/* * Nellymoser encoder * This code is developed as part of Google Summer of Code 2008 Program. * * Copyright (c) 2008 Bartlomiej Wolowiec * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Nellymoser encoder * by Bartlomiej Wolowiec * * Generic codec information: libavcodec/nellymoserdec.c * * Some information also from: http://samples.mplayerhq.hu/A-codecs/Nelly_Moser/ASAO/ASAO.zip * (Copyright Joseph Artsimovich and UAB "DKD") * * for more information about nellymoser format, visit: * http://wiki.multimedia.cx/index.php?title=Nellymoser */ #include "libavutil/common.h" #include "libavutil/float_dsp.h" #include "libavutil/mathematics.h" #include "audio_frame_queue.h" #include "avcodec.h" #include "fft.h" #include "internal.h" #include "nellymoser.h" #include "sinewin.h" #define BITSTREAM_WRITER_LE #include "put_bits.h" #define POW_TABLE_SIZE (1<<11) #define POW_TABLE_OFFSET 3 #define OPT_SIZE ((1<<15) + 3000) typedef struct NellyMoserEncodeContext { AVCodecContext *avctx; int last_frame; AVFloatDSPContext fdsp; FFTContext mdct_ctx; AudioFrameQueue afq; DECLARE_ALIGNED(32, float, mdct_out)[NELLY_SAMPLES]; DECLARE_ALIGNED(32, float, in_buff)[NELLY_SAMPLES]; DECLARE_ALIGNED(32, float, buf)[3 * NELLY_BUF_LEN]; ///< sample buffer float (*opt )[OPT_SIZE]; uint8_t (*path)[OPT_SIZE]; } NellyMoserEncodeContext; static float pow_table[POW_TABLE_SIZE]; ///< -pow(2, -i / 2048.0 - 3.0); static const uint8_t sf_lut[96] = { 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 52, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 60, 60, 61, 61, 61, 62, }; static const uint8_t sf_delta_lut[78] = { 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 30, }; static const uint8_t quant_lut[230] = { 0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 13, 13, 14, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 62, }; static const float quant_lut_mul[7] = { 0.0, 0.0, 2.0, 2.0, 5.0, 12.0, 36.6 }; static const float quant_lut_add[7] = { 0.0, 0.0, 2.0, 7.0, 21.0, 56.0, 157.0 }; static const uint8_t quant_lut_offset[8] = { 0, 0, 1, 4, 11, 32, 81, 230 }; static void apply_mdct(NellyMoserEncodeContext *s) { float *in0 = s->buf; float *in1 = s->buf + NELLY_BUF_LEN; float *in2 = s->buf + 2 * NELLY_BUF_LEN; s->fdsp.vector_fmul (s->in_buff, in0, ff_sine_128, NELLY_BUF_LEN); s->fdsp.vector_fmul_reverse(s->in_buff + NELLY_BUF_LEN, in1, ff_sine_128, NELLY_BUF_LEN); s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out, s->in_buff); s->fdsp.vector_fmul (s->in_buff, in1, ff_sine_128, NELLY_BUF_LEN); s->fdsp.vector_fmul_reverse(s->in_buff + NELLY_BUF_LEN, in2, ff_sine_128, NELLY_BUF_LEN); s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out + NELLY_BUF_LEN, s->in_buff); } static av_cold int encode_end(AVCodecContext *avctx) { NellyMoserEncodeContext *s = avctx->priv_data; ff_mdct_end(&s->mdct_ctx); if (s->avctx->trellis) { av_free(s->opt); av_free(s->path); } ff_af_queue_close(&s->afq); return 0; } static av_cold int encode_init(AVCodecContext *avctx) { NellyMoserEncodeContext *s = avctx->priv_data; int i, ret; if (avctx->channels != 1) { av_log(avctx, AV_LOG_ERROR, "Nellymoser supports only 1 channel\n"); return AVERROR(EINVAL); } if (avctx->sample_rate != 8000 && avctx->sample_rate != 16000 && avctx->sample_rate != 11025 && avctx->sample_rate != 22050 && avctx->sample_rate != 44100 && avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) { av_log(avctx, AV_LOG_ERROR, "Nellymoser works only with 8000, 16000, 11025, 22050 and 44100 sample rate\n"); return AVERROR(EINVAL); } avctx->frame_size = NELLY_SAMPLES; avctx->delay = NELLY_BUF_LEN; ff_af_queue_init(avctx, &s->afq); s->avctx = avctx; if ((ret = ff_mdct_init(&s->mdct_ctx, 8, 0, 32768.0)) < 0) goto error; avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT); /* Generate overlap window */ ff_init_ff_sine_windows(7); for (i = 0; i < POW_TABLE_SIZE; i++) pow_table[i] = -pow(2, -i / 2048.0 - 3.0 + POW_TABLE_OFFSET); if (s->avctx->trellis) { s->opt = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(float )); s->path = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(uint8_t)); if (!s->opt || !s->path) { ret = AVERROR(ENOMEM); goto error; } } return 0; error: encode_end(avctx); return ret; } #define find_best(val, table, LUT, LUT_add, LUT_size) \ best_idx = \ LUT[av_clip ((lrintf(val) >> 8) + LUT_add, 0, LUT_size - 1)]; \ if (fabs(val - table[best_idx]) > fabs(val - table[best_idx + 1])) \ best_idx++; static void get_exponent_greedy(NellyMoserEncodeContext *s, float *cand, int *idx_table) { int band, best_idx, power_idx = 0; float power_candidate; //base exponent find_best(cand[0], ff_nelly_init_table, sf_lut, -20, 96); idx_table[0] = best_idx; power_idx = ff_nelly_init_table[best_idx]; for (band = 1; band < NELLY_BANDS; band++) { power_candidate = cand[band] - power_idx; find_best(power_candidate, ff_nelly_delta_table, sf_delta_lut, 37, 78); idx_table[band] = best_idx; power_idx += ff_nelly_delta_table[best_idx]; } } static inline float distance(float x, float y, int band) { //return pow(fabs(x-y), 2.0); float tmp = x - y; return tmp * tmp; } static void get_exponent_dynamic(NellyMoserEncodeContext *s, float *cand, int *idx_table) { int i, j, band, best_idx; float power_candidate, best_val; float (*opt )[OPT_SIZE] = s->opt ; uint8_t(*path)[OPT_SIZE] = s->path; for (i = 0; i < NELLY_BANDS * OPT_SIZE; i++) { opt[0][i] = INFINITY; } for (i = 0; i < 64; i++) { opt[0][ff_nelly_init_table[i]] = distance(cand[0], ff_nelly_init_table[i], 0); path[0][ff_nelly_init_table[i]] = i; } for (band = 1; band < NELLY_BANDS; band++) { int q, c = 0; float tmp; int idx_min, idx_max, idx; power_candidate = cand[band]; for (q = 1000; !c && q < OPT_SIZE; q <<= 2) { idx_min = FFMAX(0, cand[band] - q); idx_max = FFMIN(OPT_SIZE, cand[band - 1] + q); for (i = FFMAX(0, cand[band - 1] - q); i < FFMIN(OPT_SIZE, cand[band - 1] + q); i++) { if ( isinf(opt[band - 1][i]) ) continue; for (j = 0; j < 32; j++) { idx = i + ff_nelly_delta_table[j]; if (idx > idx_max) break; if (idx >= idx_min) { tmp = opt[band - 1][i] + distance(idx, power_candidate, band); if (opt[band][idx] > tmp) { opt[band][idx] = tmp; path[band][idx] = j; c = 1; } } } } } assert(c); //FIXME } best_val = INFINITY; best_idx = -1; band = NELLY_BANDS - 1; for (i = 0; i < OPT_SIZE; i++) { if (best_val > opt[band][i]) { best_val = opt[band][i]; best_idx = i; } } for (band = NELLY_BANDS - 1; band >= 0; band--) { idx_table[band] = path[band][best_idx]; if (band) { best_idx -= ff_nelly_delta_table[path[band][best_idx]]; } } } /** * Encode NELLY_SAMPLES samples. It assumes, that samples contains 3 * NELLY_BUF_LEN values * @param s encoder context * @param output output buffer * @param output_size size of output buffer */ static void encode_block(NellyMoserEncodeContext *s, unsigned char *output, int output_size) { PutBitContext pb; int i, j, band, block, best_idx, power_idx = 0; float power_val, coeff, coeff_sum; float pows[NELLY_FILL_LEN]; int bits[NELLY_BUF_LEN], idx_table[NELLY_BANDS]; float cand[NELLY_BANDS]; apply_mdct(s); init_put_bits(&pb, output, output_size); i = 0; for (band = 0; band < NELLY_BANDS; band++) { coeff_sum = 0; for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) { coeff_sum += s->mdct_out[i ] * s->mdct_out[i ] + s->mdct_out[i + NELLY_BUF_LEN] * s->mdct_out[i + NELLY_BUF_LEN]; } cand[band] = log(FFMAX(1.0, coeff_sum / (ff_nelly_band_sizes_table[band] << 7))) * 1024.0 / M_LN2; } if (s->avctx->trellis) { get_exponent_dynamic(s, cand, idx_table); } else { get_exponent_greedy(s, cand, idx_table); } i = 0; for (band = 0; band < NELLY_BANDS; band++) { if (band) { power_idx += ff_nelly_delta_table[idx_table[band]]; put_bits(&pb, 5, idx_table[band]); } else { power_idx = ff_nelly_init_table[idx_table[0]]; put_bits(&pb, 6, idx_table[0]); } power_val = pow_table[power_idx & 0x7FF] / (1 << ((power_idx >> 11) + POW_TABLE_OFFSET)); for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) { s->mdct_out[i] *= power_val; s->mdct_out[i + NELLY_BUF_LEN] *= power_val; pows[i] = power_idx; } } ff_nelly_get_sample_bits(pows, bits); for (block = 0; block < 2; block++) { for (i = 0; i < NELLY_FILL_LEN; i++) { if (bits[i] > 0) { const float *table = ff_nelly_dequantization_table + (1 << bits[i]) - 1; coeff = s->mdct_out[block * NELLY_BUF_LEN + i]; best_idx = quant_lut[av_clip ( coeff * quant_lut_mul[bits[i]] + quant_lut_add[bits[i]], quant_lut_offset[bits[i]], quant_lut_offset[bits[i]+1] - 1 )]; if (fabs(coeff - table[best_idx]) > fabs(coeff - table[best_idx + 1])) best_idx++; put_bits(&pb, bits[i], best_idx); } } if (!block) put_bits(&pb, NELLY_HEADER_BITS + NELLY_DETAIL_BITS - put_bits_count(&pb), 0); } flush_put_bits(&pb); memset(put_bits_ptr(&pb), 0, output + output_size - put_bits_ptr(&pb)); } static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr) { NellyMoserEncodeContext *s = avctx->priv_data; int ret; if (s->last_frame) return 0; memcpy(s->buf, s->buf + NELLY_SAMPLES, NELLY_BUF_LEN * sizeof(*s->buf)); if (frame) { memcpy(s->buf + NELLY_BUF_LEN, frame->data[0], frame->nb_samples * sizeof(*s->buf)); if (frame->nb_samples < NELLY_SAMPLES) { memset(s->buf + NELLY_BUF_LEN + frame->nb_samples, 0, (NELLY_SAMPLES - frame->nb_samples) * sizeof(*s->buf)); if (frame->nb_samples >= NELLY_BUF_LEN) s->last_frame = 1; } if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) return ret; } else { memset(s->buf + NELLY_BUF_LEN, 0, NELLY_SAMPLES * sizeof(*s->buf)); s->last_frame = 1; } if ((ret = ff_alloc_packet2(avctx, avpkt, NELLY_BLOCK_LEN)) < 0) return ret; encode_block(s, avpkt->data, avpkt->size); /* Get the next frame pts/duration */ ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts, &avpkt->duration); *got_packet_ptr = 1; return 0; } AVCodec ff_nellymoser_encoder = { .name = "nellymoser", .long_name = NULL_IF_CONFIG_SMALL("Nellymoser Asao"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_NELLYMOSER, .priv_data_size = sizeof(NellyMoserEncodeContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY, .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_NONE }, };