/* * H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 direct mb/block decoding. * @author Michael Niedermayer */ #include "internal.h" #include "avcodec.h" #include "h264.h" #include "mpegutils.h" #include "rectangle.h" #include "thread.h" #include static int get_scale_factor(H264Context *const h, int poc, int poc1, int i) { int poc0 = h->ref_list[0][i].poc; int td = av_clip(poc1 - poc0, -128, 127); if (td == 0 || h->ref_list[0][i].long_ref) { return 256; } else { int tb = av_clip(poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; return av_clip((tb * tx + 32) >> 6, -1024, 1023); } } void ff_h264_direct_dist_scale_factor(H264Context *const h) { const int poc = FIELD_PICTURE(h) ? h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD] : h->cur_pic_ptr->poc; const int poc1 = h->ref_list[1][0].poc; int i, field; if (FRAME_MBAFF(h)) for (field = 0; field < 2; field++) { const int poc = h->cur_pic_ptr->field_poc[field]; const int poc1 = h->ref_list[1][0].field_poc[field]; for (i = 0; i < 2 * h->ref_count[0]; i++) h->dist_scale_factor_field[field][i ^ field] = get_scale_factor(h, poc, poc1, i + 16); } for (i = 0; i < h->ref_count[0]; i++) h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i); } static void fill_colmap(H264Context *h, int map[2][16 + 32], int list, int field, int colfield, int mbafi) { H264Picture *const ref1 = &h->ref_list[1][0]; int j, old_ref, rfield; int start = mbafi ? 16 : 0; int end = mbafi ? 16 + 2 * h->ref_count[0] : h->ref_count[0]; int interl = mbafi || h->picture_structure != PICT_FRAME; /* bogus; fills in for missing frames */ memset(map[list], 0, sizeof(map[list])); for (rfield = 0; rfield < 2; rfield++) { for (old_ref = 0; old_ref < ref1->ref_count[colfield][list]; old_ref++) { int poc = ref1->ref_poc[colfield][list][old_ref]; if (!interl) poc |= 3; // FIXME: store all MBAFF references so this is not needed else if (interl && (poc & 3) == 3) poc = (poc & ~3) + rfield + 1; for (j = start; j < end; j++) { if (4 * h->ref_list[0][j].frame_num + (h->ref_list[0][j].reference & 3) == poc) { int cur_ref = mbafi ? (j - 16) ^ field : j; if (ref1->mbaff) map[list][2 * old_ref + (rfield ^ field) + 16] = cur_ref; if (rfield == field || !interl) map[list][old_ref] = cur_ref; break; } } } } } void ff_h264_direct_ref_list_init(H264Context *const h) { H264Picture *const ref1 = &h->ref_list[1][0]; H264Picture *const cur = h->cur_pic_ptr; int list, j, field; int sidx = (h->picture_structure & 1) ^ 1; int ref1sidx = (ref1->reference & 1) ^ 1; for (list = 0; list < 2; list++) { cur->ref_count[sidx][list] = h->ref_count[list]; for (j = 0; j < h->ref_count[list]; j++) cur->ref_poc[sidx][list][j] = 4 * h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference & 3); } if (h->picture_structure == PICT_FRAME) { memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0])); memcpy(cur->ref_poc[1], cur->ref_poc[0], sizeof(cur->ref_poc[0])); } cur->mbaff = FRAME_MBAFF(h); h->col_fieldoff = 0; if (h->picture_structure == PICT_FRAME) { int cur_poc = h->cur_pic_ptr->poc; int *col_poc = h->ref_list[1]->field_poc; h->col_parity = (FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc)); ref1sidx = sidx = h->col_parity; // FL -> FL & differ parity } else if (!(h->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff) { h->col_fieldoff = 2 * h->ref_list[1][0].reference - 3; } if (h->slice_type_nos != AV_PICTURE_TYPE_B || h->direct_spatial_mv_pred) return; for (list = 0; list < 2; list++) { fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0); if (FRAME_MBAFF(h)) for (field = 0; field < 2; field++) fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1); } } static void await_reference_mb_row(H264Context *const h, H264Picture *ref, int mb_y) { int ref_field = ref->reference - 1; int ref_field_picture = ref->field_picture; int ref_height = 16 * h->mb_height >> ref_field_picture; if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_FRAME)) return; /* FIXME: It can be safe to access mb stuff * even if pixels aren't deblocked yet. */ ff_thread_await_progress(&ref->tf, FFMIN(16 * mb_y >> ref_field_picture, ref_height - 1), ref_field_picture && ref_field); } static void pred_spatial_direct_motion(H264Context *const h, int *mb_type) { int b8_stride = 2; int b4_stride = h->b_stride; int mb_xy = h->mb_xy, mb_y = h->mb_y; int mb_type_col[2]; const int16_t (*l1mv0)[2], (*l1mv1)[2]; const int8_t *l1ref0, *l1ref1; const int is_b8x8 = IS_8X8(*mb_type); unsigned int sub_mb_type = MB_TYPE_L0L1; int i8, i4; int ref[2]; int mv[2]; int list; assert(h->ref_list[1][0].reference & 3); await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type)); #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16 | MB_TYPE_INTRA4x4 | \ MB_TYPE_INTRA16x16 | MB_TYPE_INTRA_PCM) /* ref = min(neighbors) */ for (list = 0; list < 2; list++) { int left_ref = h->ref_cache[list][scan8[0] - 1]; int top_ref = h->ref_cache[list][scan8[0] - 8]; int refc = h->ref_cache[list][scan8[0] - 8 + 4]; const int16_t *C = h->mv_cache[list][scan8[0] - 8 + 4]; if (refc == PART_NOT_AVAILABLE) { refc = h->ref_cache[list][scan8[0] - 8 - 1]; C = h->mv_cache[list][scan8[0] - 8 - 1]; } ref[list] = FFMIN3((unsigned)left_ref, (unsigned)top_ref, (unsigned)refc); if (ref[list] >= 0) { /* This is just pred_motion() but with the cases removed that * cannot happen for direct blocks. */ const int16_t *const A = h->mv_cache[list][scan8[0] - 1]; const int16_t *const B = h->mv_cache[list][scan8[0] - 8]; int match_count = (left_ref == ref[list]) + (top_ref == ref[list]) + (refc == ref[list]); if (match_count > 1) { // most common mv[list] = pack16to32(mid_pred(A[0], B[0], C[0]), mid_pred(A[1], B[1], C[1])); } else { assert(match_count == 1); if (left_ref == ref[list]) mv[list] = AV_RN32A(A); else if (top_ref == ref[list]) mv[list] = AV_RN32A(B); else mv[list] = AV_RN32A(C); } av_assert2(ref[list] < (h->ref_count[list] << !!FRAME_MBAFF(h))); } else { int mask = ~(MB_TYPE_L0 << (2 * list)); mv[list] = 0; ref[list] = -1; if (!is_b8x8) *mb_type &= mask; sub_mb_type &= mask; } } if (ref[0] < 0 && ref[1] < 0) { ref[0] = ref[1] = 0; if (!is_b8x8) *mb_type |= MB_TYPE_L0L1; sub_mb_type |= MB_TYPE_L0L1; } if (!(is_b8x8 | mv[0] | mv[1])) { fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1); fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4); fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4); *mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_P1L0 | MB_TYPE_P1L1)) | MB_TYPE_16x16 | MB_TYPE_DIRECT2; return; } if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL mb_y = (h->mb_y & ~1) + h->col_parity; mb_xy = h->mb_x + ((h->mb_y & ~1) + h->col_parity) * h->mb_stride; b8_stride = 0; } else { mb_y += h->col_fieldoff; mb_xy += h->mb_stride * h->col_fieldoff; // non-zero for FL -> FL & differ parity } goto single_col; } else { // AFL/AFR/FR/FL -> AFR/FR if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR mb_y = h->mb_y & ~1; mb_xy = (h->mb_y & ~1) * h->mb_stride + h->mb_x; mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy]; mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride]; b8_stride = 2 + 4 * h->mb_stride; b4_stride *= 6; if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) { mb_type_col[0] &= ~MB_TYPE_INTERLACED; mb_type_col[1] &= ~MB_TYPE_INTERLACED; } sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */ if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) && !is_b8x8) { *mb_type |= MB_TYPE_16x8 | MB_TYPE_DIRECT2; /* B_16x8 */ } else { *mb_type |= MB_TYPE_8x8; } } else { // AFR/FR -> AFR/FR single_col: mb_type_col[0] = mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy]; sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */ if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) { *mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_16x16 */ } else if (!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) { *mb_type |= MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16)); } else { if (!h->sps.direct_8x8_inference_flag) { /* FIXME: Save sub mb types from previous frames (or derive * from MVs) so we know exactly what block size to use. */ sub_mb_type += (MB_TYPE_8x8 - MB_TYPE_16x16); /* B_SUB_4x4 */ } *mb_type |= MB_TYPE_8x8; } } } await_reference_mb_row(h, &h->ref_list[1][0], mb_y); l1mv0 = (void*)&h->ref_list[1][0].motion_val[0][h->mb2b_xy[mb_xy]]; l1mv1 = (void*)&h->ref_list[1][0].motion_val[1][h->mb2b_xy[mb_xy]]; l1ref0 = &h->ref_list[1][0].ref_index[0][4 * mb_xy]; l1ref1 = &h->ref_list[1][0].ref_index[1][4 * mb_xy]; if (!b8_stride) { if (h->mb_y & 1) { l1ref0 += 2; l1ref1 += 2; l1mv0 += 2 * b4_stride; l1mv1 += 2 * b4_stride; } } if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) { int n = 0; for (i8 = 0; i8 < 4; i8++) { int x8 = i8 & 1; int y8 = i8 >> 1; int xy8 = x8 + y8 * b8_stride; int xy4 = x8 * 3 + y8 * b4_stride; int a, b; if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, (uint8_t)ref[1], 1); if (!IS_INTRA(mb_type_col[y8]) && !h->ref_list[1][0].long_ref && ((l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1) || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))) { a = b = 0; if (ref[0] > 0) a = mv[0]; if (ref[1] > 0) b = mv[1]; n++; } else { a = mv[0]; b = mv[1]; } fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, a, 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, b, 4); } if (!is_b8x8 && !(n & 3)) *mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_P1L0 | MB_TYPE_P1L1)) | MB_TYPE_16x16 | MB_TYPE_DIRECT2; } else if (IS_16X16(*mb_type)) { int a, b; fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1); if (!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref && ((l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1) || (l1ref0[0] < 0 && !l1ref1[0] && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1 && h->x264_build > 33U))) { a = b = 0; if (ref[0] > 0) a = mv[0]; if (ref[1] > 0) b = mv[1]; } else { a = mv[0]; b = mv[1]; } fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4); fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4); } else { int n = 0; for (i8 = 0; i8 < 4; i8++) { const int x8 = i8 & 1; const int y8 = i8 >> 1; if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, mv[0], 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, mv[1], 4); fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, (uint8_t)ref[1], 1); assert(b8_stride == 2); /* col_zero_flag */ if (!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref && (l1ref0[i8] == 0 || (l1ref0[i8] < 0 && l1ref1[i8] == 0 && h->x264_build > 33U))) { const int16_t (*l1mv)[2] = l1ref0[i8] == 0 ? l1mv0 : l1mv1; if (IS_SUB_8X8(sub_mb_type)) { const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride]; if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) { if (ref[0] == 0) fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4); if (ref[1] == 0) fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4); n += 4; } } else { int m = 0; for (i4 = 0; i4 < 4; i4++) { const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) + (y8 * 2 + (i4 >> 1)) * b4_stride]; if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) { if (ref[0] == 0) AV_ZERO32(h->mv_cache[0][scan8[i8 * 4 + i4]]); if (ref[1] == 0) AV_ZERO32(h->mv_cache[1][scan8[i8 * 4 + i4]]); m++; } } if (!(m & 3)) h->sub_mb_type[i8] += MB_TYPE_16x16 - MB_TYPE_8x8; n += m; } } } if (!is_b8x8 && !(n & 15)) *mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_P1L0 | MB_TYPE_P1L1)) | MB_TYPE_16x16 | MB_TYPE_DIRECT2; } } static void pred_temp_direct_motion(H264Context *const h, int *mb_type) { int b8_stride = 2; int b4_stride = h->b_stride; int mb_xy = h->mb_xy, mb_y = h->mb_y; int mb_type_col[2]; const int16_t (*l1mv0)[2], (*l1mv1)[2]; const int8_t *l1ref0, *l1ref1; const int is_b8x8 = IS_8X8(*mb_type); unsigned int sub_mb_type; int i8, i4; assert(h->ref_list[1][0].reference & 3); await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type)); if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL mb_y = (h->mb_y & ~1) + h->col_parity; mb_xy = h->mb_x + ((h->mb_y & ~1) + h->col_parity) * h->mb_stride; b8_stride = 0; } else { mb_y += h->col_fieldoff; mb_xy += h->mb_stride * h->col_fieldoff; // non-zero for FL -> FL & differ parity } goto single_col; } else { // AFL/AFR/FR/FL -> AFR/FR if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR mb_y = h->mb_y & ~1; mb_xy = h->mb_x + (h->mb_y & ~1) * h->mb_stride; mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy]; mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride]; b8_stride = 2 + 4 * h->mb_stride; b4_stride *= 6; if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) { mb_type_col[0] &= ~MB_TYPE_INTERLACED; mb_type_col[1] &= ~MB_TYPE_INTERLACED; } sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */ if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) && !is_b8x8) { *mb_type |= MB_TYPE_16x8 | MB_TYPE_L0L1 | MB_TYPE_DIRECT2; /* B_16x8 */ } else { *mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1; } } else { // AFR/FR -> AFR/FR single_col: mb_type_col[0] = mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy]; sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */ if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) { *mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 | MB_TYPE_DIRECT2; /* B_16x16 */ } else if (!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) { *mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16)); } else { if (!h->sps.direct_8x8_inference_flag) { /* FIXME: save sub mb types from previous frames (or derive * from MVs) so we know exactly what block size to use */ sub_mb_type = MB_TYPE_8x8 | MB_TYPE_P0L0 | MB_TYPE_P0L1 | MB_TYPE_DIRECT2; /* B_SUB_4x4 */ } *mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1; } } } await_reference_mb_row(h, &h->ref_list[1][0], mb_y); l1mv0 = (void*)&h->ref_list[1][0].motion_val[0][h->mb2b_xy[mb_xy]]; l1mv1 = (void*)&h->ref_list[1][0].motion_val[1][h->mb2b_xy[mb_xy]]; l1ref0 = &h->ref_list[1][0].ref_index[0][4 * mb_xy]; l1ref1 = &h->ref_list[1][0].ref_index[1][4 * mb_xy]; if (!b8_stride) { if (h->mb_y & 1) { l1ref0 += 2; l1ref1 += 2; l1mv0 += 2 * b4_stride; l1mv1 += 2 * b4_stride; } } { const int *map_col_to_list0[2] = { h->map_col_to_list0[0], h->map_col_to_list0[1] }; const int *dist_scale_factor = h->dist_scale_factor; int ref_offset; if (FRAME_MBAFF(h) && IS_INTERLACED(*mb_type)) { map_col_to_list0[0] = h->map_col_to_list0_field[h->mb_y & 1][0]; map_col_to_list0[1] = h->map_col_to_list0_field[h->mb_y & 1][1]; dist_scale_factor = h->dist_scale_factor_field[h->mb_y & 1]; } ref_offset = (h->ref_list[1][0].mbaff << 4) & (mb_type_col[0] >> 3); if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) { int y_shift = 2 * !IS_INTERLACED(*mb_type); assert(h->sps.direct_8x8_inference_flag); for (i8 = 0; i8 < 4; i8++) { const int x8 = i8 & 1; const int y8 = i8 >> 1; int ref0, scale; const int16_t (*l1mv)[2] = l1mv0; if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1); if (IS_INTRA(mb_type_col[y8])) { fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1); fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4); continue; } ref0 = l1ref0[x8 + y8 * b8_stride]; if (ref0 >= 0) ref0 = map_col_to_list0[0][ref0 + ref_offset]; else { ref0 = map_col_to_list0[1][l1ref1[x8 + y8 * b8_stride] + ref_offset]; l1mv = l1mv1; } scale = dist_scale_factor[ref0]; fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, ref0, 1); { const int16_t *mv_col = l1mv[x8 * 3 + y8 * b4_stride]; int my_col = (mv_col[1] * (1 << y_shift)) / 2; int mx = (scale * mv_col[0] + 128) >> 8; int my = (scale * my_col + 128) >> 8; fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, pack16to32(mx, my), 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, pack16to32(mx - mv_col[0], my - my_col), 4); } } return; } /* one-to-one mv scaling */ if (IS_16X16(*mb_type)) { int ref, mv0, mv1; fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1); if (IS_INTRA(mb_type_col[0])) { ref = mv0 = mv1 = 0; } else { const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset] : map_col_to_list0[1][l1ref1[0] + ref_offset]; const int scale = dist_scale_factor[ref0]; const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0]; int mv_l0[2]; mv_l0[0] = (scale * mv_col[0] + 128) >> 8; mv_l0[1] = (scale * mv_col[1] + 128) >> 8; ref = ref0; mv0 = pack16to32(mv_l0[0], mv_l0[1]); mv1 = pack16to32(mv_l0[0] - mv_col[0], mv_l0[1] - mv_col[1]); } fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4); fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4); } else { for (i8 = 0; i8 < 4; i8++) { const int x8 = i8 & 1; const int y8 = i8 >> 1; int ref0, scale; const int16_t (*l1mv)[2] = l1mv0; if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1); if (IS_INTRA(mb_type_col[0])) { fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1); fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4); continue; } assert(b8_stride == 2); ref0 = l1ref0[i8]; if (ref0 >= 0) ref0 = map_col_to_list0[0][ref0 + ref_offset]; else { ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset]; l1mv = l1mv1; } scale = dist_scale_factor[ref0]; fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, ref0, 1); if (IS_SUB_8X8(sub_mb_type)) { const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride]; int mx = (scale * mv_col[0] + 128) >> 8; int my = (scale * mv_col[1] + 128) >> 8; fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, pack16to32(mx, my), 4); fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, pack16to32(mx - mv_col[0], my - mv_col[1]), 4); } else { for (i4 = 0; i4 < 4; i4++) { const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) + (y8 * 2 + (i4 >> 1)) * b4_stride]; int16_t *mv_l0 = h->mv_cache[0][scan8[i8 * 4 + i4]]; mv_l0[0] = (scale * mv_col[0] + 128) >> 8; mv_l0[1] = (scale * mv_col[1] + 128) >> 8; AV_WN32A(h->mv_cache[1][scan8[i8 * 4 + i4]], pack16to32(mv_l0[0] - mv_col[0], mv_l0[1] - mv_col[1])); } } } } } } void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type) { if (h->direct_spatial_mv_pred) pred_spatial_direct_motion(h, mb_type); else pred_temp_direct_motion(h, mb_type); }