imc: move channel-specific data into separate context

This will be useful for Indeo Audio decoder which is almost the same
but supports stereo.
This commit is contained in:
Kostya Shishkov 2012-06-02 20:30:23 +02:00
parent 803391f719
commit c45e2da617
1 changed files with 217 additions and 187 deletions

View File

@ -49,9 +49,7 @@
#define BANDS 32
#define COEFFS 256
typedef struct {
AVFrame frame;
typedef struct IMCChannel {
float old_floor[BANDS];
float flcoeffs1[BANDS];
float flcoeffs2[BANDS];
@ -61,16 +59,6 @@ typedef struct {
float flcoeffs6[BANDS];
float CWdecoded[COEFFS];
/** MDCT tables */
//@{
float mdct_sine_window[COEFFS];
float post_cos[COEFFS];
float post_sin[COEFFS];
float pre_coef1[COEFFS];
float pre_coef2[COEFFS];
float last_fft_im[COEFFS];
//@}
int bandWidthT[BANDS]; ///< codewords per band
int bitsBandT[BANDS]; ///< how many bits per codeword in band
int CWlengthT[COEFFS]; ///< how many bits in each codeword
@ -82,9 +70,28 @@ typedef struct {
int skipFlagCount[BANDS]; ///< skipped coeffients per band
int skipFlags[COEFFS]; ///< skip coefficient decoding or not
int codewords[COEFFS]; ///< raw codewords read from bitstream
float last_fft_im[COEFFS];
int decoder_reset;
} IMCChannel;
typedef struct {
AVFrame frame;
IMCChannel chctx[1];
/** MDCT tables */
//@{
float mdct_sine_window[COEFFS];
float post_cos[COEFFS];
float post_sin[COEFFS];
float pre_coef1[COEFFS];
float pre_coef2[COEFFS];
//@}
float sqrt_tab[30];
GetBitContext gb;
int decoder_reset;
float one_div_log2;
DSPContext dsp;
@ -115,10 +122,15 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
return AVERROR_PATCHWELCOME;
}
q->decoder_reset = 1;
for (j = 0; j < avctx->channels; j++) {
q->chctx[j].decoder_reset = 1;
for (i = 0; i < BANDS; i++)
q->old_floor[i] = 1.0;
for (i = 0; i < BANDS; i++)
q->chctx[j].old_floor[i] = 1.0;
for (i = 0; i < COEFFS / 2; i++)
q->chctx[j].last_fft_im[i] = 0;
}
/* Build mdct window, a simple sine window normalized with sqrt(2) */
ff_sine_window_init(q->mdct_sine_window, COEFFS);
@ -138,8 +150,6 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
}
q->last_fft_im[i] = 0;
}
/* Generate a square root table */
@ -164,8 +174,9 @@ static av_cold int imc_decode_init(AVCodecContext *avctx)
return ret;
}
ff_dsputil_init(&q->dsp, avctx);
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
avctx->channel_layout = AV_CH_LAYOUT_MONO;
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
: AV_CH_LAYOUT_STEREO;
avcodec_get_frame_defaults(&q->frame);
avctx->coded_frame = &q->frame;
@ -313,8 +324,8 @@ static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
/**
* Perform bit allocation depending on bits available
*/
static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
int flag)
static int bit_allocation(IMCContext *q, IMCChannel *chctx,
int stream_format_code, int freebits, int flag)
{
int i, j;
const float limit = -1.e20;
@ -333,43 +344,43 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
int found_indx = 0;
for (i = 0; i < BANDS; i++)
highest = FFMAX(highest, q->flcoeffs1[i]);
highest = FFMAX(highest, chctx->flcoeffs1[i]);
for (i = 0; i < BANDS - 1; i++)
q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i]) / log(2);
q->flcoeffs4[BANDS - 1] = limit;
chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log(chctx->flcoeffs5[i]) / log(2);
chctx->flcoeffs4[BANDS - 1] = limit;
highest = highest * 0.25;
for (i = 0; i < BANDS; i++) {
indx = -1;
if ((band_tab[i + 1] - band_tab[i]) == q->bandWidthT[i])
if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
indx = 0;
if ((band_tab[i + 1] - band_tab[i]) > q->bandWidthT[i])
if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
indx = 1;
if (((band_tab[i + 1] - band_tab[i]) / 2) >= q->bandWidthT[i])
if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
indx = 2;
if (indx == -1)
return AVERROR_INVALIDDATA;
q->flcoeffs4[i] += xTab[(indx * 2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
}
if (stream_format_code & 0x2) {
q->flcoeffs4[0] = limit;
q->flcoeffs4[1] = limit;
q->flcoeffs4[2] = limit;
q->flcoeffs4[3] = limit;
chctx->flcoeffs4[0] = limit;
chctx->flcoeffs4[1] = limit;
chctx->flcoeffs4[2] = limit;
chctx->flcoeffs4[3] = limit;
}
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
iacc += q->bandWidthT[i];
summa += q->bandWidthT[i] * q->flcoeffs4[i];
iacc += chctx->bandWidthT[i];
summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
}
q->bandWidthT[BANDS - 1] = 0;
chctx->bandWidthT[BANDS - 1] = 0;
summa = (summa * 0.5 - freebits) / iacc;
@ -382,13 +393,13 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
iacc = 0;
for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
q->bitsBandT[j] = cwlen;
summer += q->bandWidthT[j] * cwlen;
chctx->bitsBandT[j] = cwlen;
summer += chctx->bandWidthT[j] * cwlen;
if (cwlen > 0)
iacc += q->bandWidthT[j];
iacc += chctx->bandWidthT[j];
}
flg = t2;
@ -405,13 +416,13 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->CWlengthT[j] = q->bitsBandT[i];
chctx->CWlengthT[j] = chctx->bitsBandT[i];
}
if (freebits > summer) {
for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
: (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
}
highest = 0.0;
@ -432,11 +443,11 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
if (highest > -1.e20) {
workT[found_indx] -= 2.0;
if (++q->bitsBandT[found_indx] == 6)
if (++chctx->bitsBandT[found_indx] == 6)
workT[found_indx] = -1.e20;
for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
q->CWlengthT[j]++;
chctx->CWlengthT[j]++;
summer++;
}
}
@ -444,7 +455,7 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
}
if (freebits < summer) {
for (i = 0; i < BANDS; i++) {
workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585)
workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
: 1.e20;
}
if (stream_format_code & 0x2) {
@ -466,12 +477,12 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
// break;
workT[low_indx] = lowest + 2.0;
if (!--q->bitsBandT[low_indx])
if (!--chctx->bitsBandT[low_indx])
workT[low_indx] = 1.e20;
for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
if (q->CWlengthT[j] > 0) {
q->CWlengthT[j]--;
if (chctx->CWlengthT[j] > 0) {
chctx->CWlengthT[j]--;
summer--;
}
}
@ -480,54 +491,54 @@ static int bit_allocation(IMCContext *q, int stream_format_code, int freebits,
return 0;
}
static void imc_get_skip_coeff(IMCContext *q)
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
{
int i, j;
memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
for (i = 0; i < BANDS; i++) {
if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
continue;
if (!q->skipFlagRaw[i]) {
q->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
if (!chctx->skipFlagRaw[i]) {
chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->skipFlags[j] = get_bits1(&q->gb);
if (q->skipFlags[j])
q->skipFlagCount[i]++;
chctx->skipFlags[j] = get_bits1(&q->gb);
if (chctx->skipFlags[j])
chctx->skipFlagCount[i]++;
}
} else {
for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
if (!get_bits1(&q->gb)) { // 0
q->skipFlagBits[i]++;
q->skipFlags[j] = 1;
q->skipFlags[j + 1] = 1;
q->skipFlagCount[i] += 2;
chctx->skipFlagBits[i]++;
chctx->skipFlags[j] = 1;
chctx->skipFlags[j + 1] = 1;
chctx->skipFlagCount[i] += 2;
} else {
if (get_bits1(&q->gb)) { // 11
q->skipFlagBits[i] += 2;
q->skipFlags[j] = 0;
q->skipFlags[j + 1] = 1;
q->skipFlagCount[i]++;
chctx->skipFlagBits[i] += 2;
chctx->skipFlags[j] = 0;
chctx->skipFlags[j + 1] = 1;
chctx->skipFlagCount[i]++;
} else {
q->skipFlagBits[i] += 3;
q->skipFlags[j + 1] = 0;
chctx->skipFlagBits[i] += 3;
chctx->skipFlags[j + 1] = 0;
if (!get_bits1(&q->gb)) { // 100
q->skipFlags[j] = 1;
q->skipFlagCount[i]++;
chctx->skipFlags[j] = 1;
chctx->skipFlagCount[i]++;
} else { // 101
q->skipFlags[j] = 0;
chctx->skipFlags[j] = 0;
}
}
}
}
if (j < band_tab[i + 1]) {
q->skipFlagBits[i]++;
if ((q->skipFlags[j] = get_bits1(&q->gb)))
q->skipFlagCount[i]++;
chctx->skipFlagBits[i]++;
if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
chctx->skipFlagCount[i]++;
}
}
}
@ -536,7 +547,8 @@ static void imc_get_skip_coeff(IMCContext *q)
/**
* Increase highest' band coefficient sizes as some bits won't be used
*/
static void imc_adjust_bit_allocation(IMCContext *q, int summer)
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
int summer)
{
float workT[32];
int corrected = 0;
@ -545,8 +557,8 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
int found_indx = 0;
for (i = 0; i < BANDS; i++) {
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20
: (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
: (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
}
while (corrected < summer) {
@ -564,12 +576,12 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
if (highest > -1.e20) {
workT[found_indx] -= 2.0;
if (++(q->bitsBandT[found_indx]) == 6)
if (++(chctx->bitsBandT[found_indx]) == 6)
workT[found_indx] = -1.e20;
for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
q->CWlengthT[j]++;
if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
chctx->CWlengthT[j]++;
corrected++;
}
}
@ -577,17 +589,17 @@ static void imc_adjust_bit_allocation(IMCContext *q, int summer)
}
}
static void imc_imdct256(IMCContext *q)
static void imc_imdct256(IMCContext *q, IMCChannel *chctx)
{
int i;
float re, im;
/* prerotation */
for (i = 0; i < COEFFS / 2; i++) {
q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef2[i] * q->CWdecoded[i * 2]);
q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef1[i] * q->CWdecoded[i * 2]);
q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
(q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
}
/* FFT */
@ -598,15 +610,16 @@ static void imc_imdct256(IMCContext *q)
for (i = 0; i < COEFFS / 2; i++) {
re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
q->out_samples[i * 2] = (q->mdct_sine_window[COEFFS - 1 - i * 2] * q->last_fft_im[i])
q->out_samples[i * 2] = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
+ (q->mdct_sine_window[i * 2] * re);
q->out_samples[COEFFS - 1 - i * 2] = (q->mdct_sine_window[i * 2] * q->last_fft_im[i])
q->out_samples[COEFFS - 1 - i * 2] = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
- (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
q->last_fft_im[i] = im;
chctx->last_fft_im[i] = im;
}
}
static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
int stream_format_code)
{
int i, j;
int middle_value, cw_len, max_size;
@ -614,30 +627,30 @@ static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
for (i = 0; i < BANDS; i++) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWdecoded[j] = 0;
cw_len = q->CWlengthT[j];
chctx->CWdecoded[j] = 0;
cw_len = chctx->CWlengthT[j];
if (cw_len <= 0 || q->skipFlags[j])
if (cw_len <= 0 || chctx->skipFlags[j])
continue;
max_size = 1 << cw_len;
middle_value = max_size >> 1;
if (q->codewords[j] >= max_size || q->codewords[j] < 0)
if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
return AVERROR_INVALIDDATA;
if (cw_len >= 4) {
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
if (q->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
if (chctx->codewords[j] >= middle_value)
chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
else
q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
}else{
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
if (q->codewords[j] >= middle_value)
q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
if (chctx->codewords[j] >= middle_value)
chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
else
q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
}
}
}
@ -645,16 +658,16 @@ static int inverse_quant_coeff(IMCContext *q, int stream_format_code)
}
static int imc_get_coeffs(IMCContext *q)
static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
{
int i, j, cw_len, cw;
for (i = 0; i < BANDS; i++) {
if (!q->sumLenArr[i])
if (!chctx->sumLenArr[i])
continue;
if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
cw_len = q->CWlengthT[j];
cw_len = chctx->CWlengthT[j];
cw = 0;
if (get_bits_count(&q->gb) + cw_len > 512) {
@ -662,47 +675,25 @@ static int imc_get_coeffs(IMCContext *q)
return AVERROR_INVALIDDATA;
}
if (cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
cw = get_bits(&q->gb, cw_len);
q->codewords[j] = cw;
chctx->codewords[j] = cw;
}
}
}
return 0;
}
static int imc_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
IMCContext *q = avctx->priv_data;
int stream_format_code;
int imc_hdr, i, j, ret;
int flag;
int bits, summer;
int counter, bitscount;
LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
IMCChannel *chctx = q->chctx + ch;
if (buf_size < IMC_BLOCK_SIZE) {
av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
return AVERROR_INVALIDDATA;
}
/* get output buffer */
q->frame.nb_samples = COEFFS;
if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
q->out_samples = (float*)q->frame.data[0];
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
/* Check the frame header */
imc_hdr = get_bits(&q->gb, 9);
@ -721,90 +712,90 @@ static int imc_decode_frame(AVCodecContext *avctx, void *data,
// av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
if (stream_format_code & 0x04)
q->decoder_reset = 1;
chctx->decoder_reset = 1;
if (q->decoder_reset) {
if (chctx->decoder_reset) {
memset(q->out_samples, 0, sizeof(q->out_samples));
for (i = 0; i < BANDS; i++)
q->old_floor[i] = 1.0;
chctx->old_floor[i] = 1.0;
for (i = 0; i < COEFFS; i++)
q->CWdecoded[i] = 0;
q->decoder_reset = 0;
chctx->CWdecoded[i] = 0;
chctx->decoder_reset = 0;
}
flag = get_bits1(&q->gb);
imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
if (stream_format_code & 0x4)
imc_decode_level_coefficients(q, q->levlCoeffBuf,
q->flcoeffs1, q->flcoeffs2);
imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
chctx->flcoeffs1, chctx->flcoeffs2);
else
imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor,
q->flcoeffs1, q->flcoeffs2);
imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
chctx->flcoeffs1, chctx->flcoeffs2);
memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
counter = 0;
for (i = 0; i < BANDS; i++) {
if (q->levlCoeffBuf[i] == 16) {
q->bandWidthT[i] = 0;
if (chctx->levlCoeffBuf[i] == 16) {
chctx->bandWidthT[i] = 0;
counter++;
} else
q->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
}
memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
for (i = 0; i < BANDS - 1; i++) {
if (q->bandWidthT[i])
q->bandFlagsBuf[i] = get_bits1(&q->gb);
if (chctx->bandWidthT[i])
chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
}
imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
bitscount = 0;
/* first 4 bands will be assigned 5 bits per coefficient */
if (stream_format_code & 0x2) {
bitscount += 15;
q->bitsBandT[0] = 5;
q->CWlengthT[0] = 5;
q->CWlengthT[1] = 5;
q->CWlengthT[2] = 5;
chctx->bitsBandT[0] = 5;
chctx->CWlengthT[0] = 5;
chctx->CWlengthT[1] = 5;
chctx->CWlengthT[2] = 5;
for (i = 1; i < 4; i++) {
bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
q->bitsBandT[i] = bits;
bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
chctx->bitsBandT[i] = bits;
for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
q->CWlengthT[j] = bits;
chctx->CWlengthT[j] = bits;
bitscount += bits;
}
}
}
if ((ret = bit_allocation(q, stream_format_code,
if ((ret = bit_allocation(q, chctx, stream_format_code,
512 - bitscount - get_bits_count(&q->gb),
flag)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
q->decoder_reset = 1;
chctx->decoder_reset = 1;
return ret;
}
for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0;
q->skipFlagRaw[i] = 0;
chctx->sumLenArr[i] = 0;
chctx->skipFlagRaw[i] = 0;
for (j = band_tab[i]; j < band_tab[i + 1]; j++)
q->sumLenArr[i] += q->CWlengthT[j];
if (q->bandFlagsBuf[i])
if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
q->skipFlagRaw[i] = 1;
chctx->sumLenArr[i] += chctx->CWlengthT[j];
if (chctx->bandFlagsBuf[i])
if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
chctx->skipFlagRaw[i] = 1;
}
imc_get_skip_coeff(q);
imc_get_skip_coeff(q, chctx);
for (i = 0; i < BANDS; i++) {
q->flcoeffs6[i] = q->flcoeffs1[i];
chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
/* band has flag set and at least one coded coefficient */
if (q->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != q->skipFlagCount[i]) {
q->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - q->skipFlagCount[i])];
if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
}
}
@ -812,49 +803,88 @@ static int imc_decode_frame(AVCodecContext *avctx, void *data,
bits = summer = 0;
for (i = 0; i < BANDS; i++) {
if (q->bandFlagsBuf[i]) {
if (chctx->bandFlagsBuf[i]) {
for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
if (q->skipFlags[j]) {
summer += q->CWlengthT[j];
q->CWlengthT[j] = 0;
if (chctx->skipFlags[j]) {
summer += chctx->CWlengthT[j];
chctx->CWlengthT[j] = 0;
}
}
bits += q->skipFlagBits[i];
summer -= q->skipFlagBits[i];
bits += chctx->skipFlagBits[i];
summer -= chctx->skipFlagBits[i];
}
}
imc_adjust_bit_allocation(q, summer);
imc_adjust_bit_allocation(q, chctx, summer);
for (i = 0; i < BANDS; i++) {
q->sumLenArr[i] = 0;
chctx->sumLenArr[i] = 0;
for (j = band_tab[i]; j < band_tab[i + 1]; j++)
if (!q->skipFlags[j])
q->sumLenArr[i] += q->CWlengthT[j];
if (!chctx->skipFlags[j])
chctx->sumLenArr[i] += chctx->CWlengthT[j];
}
memset(q->codewords, 0, sizeof(q->codewords));
memset(chctx->codewords, 0, sizeof(chctx->codewords));
if (imc_get_coeffs(q) < 0) {
if (imc_get_coeffs(q, chctx) < 0) {
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
q->decoder_reset = 1;
chctx->decoder_reset = 1;
return AVERROR_INVALIDDATA;
}
if (inverse_quant_coeff(q, stream_format_code) < 0) {
if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
q->decoder_reset = 1;
chctx->decoder_reset = 1;
return AVERROR_INVALIDDATA;
}
memset(q->skipFlags, 0, sizeof(q->skipFlags));
memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
imc_imdct256(q);
imc_imdct256(q, chctx);
return 0;
}
static int imc_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int ret, i;
IMCContext *q = avctx->priv_data;
LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
if (buf_size < IMC_BLOCK_SIZE) {
av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
return AVERROR_INVALIDDATA;
}
/* get output buffer */
q->frame.nb_samples = COEFFS;
if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
for (i = 0; i < avctx->channels; i++) {
q->out_samples = (float*)q->frame.data[0] + i;
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
buf += IMC_BLOCK_SIZE;
if ((ret = imc_decode_block(avctx, q, i)) < 0)
return ret;
}
*got_frame_ptr = 1;
*(AVFrame *)data = q->frame;
return IMC_BLOCK_SIZE;
return IMC_BLOCK_SIZE * avctx->channels;
}