dnn_backend_native_layer_mathunary: add ceil support

It can be tested with the model generated with below python script:

import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'ceil'

pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
    os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))

with tf.Session(graph=tf.Graph()) as sess:
    in_img = imageio.imread('detection.jpg')
    in_img = in_img.astype(np.float32)
    in_data = in_img[np.newaxis, :]
    input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    y = tf.math.ceil( input_x, name='dnn_out')
    sess.run(tf.global_variables_initializer())
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])

    with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    print("model.pb generated, please in ffmpeg path use\n \n \
    python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \
    to generate model.model\n")

    output = sess.run(y, feed_dict={ input_x: in_data})
    imageio.imsave("out.jpg", np.squeeze(output))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \
    to generate output result of tensorflow model\n")

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \
    to generate output result of native model\n")

Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Mingyu Yin 2020-07-31 15:41:24 +08:00 committed by Guo, Yejun
parent fa7ad81dab
commit 9fbdd5454b
5 changed files with 13 additions and 2 deletions

View File

@ -130,6 +130,10 @@ int dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_oper
for (int i = 0; i < dims_count; ++i)
dst[i] = atanh(src[i]);
return 0;
case DMUO_CEIL:
for (int i = 0; i < dims_count; ++i)
dst[i] = ceil(src[i]);
return 0;
default:
return -1;
}

View File

@ -43,6 +43,7 @@ typedef enum {
DMUO_ASINH = 10,
DMUO_ACOSH = 11,
DMUO_ATANH = 12,
DMUO_CEIL = 13,
DMUO_COUNT
} DNNMathUnaryOperation;

View File

@ -56,6 +56,8 @@ static float get_expected(float f, DNNMathUnaryOperation op)
return acosh(f);
case DMUO_ATANH:
return atanh(f);
case DMUO_CEIL:
return ceil(f);
default:
av_assert0(!"not supported yet");
return 0.f;
@ -128,5 +130,7 @@ int main(int agrc, char **argv)
return 1;
if (test(DMUO_ATANH))
return 1;
if (test(DMUO_CEIL))
return 1;
return 0;
}

View File

@ -72,7 +72,9 @@ class TFConverter:
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 'Acosh':11, 'Atanh':12}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
'Acosh':11, 'Atanh':12, 'Ceil':13}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}

View File

@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 1
# increase minor when we don't have to re-convert the model file
minor = 18
minor = 19