mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-27 01:42:20 +00:00
dnn_backend_native_layer_mathunary: add ceil support
It can be tested with the model generated with below python script: import tensorflow as tf import os import numpy as np import imageio from tensorflow.python.framework import graph_util name = 'ceil' pb_file_path = os.getcwd() if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)): os.mkdir(pb_file_path+'/{}_savemodel/'.format(name)) with tf.Session(graph=tf.Graph()) as sess: in_img = imageio.imread('detection.jpg') in_img = in_img.astype(np.float32) in_data = in_img[np.newaxis, :] input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') y = tf.math.ceil( input_x, name='dnn_out') sess.run(tf.global_variables_initializer()) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f: f.write(constant_graph.SerializeToString()) print("model.pb generated, please in ffmpeg path use\n \n \ python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \ to generate model.model\n") output = sess.run(y, feed_dict={ input_x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \ to generate output result of tensorflow model\n") print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \ to generate output result of native model\n") Signed-off-by: Mingyu Yin <mingyu.yin@intel.com> Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
fa7ad81dab
commit
9fbdd5454b
@ -130,6 +130,10 @@ int dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_oper
|
||||
for (int i = 0; i < dims_count; ++i)
|
||||
dst[i] = atanh(src[i]);
|
||||
return 0;
|
||||
case DMUO_CEIL:
|
||||
for (int i = 0; i < dims_count; ++i)
|
||||
dst[i] = ceil(src[i]);
|
||||
return 0;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
|
@ -43,6 +43,7 @@ typedef enum {
|
||||
DMUO_ASINH = 10,
|
||||
DMUO_ACOSH = 11,
|
||||
DMUO_ATANH = 12,
|
||||
DMUO_CEIL = 13,
|
||||
DMUO_COUNT
|
||||
} DNNMathUnaryOperation;
|
||||
|
||||
|
@ -56,6 +56,8 @@ static float get_expected(float f, DNNMathUnaryOperation op)
|
||||
return acosh(f);
|
||||
case DMUO_ATANH:
|
||||
return atanh(f);
|
||||
case DMUO_CEIL:
|
||||
return ceil(f);
|
||||
default:
|
||||
av_assert0(!"not supported yet");
|
||||
return 0.f;
|
||||
@ -128,5 +130,7 @@ int main(int agrc, char **argv)
|
||||
return 1;
|
||||
if (test(DMUO_ATANH))
|
||||
return 1;
|
||||
if (test(DMUO_CEIL))
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
@ -72,7 +72,9 @@ class TFConverter:
|
||||
self.conv2d_scopename_inputname_dict = {}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6}
|
||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
|
||||
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 'Acosh':11, 'Atanh':12}
|
||||
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
|
||||
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
|
||||
'Acosh':11, 'Atanh':12, 'Ceil':13}
|
||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||
self.name_operand_dict = {}
|
||||
|
||||
|
@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
|
||||
major = 1
|
||||
|
||||
# increase minor when we don't have to re-convert the model file
|
||||
minor = 18
|
||||
minor = 19
|
||||
|
Loading…
Reference in New Issue
Block a user