mirror of https://git.ffmpeg.org/ffmpeg.git
swresample: add exact_rational option
give high quality resampling as good as with linear_interp=on as fast as without linear_interp=on tested visually with ffplay ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000, showcqt=gamma=5" ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000:linear_interp=on, showcqt=gamma=5" ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000:exact_rational=on, showcqt=gamma=5" slightly speed improvement for fair comparison with -cpuflags 0 audio.wav is ~ 1 hour 44100 stereo 16bit wav file ffmpeg -i audio.wav -af aresample=osr=48000 -f null - old new real 13.498s 13.121s user 13.364s 12.987s sys 0.131s 0.129s linear_interp=on old new real 23.035s 23.050s user 22.907s 22.917s sys 0.119s 0.125s exact_rational=on real 12.418s user 12.298s sys 0.114s possibility to decrease memory usage if soft compensation is ignored Signed-off-by: Muhammad Faiz <mfcc64@gmail.com>
This commit is contained in:
parent
5ca44ebd99
commit
b8c6e5a661
|
@ -44,11 +44,15 @@ static int ff_resample_common_##TYPE##_neon(ResampleContext *c, void *dest, cons
|
|||
int dst_index; \
|
||||
int index= c->index; \
|
||||
int frac= c->frac; \
|
||||
int sample_index = index >> c->phase_shift; \
|
||||
int sample_index = 0; \
|
||||
int x4_aligned_filter_length = c->filter_length & ~3; \
|
||||
int x8_aligned_filter_length = c->filter_length & ~7; \
|
||||
\
|
||||
index &= c->phase_mask; \
|
||||
while (index >= c->phase_count) { \
|
||||
sample_index++; \
|
||||
index -= c->phase_count; \
|
||||
} \
|
||||
\
|
||||
for (dst_index = 0; dst_index < n; dst_index++) { \
|
||||
FELEM *filter = ((FELEM *) c->filter_bank) + c->filter_alloc * index; \
|
||||
\
|
||||
|
@ -75,8 +79,11 @@ static int ff_resample_common_##TYPE##_neon(ResampleContext *c, void *dest, cons
|
|||
frac -= c->src_incr; \
|
||||
index++; \
|
||||
} \
|
||||
sample_index += index >> c->phase_shift; \
|
||||
index &= c->phase_mask; \
|
||||
\
|
||||
while (index >= c->phase_count) { \
|
||||
sample_index++; \
|
||||
index -= c->phase_count; \
|
||||
} \
|
||||
} \
|
||||
\
|
||||
if(update_ctx){ \
|
||||
|
|
|
@ -85,6 +85,7 @@ static const AVOption options[]={
|
|||
{"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
|
||||
{"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 24 , PARAM },
|
||||
{"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_BOOL , {.i64=0 }, 0 , 1 , PARAM },
|
||||
{"exact_rational" , "enable exact rational" , OFFSET(exact_rational) , AV_OPT_TYPE_BOOL , {.i64=0 }, 0 , 1 , PARAM },
|
||||
{"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
|
||||
|
||||
/* duplicate option in order to work with avconv */
|
||||
|
|
|
@ -297,13 +297,28 @@ fail:
|
|||
|
||||
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
|
||||
double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
|
||||
double precision, int cheby)
|
||||
double precision, int cheby, int exact_rational)
|
||||
{
|
||||
double cutoff = cutoff0? cutoff0 : 0.97;
|
||||
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
|
||||
int phase_count= 1<<phase_shift;
|
||||
|
||||
if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
|
||||
if (exact_rational) {
|
||||
int phase_count_exact, phase_count_exact_den;
|
||||
|
||||
av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
|
||||
/* FIXME this is not required, but build_filter needs even phase_count */
|
||||
if (phase_count_exact & 1 && phase_count_exact > 1 && phase_count_exact < INT_MAX/2)
|
||||
phase_count_exact *= 2;
|
||||
|
||||
if (phase_count_exact <= phase_count) {
|
||||
/* FIXME this is not required when soft compensation is disabled */
|
||||
phase_count_exact *= phase_count / phase_count_exact;
|
||||
phase_count = phase_count_exact;
|
||||
}
|
||||
}
|
||||
|
||||
if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
|
||||
|| c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
|
||||
|| c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
|
||||
c = av_mallocz(sizeof(*c));
|
||||
|
@ -337,6 +352,7 @@ static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_r
|
|||
|
||||
c->phase_shift = phase_shift;
|
||||
c->phase_mask = phase_count - 1;
|
||||
c->phase_count = phase_count;
|
||||
c->linear = linear;
|
||||
c->factor = factor;
|
||||
c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
|
||||
|
@ -399,7 +415,7 @@ static int swri_resample(ResampleContext *c,
|
|||
uint8_t *dst, const uint8_t *src, int *consumed,
|
||||
int src_size, int dst_size, int update_ctx)
|
||||
{
|
||||
if (c->filter_length == 1 && c->phase_shift == 0) {
|
||||
if (c->filter_length == 1 && c->phase_count == 1) {
|
||||
int index= c->index;
|
||||
int frac= c->frac;
|
||||
int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
|
||||
|
@ -418,7 +434,7 @@ static int swri_resample(ResampleContext *c,
|
|||
c->index = 0;
|
||||
}
|
||||
} else {
|
||||
int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
|
||||
int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
|
||||
int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
|
||||
int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
|
||||
|
||||
|
@ -438,7 +454,7 @@ static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, A
|
|||
int av_unused mm_flags = av_get_cpu_flags();
|
||||
int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
|
||||
(mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
|
||||
int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
|
||||
int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
|
||||
|
||||
if (c->compensation_distance)
|
||||
dst_size = FFMIN(dst_size, c->compensation_distance);
|
||||
|
@ -466,11 +482,11 @@ static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, A
|
|||
static int64_t get_delay(struct SwrContext *s, int64_t base){
|
||||
ResampleContext *c = s->resample;
|
||||
int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
|
||||
num *= 1 << c->phase_shift;
|
||||
num *= c->phase_count;
|
||||
num -= c->index;
|
||||
num *= c->src_incr;
|
||||
num -= c->frac;
|
||||
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
|
||||
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
|
||||
}
|
||||
|
||||
static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
|
||||
|
@ -479,9 +495,9 @@ static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
|
|||
// They also make it easier to proof that changes and optimizations do not
|
||||
// break the upper bound.
|
||||
int64_t num = s->in_buffer_count + 2LL + in_samples;
|
||||
num *= 1 << c->phase_shift;
|
||||
num *= c->phase_count;
|
||||
num -= c->index;
|
||||
num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) << c->phase_shift, AV_ROUND_UP) + 2;
|
||||
num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
|
||||
|
||||
if (c->compensation_distance) {
|
||||
if (num > INT_MAX)
|
||||
|
@ -545,10 +561,13 @@ static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const Audio
|
|||
}
|
||||
|
||||
res = num - *out_sz;
|
||||
*out_idx = c->filter_length + (c->index >> c->phase_shift);
|
||||
*out_idx = c->filter_length;
|
||||
while (c->index < 0) {
|
||||
--*out_idx;
|
||||
c->index += c->phase_count;
|
||||
}
|
||||
*out_sz = FFMAX(*out_sz + c->filter_length,
|
||||
1 + c->filter_length * 2) - *out_idx;
|
||||
c->index &= c->phase_mask;
|
||||
|
||||
return FFMAX(res, 0);
|
||||
}
|
||||
|
|
|
@ -40,8 +40,10 @@ typedef struct ResampleContext {
|
|||
int frac;
|
||||
int src_incr;
|
||||
int compensation_distance;
|
||||
int phase_shift;
|
||||
int phase_mask;
|
||||
/* TODO remove phase_shift and phase_mask */
|
||||
attribute_deprecated int phase_shift;
|
||||
attribute_deprecated int phase_mask;
|
||||
int phase_count;
|
||||
int linear;
|
||||
enum SwrFilterType filter_type;
|
||||
double kaiser_beta;
|
||||
|
|
|
@ -92,9 +92,13 @@ static int RENAME(resample_common)(ResampleContext *c,
|
|||
int dst_index;
|
||||
int index= c->index;
|
||||
int frac= c->frac;
|
||||
int sample_index = index >> c->phase_shift;
|
||||
int sample_index = 0;
|
||||
|
||||
while (index >= c->phase_count) {
|
||||
sample_index++;
|
||||
index -= c->phase_count;
|
||||
}
|
||||
|
||||
index &= c->phase_mask;
|
||||
for (dst_index = 0; dst_index < n; dst_index++) {
|
||||
FELEM *filter = ((FELEM *) c->filter_bank) + c->filter_alloc * index;
|
||||
|
||||
|
@ -111,8 +115,11 @@ static int RENAME(resample_common)(ResampleContext *c,
|
|||
frac -= c->src_incr;
|
||||
index++;
|
||||
}
|
||||
sample_index += index >> c->phase_shift;
|
||||
index &= c->phase_mask;
|
||||
|
||||
while (index >= c->phase_count) {
|
||||
sample_index++;
|
||||
index -= c->phase_count;
|
||||
}
|
||||
}
|
||||
|
||||
if(update_ctx){
|
||||
|
@ -132,12 +139,16 @@ static int RENAME(resample_linear)(ResampleContext *c,
|
|||
int dst_index;
|
||||
int index= c->index;
|
||||
int frac= c->frac;
|
||||
int sample_index = index >> c->phase_shift;
|
||||
int sample_index = 0;
|
||||
#if FILTER_SHIFT == 0
|
||||
double inv_src_incr = 1.0 / c->src_incr;
|
||||
#endif
|
||||
|
||||
index &= c->phase_mask;
|
||||
while (index >= c->phase_count) {
|
||||
sample_index++;
|
||||
index -= c->phase_count;
|
||||
}
|
||||
|
||||
for (dst_index = 0; dst_index < n; dst_index++) {
|
||||
FELEM *filter = ((FELEM *) c->filter_bank) + c->filter_alloc * index;
|
||||
FELEM2 val=0, v2 = 0;
|
||||
|
@ -164,8 +175,11 @@ static int RENAME(resample_linear)(ResampleContext *c,
|
|||
frac -= c->src_incr;
|
||||
index++;
|
||||
}
|
||||
sample_index += index >> c->phase_shift;
|
||||
index &= c->phase_mask;
|
||||
|
||||
while (index >= c->phase_count) {
|
||||
sample_index++;
|
||||
index -= c->phase_count;
|
||||
}
|
||||
}
|
||||
|
||||
if(update_ctx){
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
#include <soxr.h>
|
||||
|
||||
static struct ResampleContext *create(struct ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
|
||||
double cutoff, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta, double precision, int cheby){
|
||||
double cutoff, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta, double precision, int cheby, int exact_rational){
|
||||
soxr_error_t error;
|
||||
|
||||
soxr_datatype_t type =
|
||||
|
|
|
@ -262,7 +262,7 @@ av_cold int swr_init(struct SwrContext *s){
|
|||
}
|
||||
|
||||
if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
|
||||
s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
|
||||
s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby, s->exact_rational);
|
||||
if (!s->resample) {
|
||||
av_log(s, AV_LOG_ERROR, "Failed to initialize resampler\n");
|
||||
return AVERROR(ENOMEM);
|
||||
|
|
|
@ -69,7 +69,7 @@ struct DitherContext {
|
|||
};
|
||||
|
||||
typedef struct ResampleContext * (* resample_init_func)(struct ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
|
||||
double cutoff, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta, double precision, int cheby);
|
||||
double cutoff, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta, double precision, int cheby, int exact_rational);
|
||||
typedef void (* resample_free_func)(struct ResampleContext **c);
|
||||
typedef int (* multiple_resample_func)(struct ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed);
|
||||
typedef int (* resample_flush_func)(struct SwrContext *c);
|
||||
|
@ -126,6 +126,7 @@ struct SwrContext {
|
|||
int filter_size; /**< length of each FIR filter in the resampling filterbank relative to the cutoff frequency */
|
||||
int phase_shift; /**< log2 of the number of entries in the resampling polyphase filterbank */
|
||||
int linear_interp; /**< if 1 then the resampling FIR filter will be linearly interpolated */
|
||||
int exact_rational; /**< if 1 then enable non power of 2 phase_count */
|
||||
double cutoff; /**< resampling cutoff frequency (swr: 6dB point; soxr: 0dB point). 1.0 corresponds to half the output sample rate */
|
||||
int filter_type; /**< swr resampling filter type */
|
||||
double kaiser_beta; /**< swr beta value for Kaiser window (only applicable if filter_type == AV_FILTER_TYPE_KAISER) */
|
||||
|
|
|
@ -29,8 +29,8 @@
|
|||
#include "libavutil/avutil.h"
|
||||
|
||||
#define LIBSWRESAMPLE_VERSION_MAJOR 2
|
||||
#define LIBSWRESAMPLE_VERSION_MINOR 0
|
||||
#define LIBSWRESAMPLE_VERSION_MICRO 101
|
||||
#define LIBSWRESAMPLE_VERSION_MINOR 1
|
||||
#define LIBSWRESAMPLE_VERSION_MICRO 100
|
||||
|
||||
#define LIBSWRESAMPLE_VERSION_INT AV_VERSION_INT(LIBSWRESAMPLE_VERSION_MAJOR, \
|
||||
LIBSWRESAMPLE_VERSION_MINOR, \
|
||||
|
|
|
@ -47,6 +47,10 @@ av_cold void swri_resample_dsp_x86_init(ResampleContext *c)
|
|||
{
|
||||
int av_unused mm_flags = av_get_cpu_flags();
|
||||
|
||||
/* FIXME use phase_count on asm */
|
||||
if (c->phase_count != 1 << c->phase_shift)
|
||||
return;
|
||||
|
||||
switch(c->format){
|
||||
case AV_SAMPLE_FMT_S16P:
|
||||
if (ARCH_X86_32 && EXTERNAL_MMXEXT(mm_flags)) {
|
||||
|
|
Loading…
Reference in New Issue