; } switch(s->layer) { case 1: avctx->frame_size = 384; break; case 2: avctx->frame_size = 1152; break; default: case 3: if (s->lsf) avctx->frame_size = 576; else avctx->frame_size = 1152; break; } avctx->sample_rate = s->sample_rate; avctx->channels = s->nb_channels; avctx->bit_rate = s->bit_rate; avctx->sub_id = s->layer; return s->frame_size; } /* return the number of decoded frames */ static int mp_decode_layer1(MPADecodeContext *s) { int bound, i, v, n, ch, j, mant; uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; if (s->mode == MPA_JSTEREO) bound = (s->mode_ext + 1) * 4; else bound = SBLIMIT; /* allocation bits */ for(i=0;inb_channels;ch++) { allocation[ch][i] = get_bits(&s->gb, 4); } } for(i=bound;igb, 4); } /* scale factors */ for(i=0;inb_channels;ch++) { if (allocation[ch][i]) scale_factors[ch][i] = get_bits(&s->gb, 6); } } for(i=bound;igb, 6); scale_factors[1][i] = get_bits(&s->gb, 6); } } /* compute samples */ for(j=0;j<12;j++) { for(i=0;inb_channels;ch++) { n = allocation[ch][i]; if (n) { mant = get_bits(&s->gb, n + 1); v = l1_unscale(n, mant, scale_factors[ch][i]); } else { v = 0; } s->sb_samples[ch][j][i] = v; } } for(i=bound;igb, n + 1); v = l1_unscale(n, mant, scale_factors[0][i]); s->sb_samples[0][j][i] = v; v = l1_unscale(n, mant, scale_factors[1][i]); s->sb_samples[1][j][i] = v; } else { s->sb_samples[0][j][i] = 0; s->sb_samples[1][j][i] = 0; } } } return 12; } /* bitrate is in kb/s */ int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) { int ch_bitrate, table; ch_bitrate = bitrate / nb_channels; if (!lsf) { if ((freq == 48000 && ch_bitrate >= 56) || (ch_bitrate >= 56 && ch_bitrate <= 80)) table = 0; else if (freq != 48000 && ch_bitrate >= 96) table = 1; else if (freq != 32000 && ch_bitrate <= 48) table = 2; else table = 3; } else { table = 4; } return table; } static int mp_decode_layer2(MPADecodeContext *s) { int sblimit; /* number of used subbands */ const unsigned char *alloc_table; int table, bit_alloc_bits, i, j, ch, bound, v; unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; int scale, qindex, bits, steps, k, l, m, b; /* select decoding table */ table = l2_select_table(s->bit_rate / 1000, s->nb_channels, s->sample_rate, s->lsf); sblimit = sblimit_table[table]; alloc_table = alloc_tables[table]; if (s->mode == MPA_JSTEREO) bound = (s->mode_ext + 1) * 4; else bound = sblimit; dprintf("bound=%d sblimit=%d\n", bound, sblimit); /* sanity check */ if( bound > sblimit ) bound = sblimit; /* parse bit allocation */ j = 0; for(i=0;inb_channels;ch++) { bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); } j += 1 << bit_alloc_bits; } for(i=bound;igb, bit_alloc_bits); bit_alloc[0][i] = v; bit_alloc[1][i] = v; j += 1 << bit_alloc_bits; } #ifdef DEBUG { for(ch=0;chnb_channels;ch++) { for(i=0;inb_channels;ch++) { if (bit_alloc[ch][i]) scale_code[ch][i] = get_bits(&s->gb, 2); } } /* scale factors */ for(i=0;inb_channels;ch++) { if (bit_alloc[ch][i]) { sf = scale_factors[ch][i]; switch(scale_code[ch][i]) { default: case 0: sf[0] = get_bits(&s->gb, 6); sf[1] = get_bits(&s->gb, 6); sf[2] = get_bits(&s->gb, 6); break; case 2: sf[0] = get_bits(&s->gb, 6); sf[1] = sf[0]; sf[2] = sf[0]; break; case 1: sf[0] = get_bits(&s->gb, 6); sf[2] = get_bits(&s->gb, 6); sf[1] = sf[0]; break; case 3: sf[0] = get_bits(&s->gb, 6); sf[2] = get_bits(&s->gb, 6); sf[1] = sf[2]; break; } } } } #ifdef DEBUG for(ch=0;chnb_channels;ch++) { for(i=0;inb_channels;ch++) { b = bit_alloc[ch][i]; if (b) { scale = scale_factors[ch][i][k]; qindex = alloc_table[j+b]; bits = quant_bits[qindex]; if (bits < 0) { /* 3 values at the same time */ v = get_bits(&s->gb, -bits); steps = quant_steps[qindex]; s->sb_samples[ch][k * 12 + l + 0][i] = l2_unscale_group(steps, v % steps, scale); v = v / steps; s->sb_samples[ch][k * 12 + l + 1][i] = l2_unscale_group(steps, v % steps, scale); v = v / steps; s->sb_samples[ch][k * 12 + l + 2][i] = l2_unscale_group(steps, v, scale); } else { for(m=0;m<3;m++) { v = get_bits(&s->gb, bits); v = l1_unscale(bits - 1, v, scale); s->sb_samples[ch][k * 12 + l + m][i] = v; } } } else { s->sb_samples[ch][k * 12 + l + 0][i] = 0; s->sb_samples[ch][k * 12 + l + 1][i] = 0; s->sb_samples[ch][k * 12 + l + 2][i] = 0; } } /* next subband in alloc table */ j += 1 << bit_alloc_bits; } /* XXX: find a way to avoid this duplication of code */ for(i=bound;igb, -bits); steps = quant_steps[qindex]; mant = v % steps; v = v / steps; s->sb_samples[0][k * 12 + l + 0][i] = l2_unscale_group(steps, mant, scale0); s->sb_samples[1][k * 12 + l + 0][i] = l2_unscale_group(steps, mant, scale1); mant = v % steps; v = v / steps; s->sb_samples[0][k * 12 + l + 1][i] = l2_unscale_group(steps, mant, scale0); s->sb_samples[1][k * 12 + l + 1][i] = l2_unscale_group(steps, mant, scale1); s->sb_samples[0][k * 12 + l + 2][i] = l2_unscale_group(steps, v, scale0); s->sb_samples[1][k * 12 + l + 2][i] = l2_unscale_group(steps, v, scale1); } else { for(m=0;m<3;m++) { mant = get_bits(&s->gb, bits); s->sb_samples[0][k * 12 + l + m][i] = l1_unscale(bits - 1, mant, scale0); s->sb_samples[1][k * 12 + l + m][i] = l1_unscale(bits - 1, mant, scale1); } } } else { s->sb_samples[0][k * 12 + l + 0][i] = 0; s->sb_samples[0][k * 12 + l + 1][i] = 0; s->sb_samples[0][k * 12 + l + 2][i] = 0; s->sb_samples[1][k * 12 + l + 0][i] = 0; s->sb_samples[1][k * 12 + l + 1][i] = 0; s->sb_samples[1][k * 12 + l + 2][i] = 0; } /* next subband in alloc table */ j += 1 << bit_alloc_bits; } /* fill remaining samples to zero */ for(i=sblimit;inb_channels;ch++) { s->sb_samples[ch][k * 12 + l + 0][i] = 0; s->sb_samples[ch][k * 12 + l + 1][i] = 0; s->sb_samples[ch][k * 12 + l + 2][i] = 0; } } } } return 3 * 12; } static inline void lsf_sf_expand(int *slen, int sf, int n1, int n2, int n3) { if (n3) { slen[3] = sf % n3; sf /= n3; } else { slen[3] = 0; } if (n2) { slen[2] = sf % n2; sf /= n2; } else { slen[2] = 0; } slen[1] = sf % n1; sf /= n1; slen[0] = sf; } static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g, int16_t *exponents) { const uint8_t *bstab, *pretab; int len, i, j, k, l, v0, shift, gain, gains[3]; int16_t *exp_ptr; exp_ptr = exponents; gain = g->global_gain - 210; shift = g->scalefac_scale + 1; bstab = band_size_long[s->sample_rate_index]; pretab = mpa_pretab[g->preflag]; for(i=0;ilong_end;i++) { v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400; len = bstab[i]; for(j=len;j>0;j--) *exp_ptr++ = v0; } if (g->short_start < 13) { bstab = band_size_short[s->sample_rate_index]; gains[0] = gain - (g->subblock_gain[0] << 3); gains[1] = gain - (g->subblock_gain[1] << 3); gains[2] = gain - (g->subblock_gain[2] << 3); k = g->long_end; for(i=g->short_start;i<13;i++) { len = bstab[i]; for(l=0;l<3;l++) { v0 = gains[l] - (g->scale_factors[k++] << shift) + 400; for(j=len;j>0;j--) *exp_ptr++ = v0; } } } } /* handle n = 0 too */ static inline int get_bitsz(GetBitContext *s, int n) { if (n == 0) return 0; else return get_bits(s, n); } static int huffman_decode(MPADecodeContext *s, GranuleDef *g, int16_t *exponents, int end_pos2) { int s_index; int i; int last_pos, bits_left; VLC *vlc; int end_pos= FFMIN(end_pos2, s->gb.size_in_bits); /* low frequencies (called big values) */ s_index = 0; for(i=0;i<3;i++) { int j, k, l, linbits; j = g->region_size[i]; if (j == 0) continue; /* select vlc table */ k = g->table_select[i]; l = mpa_huff_data[k][0]; linbits = mpa_huff_data[k][1]; vlc = &huff_vlc[l]; if(!l){ memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j); s_index += 2*j; continue; } /* read huffcode and compute each couple */ for(;j>0;j--) { int exponent, x, y, v; int pos= get_bits_count(&s->gb); if (pos >= end_pos){ // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index); if(s->in_gb.buffer && pos >= s->gb.size_in_bits){ s->gb= s->in_gb; s->in_gb.buffer=NULL; assert((get_bits_count(&s->gb) & 7) == 0); skip_bits_long(&s->gb, pos - end_pos); end_pos2= end_pos= end_pos2 + get_bits_count(&s->gb) - pos; pos= get_bits_count(&s->gb); } // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos); if(pos >= end_pos) break; } y = get_vlc2(&s->gb, vlc->table, 7, 3); if(!y){ g->sb_hybrid[s_index ] = g->sb_hybrid[s_index+1] = 0; s_index += 2; continue; } exponent= exponents[s_index]; dprintf("region=%d n=%d x=%d y=%d exp=%d\n", i, g->region_size[i] - j, x, y, exponent); if(y&16){ x = y >> 5; y = y & 0x0f; if (x < 15){ v = expval_table[ exponent ][ x ]; // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31); }else{ x += get_bitsz(&s->gb, linbits); v = l3_unscale(x, exponent); } if (get_bits1(&s->gb)) v = -v; g->sb_hybrid[s_index] = v; if (y < 15){ v = expval_table[ exponent ][ y ]; }else{ y += get_bitsz(&s->gb, linbits); v = l3_unscale(y, exponent); } if (get_bits1(&s->gb)) v = -v; g->sb_hybrid[s_index+1] = v; }else{ x = y >> 5; y = y & 0x0f; x += y; if (x < 15){ v = expval_table[ exponent ][ x ]; }else{ x += get_bitsz(&s->gb, linbits); v = l3_unscale(x, exponent); } if (get_bits1(&s->gb)) v = -v; g->sb_hybrid[s_index+!!y] = v; g->sb_hybrid[s_index+ !y] = 0; } s_index+=2; } } /* high frequencies */ vlc = &huff_quad_vlc[g->count1table_select]; last_pos=0; while (s_index <= 572) { int pos, code; pos = get_bits_count(&s->gb); if (pos >= end_pos) { if (pos > end_pos2 && last_pos){ /* some encoders generate an incorrect size for this part. We must go back into the data */ s_index -= 4; skip_bits_long(&s->gb, last_pos - pos); av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos); break; } // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index); if(s->in_gb.buffer && pos >= s->gb.size_in_bits){ s->gb= s->in_gb; s->in_gb.buffer=NULL; assert((get_bits_count(&s->gb) & 7) == 0); skip_bits_long(&s->gb, pos - end_pos); end_pos2= end_pos= end_pos2 + get_bits_count(&s->gb) - pos; pos= get_bits_count(&s->gb); } // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index); if(pos >= end_pos) break; } last_pos= pos; code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1); dprintf("t=%d code=%d\n", g->count1table_select, code); g->sb_hybrid[s_index+0]= g->sb_hybrid[s_index+1]= g->sb_hybrid[s_index+2]= g->sb_hybrid[s_index+3]= 0; while(code){ const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; int v; int pos= s_index+idxtab[code]; code ^= 8>>idxtab[code]; v = exp_table[ exponents[pos] ]; // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31); if(get_bits1(&s->gb)) v = -v; g->sb_hybrid[pos] = v; } s_index+=4; } memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index)); /* skip extension bits */ bits_left = end_pos - get_bits_count(&s->gb); //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer); if (bits_left < 0) { dprintf("bits_left=%d\n", bits_left); return -1; } skip_bits_long(&s->gb, bits_left); return 0; } /* Reorder short blocks from bitstream order to interleaved order. It would be faster to do it in parsing, but the code would be far more complicated */ static void reorder_block(MPADecodeContext *s, GranuleDef *g) { int i, j, len; int32_t *ptr, *dst, *ptr1; int32_t tmp[576]; if (g->block_type != 2) return; if (g->switch_point) { if (s->sample_rate_index != 8) { ptr = g->sb_hybrid + 36; } else { ptr = g->sb_hybrid + 48; } } else { ptr = g->sb_hybrid; } for(i=g->short_start;i<13;i++) { len = band_size_short[s->sample_rate_index][i]; ptr1 = ptr; dst = tmp; for(j=len;j>0;j--) { *dst++ = ptr[0*len]; *dst++ = ptr[1*len]; *dst++ = ptr[2*len]; ptr++; } ptr+=2*len; memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); } } #define ISQRT2 FIXR(0.70710678118654752440) static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1) { int i, j, k, l; int32_t v1, v2; int sf_max, tmp0, tmp1, sf, len, non_zero_found; int32_t (*is_tab)[16]; int32_t *tab0, *tab1; int non_zero_found_short[3]; /* intensity stereo */ if (s->mode_ext & MODE_EXT_I_STEREO) { if (!s->lsf) { is_tab = is_table; sf_max = 7; } else { is_tab = is_table_lsf[g1->scalefac_compress & 1]; sf_max = 16; } tab0 = g0->sb_hybrid + 576; tab1 = g1->sb_hybrid + 576; non_zero_found_short[0] = 0; non_zero_found_short[1] = 0; non_zero_found_short[2] = 0; k = (13 - g1->short_start) * 3 + g1->long_end - 3; for(i = 12;i >= g1->short_start;i--) { /* for last band, use previous scale factor */ if (i != 11) k -= 3; len = band_size_short[s->sample_rate_index][i]; for(l=2;l>=0;l--) { tab0 -= len; tab1 -= len; if (!non_zero_found_short[l]) { /* test if non zero band. if so, stop doing i-stereo */ for(j=0;jscale_factors[k + l]; if (sf >= sf_max) goto found1; v1 = is_tab[0][sf]; v2 = is_tab[1][sf]; for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { /* lower part of the spectrum : do ms stereo if enabled */ for(j=0;jlong_end - 1;i >= 0;i--) { len = band_size_long[s->sample_rate_index][i]; tab0 -= len; tab1 -= len; /* test if non zero band. if so, stop doing i-stereo */ if (!non_zero_found) { for(j=0;jscale_factors[k]; if (sf >= sf_max) goto found2; v1 = is_tab[0][sf]; v2 = is_tab[1][sf]; for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { /* lower part of the spectrum : do ms stereo if enabled */ for(j=0;jmode_ext & MODE_EXT_MS_STEREO) { /* ms stereo ONLY */ /* NOTE: the 1/sqrt(2) normalization factor is included in the global gain */ tab0 = g0->sb_hybrid; tab1 = g1->sb_hybrid; for(i=0;i<576;i++) { tmp0 = tab0[i]; tmp1 = tab1[i]; tab0[i] = tmp0 + tmp1; tab1[i] = tmp0 - tmp1; } } } static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g) { int32_t *ptr, *csa; int n, i; /* we antialias only "long" bands */ if (g->block_type == 2) { if (!g->switch_point) return; /* XXX: check this for 8000Hz case */ n = 1; } else { n = SBLIMIT - 1; } ptr = g->sb_hybrid + 18; for(i = n;i > 0;i--) { int tmp0, tmp1, tmp2; csa = &csa_table[0][0]; #define INT_AA(j) \ tmp0 = ptr[-1-j];\ tmp1 = ptr[ j];\ tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\ ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); INT_AA(0) INT_AA(1) INT_AA(2) INT_AA(3) INT_AA(4) INT_AA(5) INT_AA(6) INT_AA(7) ptr += 18; } } static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g) { int32_t *ptr; int n, i; /* we antialias only "long" bands */ if (g->block_type == 2) { if (!g->switch_point) return; /* XXX: check this for 8000Hz case */ n = 1; } else { n = SBLIMIT - 1; } ptr = g->sb_hybrid + 18; for(i = n;i > 0;i--) { float tmp0, tmp1; float *csa = &csa_table_float[0][0]; #define FLOAT_AA(j)\ tmp0= ptr[-1-j];\ tmp1= ptr[ j];\ ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\ ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]); FLOAT_AA(0) FLOAT_AA(1) FLOAT_AA(2) FLOAT_AA(3) FLOAT_AA(4) FLOAT_AA(5) FLOAT_AA(6) FLOAT_AA(7) ptr += 18; } } static void compute_imdct(MPADecodeContext *s, GranuleDef *g, int32_t *sb_samples, int32_t *mdct_buf) { int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1; int32_t out2[12]; int i, j, mdct_long_end, v, sblimit; /* find last non zero block */ ptr = g->sb_hybrid + 576; ptr1 = g->sb_hybrid + 2 * 18; while (ptr >= ptr1) { ptr -= 6; v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5]; if (v != 0) break; } sblimit = ((ptr - g->sb_hybrid) / 18) + 1; if (g->block_type == 2) { /* XXX: check for 8000 Hz */ if (g->switch_point) mdct_long_end = 2; else mdct_long_end = 0; } else { mdct_long_end = sblimit; } buf = mdct_buf; ptr = g->sb_hybrid; for(j=0;jswitch_point && j < 2) win1 = mdct_win[0]; else win1 = mdct_win[g->block_type]; /* select frequency inversion */ win = win1 + ((4 * 36) & -(j & 1)); imdct36(out_ptr, buf, ptr, win); out_ptr += 18*SBLIMIT; ptr += 18; buf += 18; } for(j=mdct_long_end;jlsf) { main_data_begin = get_bits(&s->gb, 8); private_bits = get_bits(&s->gb, s->nb_channels); nb_granules = 1; } else { main_data_begin = get_bits(&s->gb, 9); if (s->nb_channels == 2) private_bits = get_bits(&s->gb, 3); else private_bits = get_bits(&s->gb, 5); nb_granules = 2; for(ch=0;chnb_channels;ch++) { granules[ch][0].scfsi = 0; /* all scale factors are transmitted */ granules[ch][1].scfsi = get_bits(&s->gb, 4); } } for(gr=0;grnb_channels;ch++) { dprintf("gr=%d ch=%d: side_info\n", gr, ch); g = &granules[ch][gr]; g->part2_3_length = get_bits(&s->gb, 12); g->big_values = get_bits(&s->gb, 9); g->global_gain = get_bits(&s->gb, 8); /* if MS stereo only is selected, we precompute the 1/sqrt(2) renormalization factor */ if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == MODE_EXT_MS_STEREO) g->global_gain -= 2; if (s->lsf) g->scalefac_compress = get_bits(&s->gb, 9); else g->scalefac_compress = get_bits(&s->gb, 4); blocksplit_flag = get_bits(&s->gb, 1); if (blocksplit_flag) { g->block_type = get_bits(&s->gb, 2); if (g->block_type == 0) return -1; g->switch_point = get_bits(&s->gb, 1); for(i=0;i<2;i++) g->table_select[i] = get_bits(&s->gb, 5); for(i=0;i<3;i++) g->subblock_gain[i] = get_bits(&s->gb, 3); /* compute huffman coded region sizes */ if (g->block_type == 2) g->region_size[0] = (36 / 2); else { if (s->sample_rate_index <= 2) g->region_size[0] = (36 / 2); else if (s->sample_rate_index != 8) g->region_size[0] = (54 / 2); else g->region_size[0] = (108 / 2); } g->region_size[1] = (576 / 2); } else { int region_address1, region_address2, l; g->block_type = 0; g->switch_point = 0; for(i=0;i<3;i++) g->table_select[i] = get_bits(&s->gb, 5); /* compute huffman coded region sizes */ region_address1 = get_bits(&s->gb, 4); region_address2 = get_bits(&s->gb, 3); dprintf("region1=%d region2=%d\n", region_address1, region_address2); g->region_size[0] = band_index_long[s->sample_rate_index][region_address1 + 1] >> 1; l = region_address1 + region_address2 + 2; /* should not overflow */ if (l > 22) l = 22; g->region_size[1] = band_index_long[s->sample_rate_index][l] >> 1; } /* convert region offsets to region sizes and truncate size to big_values */ g->region_size[2] = (576 / 2); j = 0; for(i=0;i<3;i++) { k = FFMIN(g->region_size[i], g->big_values); g->region_size[i] = k - j; j = k; } /* compute band indexes */ if (g->block_type == 2) { if (g->switch_point) { /* if switched mode, we handle the 36 first samples as long blocks. For 8000Hz, we handle the 48 first exponents as long blocks (XXX: check this!) */ if (s->sample_rate_index <= 2) g->long_end = 8; else if (s->sample_rate_index != 8) g->long_end = 6; else g->long_end = 4; /* 8000 Hz */ g->short_start = 2 + (s->sample_rate_index != 8); } else { g->long_end = 0; g->short_start = 0; } } else { g->short_start = 13; g->long_end = 22; } g->preflag = 0; if (!s->lsf) g->preflag = get_bits(&s->gb, 1); g->scalefac_scale = get_bits(&s->gb, 1); g->count1table_select = get_bits(&s->gb, 1); dprintf("block_type=%d switch_point=%d\n", g->block_type, g->switch_point); } } if (!s->adu_mode) { const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3); assert((get_bits_count(&s->gb) & 7) == 0); /* now we get bits from the main_data_begin offset */ dprintf("seekback: %d\n", main_data_begin); //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size); if(main_data_begin > s->last_buf_size){ av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size); s->last_buf_size= main_data_begin; } memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES); s->in_gb= s->gb; init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8); } for(gr=0;grnb_channels;ch++) { g = &granules[ch][gr]; bits_pos = get_bits_count(&s->gb); if (!s->lsf) { uint8_t *sc; int slen, slen1, slen2; /* MPEG1 scale factors */ slen1 = slen_table[0][g->scalefac_compress]; slen2 = slen_table[1][g->scalefac_compress]; dprintf("slen1=%d slen2=%d\n", slen1, slen2); if (g->block_type == 2) { n = g->switch_point ? 17 : 18; j = 0; if(slen1){ for(i=0;iscale_factors[j++] = get_bits(&s->gb, slen1); }else{ for(i=0;iscale_factors[j++] = 0; } if(slen2){ for(i=0;i<18;i++) g->scale_factors[j++] = get_bits(&s->gb, slen2); for(i=0;i<3;i++) g->scale_factors[j++] = 0; }else{ for(i=0;i<21;i++) g->scale_factors[j++] = 0; } } else { sc = granules[ch][0].scale_factors; j = 0; for(k=0;k<4;k++) { n = (k == 0 ? 6 : 5); if ((g->scfsi & (0x8 >> k)) == 0) { slen = (k < 2) ? slen1 : slen2; if(slen){ for(i=0;iscale_factors[j++] = get_bits(&s->gb, slen); }else{ for(i=0;iscale_factors[j++] = 0; } } else { /* simply copy from last granule */ for(i=0;iscale_factors[j] = sc[j]; j++; } } } g->scale_factors[j++] = 0; } #if defined(DEBUG) { dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n", g->scfsi, gr, ch); for(i=0;iscale_factors[i]); dprintf("\n"); } #endif } else { int tindex, tindex2, slen[4], sl, sf; /* LSF scale factors */ if (g->block_type == 2) { tindex = g->switch_point ? 2 : 1; } else { tindex = 0; } sf = g->scalefac_compress; if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { /* intensity stereo case */ sf >>= 1; if (sf < 180) { lsf_sf_expand(slen, sf, 6, 6, 0); tindex2 = 3; } else if (sf < 244) { lsf_sf_expand(slen, sf - 180, 4, 4, 0); tindex2 = 4; } else { lsf_sf_expand(slen, sf - 244, 3, 0, 0); tindex2 = 5; } } else { /* normal case */ if (sf < 400) { lsf_sf_expand(slen, sf, 5, 4, 4); tindex2 = 0; } else if (sf < 500) { lsf_sf_expand(slen, sf - 400, 5, 4, 0); tindex2 = 1; } else { lsf_sf_expand(slen, sf - 500, 3, 0, 0); tindex2 = 2; g->preflag = 1; } } j = 0; for(k=0;k<4;k++) { n = lsf_nsf_table[tindex2][tindex][k]; sl = slen[k]; if(sl){ for(i=0;iscale_factors[j++] = get_bits(&s->gb, sl); }else{ for(i=0;iscale_factors[j++] = 0; } } /* XXX: should compute exact size */ for(;j<40;j++) g->scale_factors[j] = 0; #if defined(DEBUG) { dprintf("gr=%d ch=%d scale_factors:\n", gr, ch); for(i=0;i<40;i++) dprintf(" %d", g->scale_factors[i]); dprintf("\n"); } #endif } exponents_from_scale_factors(s, g, exponents); /* read Huffman coded residue */ if (huffman_decode(s, g, exponents, bits_pos + g->part2_3_length) < 0) return -1; #if defined(DEBUG) sample_dump(0, g->sb_hybrid, 576); #endif } /* ch */ if (s->nb_channels == 2) compute_stereo(s, &granules[0][gr], &granules[1][gr]); for(ch=0;chnb_channels;ch++) { g = &granules[ch][gr]; reorder_block(s, g); #if defined(DEBUG) sample_dump(0, g->sb_hybrid, 576); #endif s->compute_antialias(s, g); #if defined(DEBUG) sample_dump(1, g->sb_hybrid, 576); #endif compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); #if defined(DEBUG) sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576); #endif } } /* gr */ return nb_granules * 18; } static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples, const uint8_t *buf, int buf_size) { int i, nb_frames, ch; OUT_INT *samples_ptr; init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8); /* skip error protection field */ if (s->error_protection) get_bits(&s->gb, 16); dprintf("frame %d:\n", s->frame_count); switch(s->layer) { case 1: nb_frames = mp_decode_layer1(s); break; case 2: nb_frames = mp_decode_layer2(s); break; case 3: default: nb_frames = mp_decode_layer3(s); s->last_buf_size=0; if(s->in_gb.buffer){ align_get_bits(&s->gb); i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3; if(i >= 0 && i <= BACKSTEP_SIZE){ memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i); s->last_buf_size=i; }else av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i); s->gb= s->in_gb; } align_get_bits(&s->gb); assert((get_bits_count(&s->gb) & 7) == 0); i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3; if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){ av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i); i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE); } assert(i <= buf_size - HEADER_SIZE && i>= 0); memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i); s->last_buf_size += i; break; } #if defined(DEBUG) for(i=0;inb_channels;ch++) { int j; dprintf("%d-%d:", i, ch); for(j=0;jsb_samples[ch][i][j] / FRAC_ONE); dprintf("\n"); } } #endif /* apply the synthesis filter */ for(ch=0;chnb_channels;ch++) { samples_ptr = samples + ch; for(i=0;isynth_buf[ch], &(s->synth_buf_offset[ch]), window, &s->dither_state, samples_ptr, s->nb_channels, s->sb_samples[ch][i]); samples_ptr += 32 * s->nb_channels; } } #ifdef DEBUG s->frame_count++; #endif return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels; } static int decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { MPADecodeContext *s = avctx->priv_data; uint32_t header; int out_size; OUT_INT *out_samples = data; retry: if(buf_size < HEADER_SIZE) return -1; header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; if(ff_mpa_check_header(header) < 0){ buf++; // buf_size--; av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n"); goto retry; } if (decode_header(s, header) == 1) { /* free format: prepare to compute frame size */ s->frame_size = -1; return -1; } /* update codec info */ avctx->sample_rate = s->sample_rate; avctx->channels = s->nb_channels; avctx->bit_rate = s->bit_rate; avctx->sub_id = s->layer; switch(s->layer) { case 1: avctx->frame_size = 384; break; case 2: avctx->frame_size = 1152; break; case 3: if (s->lsf) avctx->frame_size = 576; else avctx->frame_size = 1152; break; } if(s->frame_size<=0 || s->frame_size < buf_size){ av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); return -1; } out_size = mp_decode_frame(s, out_samples, buf, buf_size); if(out_size>=0) *data_size = out_size; else av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed s->frame_size = 0; return buf_size; } static int decode_frame_adu(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { MPADecodeContext *s = avctx->priv_data; uint32_t header; int len, out_size; OUT_INT *out_samples = data; len = buf_size; // Discard too short frames if (buf_size < HEADER_SIZE) { *data_size = 0; return buf_size; } if (len > MPA_MAX_CODED_FRAME_SIZE) len = MPA_MAX_CODED_FRAME_SIZE; // Get header and restore sync word header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000; if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame *data_size = 0; return buf_size; } decode_header(s, header); /* update codec info */ avctx->sample_rate = s->sample_rate; avctx->channels = s->nb_channels; avctx->bit_rate = s->bit_rate; avctx->sub_id = s->layer; avctx->frame_size=s->frame_size = len; if (avctx->parse_only) { out_size = buf_size; } else { out_size = mp_decode_frame(s, out_samples, buf, buf_size); } *data_size = out_size; return buf_size; } /* Next 3 arrays are indexed by channel config number (passed via codecdata) */ static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */ static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */ /* offsets into output buffer, assume output order is FL FR BL BR C LFE */ static int chan_offset[9][5] = { {0}, {0}, // C {0}, // FLR {2,0}, // C FLR {2,0,3}, // C FLR BS {4,0,2}, // C FLR BLRS {4,0,2,5}, // C FLR BLRS LFE {4,0,2,6,5}, // C FLR BLRS BLR LFE {0,2} // FLR BLRS }; static int decode_init_mp3on4(AVCodecContext * avctx) { MP3On4DecodeContext *s = avctx->priv_data; int i; if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) { av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n"); return -1; } s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f; s->frames = mp3Frames[s->chan_cfg]; if(!s->frames) { av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n"); return -1; } avctx->channels = mp3Channels[s->chan_cfg]; /* Init the first mp3 decoder in standard way, so that all tables get builded * We replace avctx->priv_data with the context of the first decoder so that * decode_init() does not have to be changed. * Other decoders will be inited here copying data from the first context */ // Allocate zeroed memory for the first decoder context s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); // Put decoder context in place to make init_decode() happy avctx->priv_data = s->mp3decctx[0]; decode_init(avctx); // Restore mp3on4 context pointer avctx->priv_data = s; s->mp3decctx[0]->adu_mode = 1; // Set adu mode /* Create a separate codec/context for each frame (first is already ok). * Each frame is 1 or 2 channels - up to 5 frames allowed */ for (i = 1; i < s->frames; i++) { s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext)); s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias; s->mp3decctx[i]->adu_mode = 1; } return 0; } static int decode_close_mp3on4(AVCodecContext * avctx) { MP3On4DecodeContext *s = avctx->priv_data; int i; for (i = 0; i < s->frames; i++) if (s->mp3decctx[i]) av_free(s->mp3decctx[i]); return 0; } static int decode_frame_mp3on4(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { MP3On4DecodeContext *s = avctx->priv_data; MPADecodeContext *m; int len, out_size = 0; uint32_t header; OUT_INT *out_samples = data; OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; OUT_INT *outptr, *bp; int fsize; unsigned char *start2 = buf, *start; int fr, i, j, n; int off = avctx->channels; int *coff = chan_offset[s->chan_cfg]; len = buf_size; // Discard too short frames if (buf_size < HEADER_SIZE) { *data_size = 0; return buf_size; } // If only one decoder interleave is not needed outptr = s->frames == 1 ? out_samples : decoded_buf; for (fr = 0; fr < s->frames; fr++) { start = start2; fsize = (start[0] << 4) | (start[1] >> 4); start2 += fsize; if (fsize > len) fsize = len; len -= fsize; if (fsize > MPA_MAX_CODED_FRAME_SIZE) fsize = MPA_MAX_CODED_FRAME_SIZE; m = s->mp3decctx[fr]; assert (m != NULL); // Get header header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000; if (ff_mpa_check_header(header) < 0) { // Bad header, discard block *data_size = 0; return buf_size; } decode_header(m, header); mp_decode_frame(m, decoded_buf, start, fsize); n = MPA_FRAME_SIZE * m->nb_channels; out_size += n * sizeof(OUT_INT); if(s->frames > 1) { /* interleave output data */ bp = out_samples + coff[fr]; if(m->nb_channels == 1) { for(j = 0; j < n; j++) { *bp = decoded_buf[j]; bp += off; } } else { for(j = 0; j < n; j++) { bp[0] = decoded_buf[j++]; bp[1] = decoded_buf[j]; bp += off; } } } } /* update codec info */ avctx->sample_rate = s->mp3decctx[0]->sample_rate; avctx->frame_size= buf_size; avctx->bit_rate = 0; for (i = 0; i < s->frames; i++) avctx->bit_rate += s->mp3decctx[i]->bit_rate; *data_size = out_size; return buf_size; } AVCodec mp2_decoder = { "mp2", CODEC_TYPE_AUDIO, CODEC_ID_MP2, sizeof(MPADecodeContext), decode_init, NULL, NULL, decode_frame, CODEC_CAP_PARSE_ONLY, }; AVCodec mp3_decoder = { "mp3", CODEC_TYPE_AUDIO, CODEC_ID_MP3, sizeof(MPADecodeContext), decode_init, NULL, NULL, decode_frame, CODEC_CAP_PARSE_ONLY, }; AVCodec mp3adu_decoder = { "mp3adu", CODEC_TYPE_AUDIO, CODEC_ID_MP3ADU, sizeof(MPADecodeContext), decode_init, NULL, NULL, decode_frame_adu, CODEC_CAP_PARSE_ONLY, }; AVCodec mp3on4_decoder = { "mp3on4", CODEC_TYPE_AUDIO, CODEC_ID_MP3ON4, sizeof(MP3On4DecodeContext), decode_init_mp3on4, NULL, decode_close_mp3on4, decode_frame_mp3on4, 0 };