avcodec/exr: add DWA decompression support

This commit is contained in:
Paul B Mahol 2021-02-26 15:47:15 +01:00
parent 2fc309e699
commit cc85ca1cb3

View File

@ -66,8 +66,8 @@ enum ExrCompr {
EXR_PXR24, EXR_PXR24,
EXR_B44, EXR_B44,
EXR_B44A, EXR_B44A,
EXR_DWA, EXR_DWAA,
EXR_DWB, EXR_DWAB,
EXR_UNKN, EXR_UNKN,
}; };
@ -119,6 +119,20 @@ typedef struct EXRThreadData {
uint8_t *bitmap; uint8_t *bitmap;
uint16_t *lut; uint16_t *lut;
uint8_t *ac_data;
unsigned ac_size;
uint8_t *dc_data;
unsigned dc_size;
uint8_t *rle_data;
unsigned rle_size;
uint8_t *rle_raw_data;
unsigned rle_raw_size;
float block[3][64];
int ysize, xsize; int ysize, xsize;
int channel_line_size; int channel_line_size;
@ -256,10 +270,10 @@ static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size
return 0; return 0;
} }
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size, static int rle(uint8_t *dst, const uint8_t *src,
int uncompressed_size, EXRThreadData *td) int compressed_size, int uncompressed_size)
{ {
uint8_t *d = td->tmp; uint8_t *d = dst;
const int8_t *s = src; const int8_t *s = src;
int ssize = compressed_size; int ssize = compressed_size;
int dsize = uncompressed_size; int dsize = uncompressed_size;
@ -295,6 +309,14 @@ static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_si
if (dend != d) if (dend != d)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
return 0;
}
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
rle(td->tmp, src, compressed_size, uncompressed_size);
av_assert1(uncompressed_size % 2 == 0); av_assert1(uncompressed_size % 2 == 0);
ctx->dsp.predictor(td->tmp, uncompressed_size); ctx->dsp.predictor(td->tmp, uncompressed_size);
@ -475,18 +497,16 @@ static int huf_uncompress(EXRContext *s,
GetByteContext *gb, GetByteContext *gb,
uint16_t *dst, int dst_size) uint16_t *dst, int dst_size)
{ {
int32_t src_size, im, iM; int32_t im, iM;
uint32_t nBits; uint32_t nBits;
int ret; int ret;
src_size = bytestream2_get_le32(gb);
im = bytestream2_get_le32(gb); im = bytestream2_get_le32(gb);
iM = bytestream2_get_le32(gb); iM = bytestream2_get_le32(gb);
bytestream2_skip(gb, 4); bytestream2_skip(gb, 4);
nBits = bytestream2_get_le32(gb); nBits = bytestream2_get_le32(gb);
if (im < 0 || im >= HUF_ENCSIZE || if (im < 0 || im >= HUF_ENCSIZE ||
iM < 0 || iM >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)
src_size < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
bytestream2_skip(gb, 4); bytestream2_skip(gb, 4);
@ -659,6 +679,7 @@ static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
maxval = reverse_lut(td->bitmap, td->lut); maxval = reverse_lut(td->bitmap, td->lut);
bytestream2_skip(&gb, 4);
ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t)); ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
if (ret) if (ret)
return ret; return ret;
@ -917,6 +938,284 @@ static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size
return 0; return 0;
} }
static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
{
int ret = 0, n = 1;
while (n < 64) {
uint16_t val = bytestream2_get_ne16(gb);
if (val == 0xff00) {
n = 64;
} else if ((val >> 8) == 0xff) {
n += val & 0xff;
} else {
ret = n;
block[ff_zigzag_direct[n]] = exr_half2float(val).f;
n++;
}
}
return ret;
}
static void idct_1d(float *blk, int step)
{
const float a = .5f * cosf( M_PI / 4.f);
const float b = .5f * cosf( M_PI / 16.f);
const float c = .5f * cosf( M_PI / 8.f);
const float d = .5f * cosf(3.f*M_PI / 16.f);
const float e = .5f * cosf(5.f*M_PI / 16.f);
const float f = .5f * cosf(3.f*M_PI / 8.f);
const float g = .5f * cosf(7.f*M_PI / 16.f);
float alpha[4], beta[4], theta[4], gamma[4];
alpha[0] = c * blk[2 * step];
alpha[1] = f * blk[2 * step];
alpha[2] = c * blk[6 * step];
alpha[3] = f * blk[6 * step];
beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
theta[0] = a * (blk[0 * step] + blk[4 * step]);
theta[3] = a * (blk[0 * step] - blk[4 * step]);
theta[1] = alpha[0] + alpha[3];
theta[2] = alpha[1] - alpha[2];
gamma[0] = theta[0] + theta[1];
gamma[1] = theta[3] + theta[2];
gamma[2] = theta[3] - theta[2];
gamma[3] = theta[0] - theta[1];
blk[0 * step] = gamma[0] + beta[0];
blk[1 * step] = gamma[1] + beta[1];
blk[2 * step] = gamma[2] + beta[2];
blk[3 * step] = gamma[3] + beta[3];
blk[4 * step] = gamma[3] - beta[3];
blk[5 * step] = gamma[2] - beta[2];
blk[6 * step] = gamma[1] - beta[1];
blk[7 * step] = gamma[0] - beta[0];
}
static void dct_inverse(float *block)
{
for (int i = 0; i < 8; i++)
idct_1d(block + i, 8);
for (int i = 0; i < 8; i++) {
idct_1d(block, 1);
block += 8;
}
}
static void convert(float y, float u, float v,
float *b, float *g, float *r)
{
*r = y + 1.5747f * v;
*g = y - 0.1873f * u - 0.4682f * v;
*b = y + 1.8556f * u;
}
static float to_linear(float x, float scale)
{
float ax = fabsf(x);
if (ax <= 1.f) {
return FFSIGN(x) * powf(ax, 2.2f * scale);
} else {
const float log_base = expf(2.2f * scale);
return FFSIGN(x) * powf(log_base, ax - 1.f);
}
}
static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
int64_t version, lo_usize, lo_size;
int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
int64_t ac_count, dc_count, ac_compression;
const int dc_w = td->xsize >> 3;
const int dc_h = td->ysize >> 3;
GetByteContext gb, agb;
int skip, ret;
if (compressed_size <= 88)
return AVERROR_INVALIDDATA;
version = AV_RL64(src + 0);
if (version != 2)
return AVERROR_INVALIDDATA;
lo_usize = AV_RL64(src + 8);
lo_size = AV_RL64(src + 16);
ac_size = AV_RL64(src + 24);
dc_size = AV_RL64(src + 32);
rle_csize = AV_RL64(src + 40);
rle_usize = AV_RL64(src + 48);
rle_raw_size = AV_RL64(src + 56);
ac_count = AV_RL64(src + 64);
dc_count = AV_RL64(src + 72);
ac_compression = AV_RL64(src + 80);
if (compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize)
return AVERROR_INVALIDDATA;
bytestream2_init(&gb, src + 88, compressed_size - 88);
skip = bytestream2_get_le16(&gb);
if (skip < 2)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, skip - 2);
if (lo_size > 0) {
if (lo_usize > uncompressed_size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, lo_size);
}
if (ac_size > 0) {
unsigned long dest_len = ac_count * 2LL;
GetByteContext agb = gb;
if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
if (!td->ac_data)
return AVERROR(ENOMEM);
switch (ac_compression) {
case 0:
ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
if (ret < 0)
return ret;
break;
case 1:
if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
dest_len != ac_count * 2LL)
return AVERROR_INVALIDDATA;
break;
default:
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gb, ac_size);
}
if (dc_size > 0) {
unsigned long dest_len = dc_count * 2LL;
GetByteContext agb = gb;
if (dc_count > (6LL * td->xsize * td->ysize + 63) / 64)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
if (!td->dc_data)
return AVERROR(ENOMEM);
if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
(dest_len != dc_count * 2LL))
return AVERROR_INVALIDDATA;
s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
bytestream2_skip(&gb, dc_size);
}
if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
unsigned long dest_len = rle_usize;
av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
if (!td->rle_data)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
if (!td->rle_raw_data)
return AVERROR(ENOMEM);
if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
(dest_len != rle_usize))
return AVERROR_INVALIDDATA;
ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
if (ret < 0)
return ret;
bytestream2_skip(&gb, rle_csize);
}
bytestream2_init(&agb, td->ac_data, ac_count * 2);
for (int y = 0; y < td->ysize; y += 8) {
for (int x = 0; x < td->xsize; x += 8) {
memset(td->block, 0, sizeof(td->block));
for (int j = 0; j < 3; j++) {
float *block = td->block[j];
const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
uint16_t *dc = (uint16_t *)td->dc_data;
float dc_val = dc[idx];
dc_val = exr_half2float(dc_val).f;
block[0] = dc_val;
ac_uncompress(s, &agb, block);
dct_inverse(block);
}
{
const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
const int o = s->nb_channels == 4;
float *bo = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
float *go = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
float *ro = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
float *yb = td->block[0];
float *ub = td->block[1];
float *vb = td->block[2];
for (int yy = 0; yy < 8; yy++) {
for (int xx = 0; xx < 8; xx++) {
const int idx = xx + yy * 8;
convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
bo[xx] = to_linear(bo[xx], scale);
go[xx] = to_linear(go[xx], scale);
ro[xx] = to_linear(ro[xx], scale);
}
bo += td->xsize * s->nb_channels;
go += td->xsize * s->nb_channels;
ro += td->xsize * s->nb_channels;
}
}
}
}
if (s->nb_channels < 4)
return 0;
for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
for (int x = 0; x < td->xsize; x++)
ao[x] = exr_half2float(ai0[x] | (ai1[x] << 8)).i;
}
return 0;
}
static int decode_block(AVCodecContext *avctx, void *tdata, static int decode_block(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr) int jobnr, int threadnr)
{ {
@ -1072,6 +1371,10 @@ static int decode_block(AVCodecContext *avctx, void *tdata,
case EXR_B44A: case EXR_B44A:
ret = b44_uncompress(s, src, data_size, uncompressed_size, td); ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
break; break;
case EXR_DWAA:
case EXR_DWAB:
ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
break;
} }
if (ret < 0) { if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n"); av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
@ -1098,7 +1401,6 @@ static int decode_block(AVCodecContext *avctx, void *tdata,
channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset; channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) { if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
/* todo: change this when a floating point pixel format with luma with alpha is implemented */ /* todo: change this when a floating point pixel format with luma with alpha is implemented */
int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count; int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
if (s->is_luma) { if (s->is_luma) {
@ -1121,7 +1423,9 @@ static int decode_block(AVCodecContext *avctx, void *tdata,
memset(ptr_x, 0, bxmin); memset(ptr_x, 0, bxmin);
ptr_x += window_xoffset; ptr_x += window_xoffset;
if (s->pixel_type == EXR_FLOAT) { if (s->pixel_type == EXR_FLOAT ||
s->compression == EXR_DWAA ||
s->compression == EXR_DWAB) {
// 32-bit // 32-bit
union av_intfloat32 t; union av_intfloat32 t;
if (trc_func && c < 3) { if (trc_func && c < 3) {
@ -1766,6 +2070,13 @@ static int decode_frame(AVCodecContext *avctx, void *data,
if ((ret = decode_header(s, picture)) < 0) if ((ret = decode_header(s, picture)) < 0)
return ret; return ret;
if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
s->pixel_type == EXR_HALF) {
s->current_channel_offset *= 2;
for (int i = 0; i < 4; i++)
s->channel_offsets[i] *= 2;
}
switch (s->pixel_type) { switch (s->pixel_type) {
case EXR_FLOAT: case EXR_FLOAT:
case EXR_HALF: case EXR_HALF:
@ -1820,8 +2131,12 @@ static int decode_frame(AVCodecContext *avctx, void *data,
case EXR_PIZ: case EXR_PIZ:
case EXR_B44: case EXR_B44:
case EXR_B44A: case EXR_B44A:
case EXR_DWAA:
s->scan_lines_per_block = 32; s->scan_lines_per_block = 32;
break; break;
case EXR_DWAB:
s->scan_lines_per_block = 256;
break;
default: default:
avpriv_report_missing_feature(avctx, "Compression %d", s->compression); avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
return AVERROR_PATCHWELCOME; return AVERROR_PATCHWELCOME;
@ -1981,6 +2296,10 @@ static av_cold int decode_end(AVCodecContext *avctx)
av_freep(&td->lut); av_freep(&td->lut);
av_freep(&td->he); av_freep(&td->he);
av_freep(&td->freq); av_freep(&td->freq);
av_freep(&td->ac_data);
av_freep(&td->dc_data);
av_freep(&td->rle_data);
av_freep(&td->rle_raw_data);
ff_free_vlc(&td->vlc); ff_free_vlc(&td->vlc);
} }