/* * VC3/DNxHD encoder * Copyright (c) 2007 Baptiste Coudurier * Copyright (c) 2011 MirriAd Ltd * * VC-3 encoder funded by the British Broadcasting Corporation * 10 bit support added by MirriAd Ltd, Joseph Artsimovich * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ //#define DEBUG #define RC_VARIANCE 1 // use variance or ssd for fast rc #include "libavutil/opt.h" #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #include "mpegvideo_common.h" #include "dnxhdenc.h" #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples. static const AVOption options[]={ {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE}, {NULL} }; static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT }; #define LAMBDA_FRAC_BITS 10 static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size) { int i; for (i = 0; i < 4; i++) { block[0] = pixels[0]; block[1] = pixels[1]; block[2] = pixels[2]; block[3] = pixels[3]; block[4] = pixels[4]; block[5] = pixels[5]; block[6] = pixels[6]; block[7] = pixels[7]; pixels += line_size; block += 8; } memcpy(block, block - 8, sizeof(*block) * 8); memcpy(block + 8, block - 16, sizeof(*block) * 8); memcpy(block + 16, block - 24, sizeof(*block) * 8); memcpy(block + 24, block - 32, sizeof(*block) * 8); } static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size) { int i; block += 32; for (i = 0; i < 4; i++) { memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block)); memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block)); } } static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block, int n, int qscale, int *overflow) { const uint8_t *scantable= ctx->intra_scantable.scantable; const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; int last_non_zero = 0; int i; ctx->dsp.fdct(block); // Divide by 4 with rounding, to compensate scaling of DCT coefficients block[0] = (block[0] + 2) >> 2; for (i = 1; i < 64; ++i) { int j = scantable[i]; int sign = block[j] >> 31; int level = (block[j] ^ sign) - sign; level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT; block[j] = (level ^ sign) - sign; if (level) last_non_zero = i; } return last_non_zero; } static int dnxhd_init_vlc(DNXHDEncContext *ctx) { int i, j, level, run; int max_level = 1<<(ctx->cid_table->bit_depth+2); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail); ctx->vlc_codes += max_level*2; ctx->vlc_bits += max_level*2; for (level = -max_level; level < max_level; level++) { for (run = 0; run < 2; run++) { int index = (level<<1)|run; int sign, offset = 0, alevel = level; MASK_ABS(sign, alevel); if (alevel > 64) { offset = (alevel-1)>>6; alevel -= offset<<6; } for (j = 0; j < 257; j++) { if (ctx->cid_table->ac_level[j] >> 1 == alevel && (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) && (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) { assert(!ctx->vlc_codes[index]); if (alevel) { ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1); ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1; } else { ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j]; } break; } } assert(!alevel || j < 257); if (offset) { ctx->vlc_codes[index] = (ctx->vlc_codes[index]<cid_table->index_bits)|offset; ctx->vlc_bits [index]+= ctx->cid_table->index_bits; } } } for (i = 0; i < 62; i++) { int run = ctx->cid_table->run[i]; assert(run < 63); ctx->run_codes[run] = ctx->cid_table->run_codes[i]; ctx->run_bits [run] = ctx->cid_table->run_bits[i]; } return 0; fail: return -1; } static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) { // init first elem to 1 to avoid div by 0 in convert_matrix uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t* int qscale, i; const uint8_t *luma_weight_table = ctx->cid_table->luma_weight; const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight; FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); if (ctx->cid_table->bit_depth == 8) { for (i = 1; i < 64; i++) { int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; weight_matrix[j] = ctx->cid_table->luma_weight[i]; } ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix, ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); for (i = 1; i < 64; i++) { int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; weight_matrix[j] = ctx->cid_table->chroma_weight[i]; } ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix, ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { for (i = 0; i < 64; i++) { ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2; ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2; ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2; } } } else { // 10-bit for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { for (i = 1; i < 64; i++) { int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; // The quantization formula from the VC-3 standard is: // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i])) // Where p is 32 for 8-bit samples and 8 for 10-bit ones. // The s factor compensates scaling of DCT coefficients done by the DCT routines, // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be: // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i]) // For 10-bit samples, p / s == 2 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]); ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]); } } } ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16; ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c; ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; ctx->m.q_intra_matrix = ctx->qmatrix_l; return 0; fail: return -1; } static int dnxhd_init_rc(DNXHDEncContext *ctx) { FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*(ctx->m.avctx->qmax + 1)*sizeof(RCEntry), fail); if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail); ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8; ctx->qscale = 1; ctx->lambda = 2<priv_data; int i, index, bit_depth; switch (avctx->pix_fmt) { case PIX_FMT_YUV422P: bit_depth = 8; break; case PIX_FMT_YUV422P10: bit_depth = 10; break; default: av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n"); return -1; } ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth); if (!ctx->cid) { av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n"); return -1; } av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); index = ff_dnxhd_get_cid_table(ctx->cid); ctx->cid_table = &ff_dnxhd_cid_table[index]; ctx->m.avctx = avctx; ctx->m.mb_intra = 1; ctx->m.h263_aic = 1; avctx->bits_per_raw_sample = ctx->cid_table->bit_depth; dsputil_init(&ctx->m.dsp, avctx); ff_dct_common_init(&ctx->m); if (!ctx->m.dct_quantize) ctx->m.dct_quantize = dct_quantize_c; if (ctx->cid_table->bit_depth == 10) { ctx->m.dct_quantize = dnxhd_10bit_dct_quantize; ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; ctx->block_width_l2 = 4; } else { ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym; ctx->block_width_l2 = 3; } #if HAVE_MMX ff_dnxhd_init_mmx(ctx); #endif ctx->m.mb_height = (avctx->height + 15) / 16; ctx->m.mb_width = (avctx->width + 15) / 16; if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) { ctx->interlaced = 1; ctx->m.mb_height /= 2; } ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS) ctx->m.intra_quant_bias = avctx->intra_quant_bias; if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias return -1; // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload if (ctx->nitris_compat) ctx->min_padding = 1600; if (dnxhd_init_vlc(ctx) < 0) return -1; if (dnxhd_init_rc(ctx) < 0) return -1; FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail); ctx->frame.key_frame = 1; ctx->frame.pict_type = AV_PICTURE_TYPE_I; ctx->m.avctx->coded_frame = &ctx->frame; if (avctx->thread_count > MAX_THREADS) { av_log(avctx, AV_LOG_ERROR, "too many threads\n"); return -1; } ctx->thread[0] = ctx; for (i = 1; i < avctx->thread_count; i++) { ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); } return 0; fail: //for FF_ALLOCZ_OR_GOTO return -1; } static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) { DNXHDEncContext *ctx = avctx->priv_data; const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 }; memset(buf, 0, 640); memcpy(buf, header_prefix, 5); buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01; buf[6] = 0x80; // crc flag off buf[7] = 0xa0; // reserved AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF AV_WB16(buf + 0x1a, avctx->width); // SPL AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38; buf[0x22] = 0x88 + (ctx->interlaced<<2); AV_WB32(buf + 0x28, ctx->cid); // CID buf[0x2c] = ctx->interlaced ? 0 : 0x80; buf[0x5f] = 0x01; // UDL buf[0x167] = 0x02; // reserved AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS buf[0x16d] = ctx->m.mb_height; // Ns buf[0x16f] = 0x10; // reserved ctx->msip = buf + 0x170; return 0; } static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) { int nbits; if (diff < 0) { nbits = av_log2_16bit(-2*diff); diff--; } else { nbits = av_log2_16bit(2*diff); } put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, (ctx->cid_table->dc_codes[nbits]<m.last_dc[n]); ctx->m.last_dc[n] = block[0]; for (i = 1; i <= last_index; i++) { j = ctx->m.intra_scantable.permutated[i]; slevel = block[j]; if (slevel) { int run_level = i - last_non_zero - 1; int rlevel = (slevel<<1)|!!run_level; put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); if (run_level) put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]); last_non_zero = i; } } put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB } static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index) { const uint8_t *weight_matrix; int level; int i; weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight; for (i = 1; i <= last_index; i++) { int j = ctx->m.intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = (1-2*level) * qscale * weight_matrix[i]; if (ctx->cid_table->bit_depth == 10) { if (weight_matrix[i] != 8) level += 8; level >>= 4; } else { if (weight_matrix[i] != 32) level += 32; level >>= 6; } level = -level; } else { level = (2*level+1) * qscale * weight_matrix[i]; if (ctx->cid_table->bit_depth == 10) { if (weight_matrix[i] != 8) level += 8; level >>= 4; } else { if (weight_matrix[i] != 32) level += 32; level >>= 6; } } block[j] = level; } } } static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block) { int score = 0; int i; for (i = 0; i < 64; i++) score += (block[i] - qblock[i]) * (block[i] - qblock[i]); return score; } static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index) { int last_non_zero = 0; int bits = 0; int i, j, level; for (i = 1; i <= last_index; i++) { j = ctx->m.intra_scantable.permutated[i]; level = block[j]; if (level) { int run_level = i - last_non_zero - 1; bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level]; last_non_zero = i; } } return bits; } static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) { const int bs = ctx->block_width_l2; const int bw = 1 << bs; const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1); const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); DSPContext *dsp = &ctx->m.dsp; dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize); dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize); dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize); dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize); if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { if (ctx->interlaced) { ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize); ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize); ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize); ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize); } else { dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]); dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]); } } else { dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize); dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize); dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize); dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize); } } static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) { const static uint8_t component[8]={0,0,1,2,0,0,1,2}; return component[i]; } static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x; int qscale = ctx->qscale; LOCAL_ALIGNED_16(DCTELEM, block, [64]); ctx = ctx->thread[threadnr]; ctx->m.last_dc[0] = ctx->m.last_dc[1] = ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2); for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int ssd = 0; int ac_bits = 0; int dc_bits = 0; int i; dnxhd_get_blocks(ctx, mb_x, mb_y); for (i = 0; i < 8; i++) { DCTELEM *src_block = ctx->blocks[i]; int overflow, nbits, diff, last_index; int n = dnxhd_switch_matrix(ctx, i); memcpy(block, src_block, 64*sizeof(*block)); last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow); ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); diff = block[0] - ctx->m.last_dc[n]; if (diff < 0) nbits = av_log2_16bit(-2*diff); else nbits = av_log2_16bit( 2*diff); assert(nbits < ctx->cid_table->bit_depth + 4); dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; ctx->m.last_dc[n] = block[0]; if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { dnxhd_unquantize_c(ctx, block, i, qscale, last_index); ctx->m.dsp.idct(block); ssd += dnxhd_ssd_block(block, src_block); } } ctx->mb_rc[qscale][mb].ssd = ssd; ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0]; } return 0; } static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x; ctx = ctx->thread[threadnr]; init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]); ctx->m.last_dc[0] = ctx->m.last_dc[1] = ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2); for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int qscale = ctx->mb_qscale[mb]; int i; put_bits(&ctx->m.pb, 12, qscale<<1); dnxhd_get_blocks(ctx, mb_x, mb_y); for (i = 0; i < 8; i++) { DCTELEM *block = ctx->blocks[i]; int overflow, n = dnxhd_switch_matrix(ctx, i); int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow); //START_TIMER; dnxhd_encode_block(ctx, block, last_index, n); //STOP_TIMER("encode_block"); } } if (put_bits_count(&ctx->m.pb)&31) put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0); flush_put_bits(&ctx->m.pb); return 0; } static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) { int mb_y, mb_x; int offset = 0; for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { int thread_size; ctx->slice_offs[mb_y] = offset; ctx->slice_size[mb_y] = 0; for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; ctx->slice_size[mb_y] += ctx->mb_bits[mb]; } ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31; ctx->slice_size[mb_y] >>= 3; thread_size = ctx->slice_size[mb_y]; offset += thread_size; } } static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x; ctx = ctx->thread[threadnr]; if (ctx->cid_table->bit_depth == 8) { uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize); for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize); int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8; ctx->mb_cmp[mb].value = varc; ctx->mb_cmp[mb].mb = mb; } } else { // 10-bit int const linesize = ctx->m.linesize >> 1; for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) { uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4); unsigned mb = mb_y * ctx->m.mb_width + mb_x; int sum = 0; int sqsum = 0; int mean, sqmean; int i, j; // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8. for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { // Turn 16-bit pixels into 10-bit ones. int const sample = (unsigned)pix[j] >> 6; sum += sample; sqsum += sample * sample; // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX } pix += linesize; } mean = sum >> 8; // 16*16 == 2^8 sqmean = sqsum >> 8; ctx->mb_cmp[mb].value = sqmean - mean * mean; ctx->mb_cmp[mb].mb = mb; } } return 0; } static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) { int lambda, up_step, down_step; int last_lower = INT_MAX, last_higher = 0; int x, y, q; for (q = 1; q < avctx->qmax; q++) { ctx->qscale = q; avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); } up_step = down_step = 2<lambda; for (;;) { int bits = 0; int end = 0; if (lambda == last_higher) { lambda++; end = 1; // need to set final qscales/bits } for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) { unsigned min = UINT_MAX; int qscale = 1; int mb = y*ctx->m.mb_width+x; for (q = 1; q < avctx->qmax; q++) { unsigned score = ctx->mb_rc[q][mb].bits*lambda+ ((unsigned)ctx->mb_rc[q][mb].ssd<mb_rc[qscale][mb].bits; ctx->mb_qscale[mb] = qscale; ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits; } bits = (bits+31)&~31; // padding if (bits > ctx->frame_bits) break; } //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n", // lambda, last_higher, last_lower, bits, ctx->frame_bits); if (end) { if (bits > ctx->frame_bits) return -1; break; } if (bits < ctx->frame_bits) { last_lower = FFMIN(lambda, last_lower); if (last_higher != 0) lambda = (lambda+last_higher)>>1; else lambda -= down_step; down_step = FFMIN((int64_t)down_step*5, INT_MAX); up_step = 1<>1; else if ((int64_t)lambda + up_step > INT_MAX) return -1; else lambda += up_step; up_step = FFMIN((int64_t)up_step*5, INT_MAX); down_step = 1<m.avctx, "out lambda %d\n", lambda); ctx->lambda = lambda; return 0; } static int dnxhd_find_qscale(DNXHDEncContext *ctx) { int bits = 0; int up_step = 1; int down_step = 1; int last_higher = 0; int last_lower = INT_MAX; int qscale; int x, y; qscale = ctx->qscale; for (;;) { bits = 0; ctx->qscale = qscale; // XXX avoid recalculating bits ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits; bits = (bits+31)&~31; // padding if (bits > ctx->frame_bits) break; } //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n", // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower); if (bits < ctx->frame_bits) { if (qscale == 1) return 1; if (last_higher == qscale - 1) { qscale = last_higher; break; } last_lower = FFMIN(qscale, last_lower); if (last_higher != 0) qscale = (qscale+last_higher)>>1; else qscale -= down_step++; if (qscale < 1) qscale = 1; up_step = 1; } else { if (last_lower == qscale + 1) break; last_higher = FFMAX(qscale, last_higher); if (last_lower != INT_MAX) qscale = (qscale+last_lower)>>1; else qscale += up_step++; down_step = 1; if (qscale >= ctx->m.avctx->qmax) return -1; } } //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale); ctx->qscale = qscale; return 0; } #define BUCKET_BITS 8 #define RADIX_PASSES 4 #define NBUCKETS (1 << BUCKET_BITS) static inline int get_bucket(int value, int shift) { value >>= shift; value &= NBUCKETS - 1; return NBUCKETS - 1 - value; } static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS]) { int i, j; memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); for (i = 0; i < size; i++) { int v = data[i].value; for (j = 0; j < RADIX_PASSES; j++) { buckets[j][get_bucket(v, 0)]++; v >>= BUCKET_BITS; } assert(!v); } for (j = 0; j < RADIX_PASSES; j++) { int offset = size; for (i = NBUCKETS - 1; i >= 0; i--) buckets[j][i] = offset -= buckets[j][i]; assert(!buckets[j][0]); } } static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass) { int shift = pass * BUCKET_BITS; int i; for (i = 0; i < size; i++) { int v = get_bucket(data[i].value, shift); int pos = buckets[v]++; dst[pos] = data[i]; } } static void radix_sort(RCCMPEntry *data, int size) { int buckets[RADIX_PASSES][NBUCKETS]; RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size); radix_count(data, size, buckets); radix_sort_pass(tmp, data, size, buckets[0], 0); radix_sort_pass(data, tmp, size, buckets[1], 1); if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { radix_sort_pass(tmp, data, size, buckets[2], 2); radix_sort_pass(data, tmp, size, buckets[3], 3); } av_free(tmp); } static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) { int max_bits = 0; int ret, x, y; if ((ret = dnxhd_find_qscale(ctx)) < 0) return -1; for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) { int mb = y*ctx->m.mb_width+x; int delta_bits; ctx->mb_qscale[mb] = ctx->qscale; ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits; max_bits += ctx->mb_rc[ctx->qscale][mb].bits; if (!RC_VARIANCE) { delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits; ctx->mb_cmp[mb].mb = mb; ctx->mb_cmp[mb].value = delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits : INT_MIN; //avoid increasing qscale } } max_bits += 31; //worst padding } if (!ret) { if (RC_VARIANCE) avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height); radix_sort(ctx->mb_cmp, ctx->m.mb_num); for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { int mb = ctx->mb_cmp[x].mb; max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits; ctx->mb_qscale[mb] = ctx->qscale+1; ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits; } } return 0; } static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) { int i; for (i = 0; i < 3; i++) { ctx->frame.data[i] = frame->data[i]; ctx->frame.linesize[i] = frame->linesize[i]; } for (i = 0; i < ctx->m.avctx->thread_count; i++) { ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<interlaced; ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<interlaced; ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; } ctx->frame.interlaced_frame = frame->interlaced_frame; ctx->cur_field = frame->interlaced_frame && !frame->top_field_first; } static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) { DNXHDEncContext *ctx = avctx->priv_data; int first_field = 1; int offset, i, ret; if (buf_size < ctx->cid_table->frame_size) { av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n"); return -1; } dnxhd_load_picture(ctx, data); encode_coding_unit: for (i = 0; i < 3; i++) { ctx->src[i] = ctx->frame.data[i]; if (ctx->interlaced && ctx->cur_field) ctx->src[i] += ctx->frame.linesize[i]; } dnxhd_write_header(avctx, buf); if (avctx->mb_decision == FF_MB_DECISION_RD) ret = dnxhd_encode_rdo(avctx, ctx); else ret = dnxhd_encode_fast(avctx, ctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints, increase qmax\n"); return -1; } dnxhd_setup_threads_slices(ctx); offset = 0; for (i = 0; i < ctx->m.mb_height; i++) { AV_WB32(ctx->msip + i * 4, offset); offset += ctx->slice_size[i]; assert(!(ctx->slice_size[i] & 3)); } avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size); memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640); AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF if (ctx->interlaced && first_field) { first_field = 0; ctx->cur_field ^= 1; buf += ctx->cid_table->coding_unit_size; buf_size -= ctx->cid_table->coding_unit_size; goto encode_coding_unit; } ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA; return ctx->cid_table->frame_size; } static int dnxhd_encode_end(AVCodecContext *avctx) { DNXHDEncContext *ctx = avctx->priv_data; int max_level = 1<<(ctx->cid_table->bit_depth+2); int i; av_free(ctx->vlc_codes-max_level*2); av_free(ctx->vlc_bits -max_level*2); av_freep(&ctx->run_codes); av_freep(&ctx->run_bits); av_freep(&ctx->mb_bits); av_freep(&ctx->mb_qscale); av_freep(&ctx->mb_rc); av_freep(&ctx->mb_cmp); av_freep(&ctx->slice_size); av_freep(&ctx->slice_offs); av_freep(&ctx->qmatrix_c); av_freep(&ctx->qmatrix_l); av_freep(&ctx->qmatrix_c16); av_freep(&ctx->qmatrix_l16); for (i = 1; i < avctx->thread_count; i++) av_freep(&ctx->thread[i]); return 0; } AVCodec ff_dnxhd_encoder = { .name = "dnxhd", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_DNXHD, .priv_data_size = sizeof(DNXHDEncContext), .init = dnxhd_encode_init, .encode = dnxhd_encode_picture, .close = dnxhd_encode_end, .capabilities = CODEC_CAP_SLICE_THREADS, .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_YUV422P10, PIX_FMT_NONE}, .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), .priv_class = &class, };