convert_from_tensorflow.py: support conv2d with dilation

conv2d with dilation > 1 generates tens of nodes in graph, it is not
easy to parse each node one by one, so we do special tricks to parse
the conv2d layer.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
Guo, Yejun 2019-07-30 09:26:18 +08:00 committed by Pedro Arthur
parent 2c01434d60
commit ddd92ba2c6
1 changed files with 59 additions and 21 deletions

View File

@ -33,9 +33,10 @@ class TFConverter:
self.output_names = []
self.name_node_dict = {}
self.edges = {}
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'LeakyRelu':4}
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
self.conv_paddings = {'VALID':0, 'SAME':1}
self.converted_nodes = set()
self.conv2d_scope_names = set()
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
@ -47,30 +48,45 @@ class TFConverter:
print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
def get_conv2d_params(self, node):
knode = self.name_node_dict[node.input[1]]
bnode = None
activation = 'None'
next = self.edges[node.name][0]
if next.op == 'BiasAdd':
self.converted_nodes.add(next.name)
bnode = self.name_node_dict[next.input[1]]
next = self.edges[next.name][0]
if next.op in self.conv_activations:
self.converted_nodes.add(next.name)
activation = next.op
return knode, bnode, activation
def get_conv2d_params(self, conv2d_scope_name):
knode = self.name_node_dict[conv2d_scope_name + '/kernel']
bnode = self.name_node_dict[conv2d_scope_name + '/bias']
if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
else:
dnode = None
# the BiasAdd name is possible be changed into the output name,
# if activation is None, and BiasAdd.next is the last op which is Identity
if conv2d_scope_name + '/BiasAdd' in self.edges:
activation = self.edges[conv2d_scope_name + '/BiasAdd'][0]
activation = activation.op
else:
activation = 'None'
return knode, bnode, dnode, activation
def dump_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
knode, bnode, activation = self.get_conv2d_params(node)
dilation = node.attr['dilations'].list.i[0]
padding = node.attr['padding'].s
padding = self.conv_paddings[padding.decode("utf-8")]
scope_name = TFConverter.get_scope_name(node.name)
#knode for kernel, bnode for bias, dnode for dilation
knode, bnode, dnode, activation = self.get_conv2d_params(scope_name)
if dnode is not None:
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
else:
dilation = 1
padding = node.attr['padding'].s.decode("utf-8")
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use tricky.
if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
if self.name_node_dict[scope_name + '/stack'].op == "Const":
padding = 'SAME'
padding = self.conv_paddings[padding]
ktensor = knode.attr['value'].tensor
filter_height = ktensor.tensor_shape.dim[0].size
@ -126,9 +142,15 @@ class TFConverter:
for node in self.nodes:
if node.name in self.converted_nodes:
continue
if node.op == 'Conv2D':
self.dump_conv2d_to_file(node, f)
elif node.op == 'DepthToSpace':
# conv2d with dilation generates very complex nodes, so handle it in special
scope_name = TFConverter.get_scope_name(node.name)
if scope_name in self.conv2d_scope_names:
if node.op == 'Conv2D':
self.dump_conv2d_to_file(node, f)
continue
if node.op == 'DepthToSpace':
self.dump_depth2space_to_file(node, f)
elif node.op == 'MirrorPad':
self.dump_mirrorpad_to_file(node, f)
@ -192,11 +214,27 @@ class TFConverter:
self.edges[input] = [node]
@staticmethod
def get_scope_name(name):
index = name.rfind('/')
if index == -1:
return ""
return name[0:index]
def generate_conv2d_scope_names(self):
for node in self.nodes:
if node.op == 'Conv2D':
scope = TFConverter.get_scope_name(node.name)
self.conv2d_scope_names.add(scope)
def run(self):
self.generate_name_node_dict()
self.generate_output_names()
self.remove_identity()
self.generate_edges()
self.generate_conv2d_scope_names()
if self.dump4tb:
self.dump_for_tensorboard()