mirror of https://git.ffmpeg.org/ffmpeg.git
convert_from_tensorflow.py: support conv2d with dilation
conv2d with dilation > 1 generates tens of nodes in graph, it is not easy to parse each node one by one, so we do special tricks to parse the conv2d layer. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
2c01434d60
commit
ddd92ba2c6
|
@ -33,9 +33,10 @@ class TFConverter:
|
|||
self.output_names = []
|
||||
self.name_node_dict = {}
|
||||
self.edges = {}
|
||||
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'LeakyRelu':4}
|
||||
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
|
||||
self.conv_paddings = {'VALID':0, 'SAME':1}
|
||||
self.converted_nodes = set()
|
||||
self.conv2d_scope_names = set()
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
|
||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||
|
||||
|
@ -47,30 +48,45 @@ class TFConverter:
|
|||
print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
|
||||
|
||||
|
||||
def get_conv2d_params(self, node):
|
||||
knode = self.name_node_dict[node.input[1]]
|
||||
bnode = None
|
||||
activation = 'None'
|
||||
next = self.edges[node.name][0]
|
||||
if next.op == 'BiasAdd':
|
||||
self.converted_nodes.add(next.name)
|
||||
bnode = self.name_node_dict[next.input[1]]
|
||||
next = self.edges[next.name][0]
|
||||
if next.op in self.conv_activations:
|
||||
self.converted_nodes.add(next.name)
|
||||
activation = next.op
|
||||
return knode, bnode, activation
|
||||
def get_conv2d_params(self, conv2d_scope_name):
|
||||
knode = self.name_node_dict[conv2d_scope_name + '/kernel']
|
||||
bnode = self.name_node_dict[conv2d_scope_name + '/bias']
|
||||
|
||||
if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
|
||||
dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
|
||||
else:
|
||||
dnode = None
|
||||
|
||||
# the BiasAdd name is possible be changed into the output name,
|
||||
# if activation is None, and BiasAdd.next is the last op which is Identity
|
||||
if conv2d_scope_name + '/BiasAdd' in self.edges:
|
||||
activation = self.edges[conv2d_scope_name + '/BiasAdd'][0]
|
||||
activation = activation.op
|
||||
else:
|
||||
activation = 'None'
|
||||
return knode, bnode, dnode, activation
|
||||
|
||||
|
||||
def dump_conv2d_to_file(self, node, f):
|
||||
assert(node.op == 'Conv2D')
|
||||
self.layer_number = self.layer_number + 1
|
||||
self.converted_nodes.add(node.name)
|
||||
knode, bnode, activation = self.get_conv2d_params(node)
|
||||
|
||||
dilation = node.attr['dilations'].list.i[0]
|
||||
padding = node.attr['padding'].s
|
||||
padding = self.conv_paddings[padding.decode("utf-8")]
|
||||
scope_name = TFConverter.get_scope_name(node.name)
|
||||
#knode for kernel, bnode for bias, dnode for dilation
|
||||
knode, bnode, dnode, activation = self.get_conv2d_params(scope_name)
|
||||
|
||||
if dnode is not None:
|
||||
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
|
||||
else:
|
||||
dilation = 1
|
||||
|
||||
padding = node.attr['padding'].s.decode("utf-8")
|
||||
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use tricky.
|
||||
if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
|
||||
if self.name_node_dict[scope_name + '/stack'].op == "Const":
|
||||
padding = 'SAME'
|
||||
padding = self.conv_paddings[padding]
|
||||
|
||||
ktensor = knode.attr['value'].tensor
|
||||
filter_height = ktensor.tensor_shape.dim[0].size
|
||||
|
@ -126,9 +142,15 @@ class TFConverter:
|
|||
for node in self.nodes:
|
||||
if node.name in self.converted_nodes:
|
||||
continue
|
||||
if node.op == 'Conv2D':
|
||||
self.dump_conv2d_to_file(node, f)
|
||||
elif node.op == 'DepthToSpace':
|
||||
|
||||
# conv2d with dilation generates very complex nodes, so handle it in special
|
||||
scope_name = TFConverter.get_scope_name(node.name)
|
||||
if scope_name in self.conv2d_scope_names:
|
||||
if node.op == 'Conv2D':
|
||||
self.dump_conv2d_to_file(node, f)
|
||||
continue
|
||||
|
||||
if node.op == 'DepthToSpace':
|
||||
self.dump_depth2space_to_file(node, f)
|
||||
elif node.op == 'MirrorPad':
|
||||
self.dump_mirrorpad_to_file(node, f)
|
||||
|
@ -192,11 +214,27 @@ class TFConverter:
|
|||
self.edges[input] = [node]
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_scope_name(name):
|
||||
index = name.rfind('/')
|
||||
if index == -1:
|
||||
return ""
|
||||
return name[0:index]
|
||||
|
||||
|
||||
def generate_conv2d_scope_names(self):
|
||||
for node in self.nodes:
|
||||
if node.op == 'Conv2D':
|
||||
scope = TFConverter.get_scope_name(node.name)
|
||||
self.conv2d_scope_names.add(scope)
|
||||
|
||||
|
||||
def run(self):
|
||||
self.generate_name_node_dict()
|
||||
self.generate_output_names()
|
||||
self.remove_identity()
|
||||
self.generate_edges()
|
||||
self.generate_conv2d_scope_names()
|
||||
|
||||
if self.dump4tb:
|
||||
self.dump_for_tensorboard()
|
||||
|
|
Loading…
Reference in New Issue