/* * AAC encoder main-type prediction * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder Intensity Stereo * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #include "aactab.h" #include "aacenc_pred.h" #include "aacenc_utils.h" #include "aacenc_is.h" /* <- Needed for common window distortions */ #include "aacenc_quantization.h" #define RESTORE_PRED(sce, sfb) \ if (sce->ics.prediction_used[sfb]) {\ sce->ics.prediction_used[sfb] = 0;\ sce->band_type[sfb] = sce->band_alt[sfb];\ } static inline float flt16_round(float pf) { union av_intfloat32 tmp; tmp.f = pf; tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; return tmp.f; } static inline float flt16_even(float pf) { union av_intfloat32 tmp; tmp.f = pf; tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U; return tmp.f; } static inline float flt16_trunc(float pf) { union av_intfloat32 pun; pun.f = pf; pun.i &= 0xFFFF0000U; return pun.f; } static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set) { float k2; const float a = 0.953125; // 61.0 / 64 const float alpha = 0.90625; // 29.0 / 32 const float k1 = ps->k1; const float r0 = ps->r0, r1 = ps->r1; const float cor0 = ps->cor0, cor1 = ps->cor1; const float var0 = ps->var0, var1 = ps->var1; const float e0 = *coef - ps->x_est; const float e1 = e0 - k1 * r0; if (set) *coef = e0; ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1); ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1)); ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0); ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0)); ps->r1 = flt16_trunc(a * (r0 - k1 * e0)); ps->r0 = flt16_trunc(a * e0); /* Prediction for next frame */ ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0; k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0; *rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1); } static inline void reset_predict_state(PredictorState *ps) { ps->r0 = 0.0f; ps->r1 = 0.0f; ps->k1 = 0.0f; ps->cor0 = 0.0f; ps->cor1 = 0.0f; ps->var0 = 1.0f; ps->var1 = 1.0f; ps->x_est = 0.0f; } static inline void reset_all_predictors(PredictorState *ps) { int i; for (i = 0; i < MAX_PREDICTORS; i++) reset_predict_state(&ps[i]); } static inline void reset_predictor_group(SingleChannelElement *sce, int group_num) { int i; PredictorState *ps = sce->predictor_state; for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) reset_predict_state(&ps[i]); } void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce) { int sfb, k; const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { for (sfb = 0; sfb < pmax; sfb++) { for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k], sce->ics.predictor_present && sce->ics.prediction_used[sfb]); } } if (sce->ics.predictor_reset_group) { reset_predictor_group(sce, sce->ics.predictor_reset_group); } } else { reset_all_predictors(sce->predictor_state); } } /* If inc = 0 you can check if this returns 0 to see if you can reset freely */ static inline int update_counters(IndividualChannelStream *ics, int inc) { int i; for (i = 1; i < 31; i++) { ics->predictor_reset_count[i] += inc; if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN) return i; /* Reset this immediately */ } return 0; } void ff_aac_adjust_common_prediction(AACEncContext *s, ChannelElement *cpe) { int start, w, w2, g, i, count = 0; SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); const int pmax = FFMIN(pmax0, pmax1); if (!cpe->common_window || sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) return; for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { start = 0; for (g = 0; g < sce0->ics.num_swb; g++) { int sfb = w*16+g; int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb]; float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f; struct AACISError ph_err1, ph_err2, *erf; if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) { RESTORE_PRED(sce0, sfb); RESTORE_PRED(sce1, sfb); start += sce0->ics.swb_sizes[g]; continue; } for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { float coef0 = sce0->pcoeffs[start+(w+w2)*128+i]; float coef1 = sce1->pcoeffs[start+(w+w2)*128+i]; ener0 += coef0*coef0; ener1 += coef1*coef1; ener01 += (coef0 + coef1)*(coef0 + coef1); } } ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 1, -1); ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 1, +1); erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2; if (erf->pass) { sce0->ics.prediction_used[sfb] = 1; sce1->ics.prediction_used[sfb] = 1; count++; } else { RESTORE_PRED(sce0, sfb); RESTORE_PRED(sce1, sfb); } start += sce0->ics.swb_sizes[g]; } } sce1->ics.predictor_present = sce0->ics.predictor_present = !!count; } static void update_pred_resets(SingleChannelElement *sce) { int i, max_group_id_c, max_frame = 0; float avg_frame = 0.0f; IndividualChannelStream *ics = &sce->ics; /* Update the counters and immediately update any frame behind schedule */ if ((ics->predictor_reset_group = update_counters(&sce->ics, 1))) return; for (i = 1; i < 31; i++) { /* Count-based */ if (ics->predictor_reset_count[i] > max_frame) { max_group_id_c = i; max_frame = ics->predictor_reset_count[i]; } avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2; } if (max_frame > PRED_RESET_MIN) { ics->predictor_reset_group = max_group_id_c; } else { ics->predictor_reset_group = 0; } } void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce) { int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0; const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1]; float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3]; float *QERR = &s->scoefs[128*4]; if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { sce->ics.predictor_present = 0; return; } if (!sce->ics.predictor_initialized) { reset_all_predictors(sce->predictor_state); sce->ics.predictor_initialized = 1; memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float)); for (i = 1; i < 31; i++) sce->ics.predictor_reset_count[i] = i; } update_pred_resets(sce); memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); for (sfb = PRED_SFB_START; sfb < pmax; sfb++) { int cost1, cost2, cb_p; float dist1, dist2, dist_spec_err = 0.0f; const int cb_n = sce->band_type[sfb]; const int start_coef = sce->ics.swb_offset[sfb]; const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef; const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb]; if (start_coef + num_coeffs > MAX_PREDICTORS || (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) || sce->band_type[sfb] == NOISE_BT) continue; /* Normal coefficients */ abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs); dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL, O34, num_coeffs, sce->sf_idx[sfb], cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0); cost_coeffs += cost1; /* Encoded coefficients - needed for #bits, band type and quant. error */ for (i = 0; i < num_coeffs; i++) SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i]; abs_pow34_v(S34, SENT, num_coeffs); if (cb_n < RESERVED_BT) cb_p = find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]); else cb_p = cb_n; quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs, sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY, &cost2, NULL, 0); /* Reconstructed coefficients - needed for distortion measurements */ for (i = 0; i < num_coeffs; i++) sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f; abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs); if (cb_n < RESERVED_BT) cb_p = find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]); else cb_p = cb_n; dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL, P34, num_coeffs, sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0); for (i = 0; i < num_coeffs; i++) dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]); dist_spec_err *= s->lambda / band->threshold; dist2 += dist_spec_err; if (dist2 <= dist1 && cb_p <= cb_n) { cost_pred += cost2; sce->ics.prediction_used[sfb] = 1; sce->band_alt[sfb] = cb_n; sce->band_type[sfb] = cb_p; count++; } else { cost_pred += cost1; sce->band_alt[sfb] = cb_p; } } if (count && cost_coeffs < cost_pred) { count = 0; for (sfb = PRED_SFB_START; sfb < pmax; sfb++) RESTORE_PRED(sce, sfb); memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used)); } sce->ics.predictor_present = !!count; } /** * Encoder predictors data. */ void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce) { int sfb; IndividualChannelStream *ics = &sce->ics; const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); if (!ics->predictor_present) return; put_bits(&s->pb, 1, !!ics->predictor_reset_group); if (ics->predictor_reset_group) put_bits(&s->pb, 5, ics->predictor_reset_group); for (sfb = 0; sfb < pmax; sfb++) put_bits(&s->pb, 1, ics->prediction_used[sfb]); }