mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-03 21:42:09 +00:00
AAC encoder: refactor to resynchronize MIPS port
This patch refactors the AAC coders to reuse code between the MIPS port and the regular, portable C code. There were two main functions that had to use hand-optimized versions of quantization code: - search_for_quantizers_twoloop - codebook_trellis_rate Those two were split into their own template header files so they can be inlined inside both the MIPS port and the generic code. In each context, they'll link to their specialized implementations, and thus be optimized by the compiler. This approach I believe is better than maintaining several copies of each function. As past experience has proven, having to keep those in sync was error prone. In this way, they will remain in sync by default. Also, an implementation of the dequantized output argument for the optimized quantize_and_encode functions is included in the patch. While the current implementation of search_for_pred still isn't using it, future iterations of main prediction probably will. It should not imply any measurable performance hit while not being used.
This commit is contained in:
parent
344d519040
commit
8df9bf8e39
@ -48,6 +48,8 @@
|
||||
#include "aacenc_tns.h"
|
||||
#include "aacenc_pred.h"
|
||||
|
||||
#include "libavcodec/aaccoder_twoloop.h"
|
||||
|
||||
/** Frequency in Hz for lower limit of noise substitution **/
|
||||
#define NOISE_LOW_LIMIT 4000
|
||||
|
||||
@ -59,6 +61,8 @@
|
||||
* replace low energy non zero bands */
|
||||
#define NOISE_LAMBDA_REPLACE 1.948f
|
||||
|
||||
#include "libavcodec/aaccoder_trellis.h"
|
||||
|
||||
/**
|
||||
* structure used in optimal codebook search
|
||||
*/
|
||||
@ -181,137 +185,6 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
|
||||
}
|
||||
}
|
||||
|
||||
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
|
||||
int win, int group_len, const float lambda)
|
||||
{
|
||||
BandCodingPath path[120][CB_TOT_ALL];
|
||||
int w, swb, cb, start, size;
|
||||
int i, j;
|
||||
const int max_sfb = sce->ics.max_sfb;
|
||||
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
||||
const int run_esc = (1 << run_bits) - 1;
|
||||
int idx, ppos, count;
|
||||
int stackrun[120], stackcb[120], stack_len;
|
||||
float next_minbits = INFINITY;
|
||||
int next_mincb = 0;
|
||||
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
start = win*128;
|
||||
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||||
path[0][cb].cost = run_bits+4;
|
||||
path[0][cb].prev_idx = -1;
|
||||
path[0][cb].run = 0;
|
||||
}
|
||||
for (swb = 0; swb < max_sfb; swb++) {
|
||||
size = sce->ics.swb_sizes[swb];
|
||||
if (sce->zeroes[win*16 + swb]) {
|
||||
float cost_stay_here = path[swb][0].cost;
|
||||
float cost_get_here = next_minbits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][0].prev_idx = next_mincb;
|
||||
path[swb+1][0].cost = cost_get_here;
|
||||
path[swb+1][0].run = 1;
|
||||
} else {
|
||||
path[swb+1][0].prev_idx = 0;
|
||||
path[swb+1][0].cost = cost_stay_here;
|
||||
path[swb+1][0].run = path[swb][0].run + 1;
|
||||
}
|
||||
next_minbits = path[swb+1][0].cost;
|
||||
next_mincb = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
} else {
|
||||
float minbits = next_minbits;
|
||||
int mincb = next_mincb;
|
||||
int startcb = sce->band_type[win*16+swb];
|
||||
startcb = aac_cb_in_map[startcb];
|
||||
next_minbits = INFINITY;
|
||||
next_mincb = 0;
|
||||
for (cb = 0; cb < startcb; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
for (cb = startcb; cb < CB_TOT_ALL; cb++) {
|
||||
float cost_stay_here, cost_get_here;
|
||||
float bits = 0.0f;
|
||||
if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
continue;
|
||||
}
|
||||
for (w = 0; w < group_len; w++) {
|
||||
bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
||||
&s->scoefs[start + w*128], size,
|
||||
sce->sf_idx[win*16+swb],
|
||||
aac_cb_out_map[cb],
|
||||
0, INFINITY, NULL, 0);
|
||||
}
|
||||
cost_stay_here = path[swb][cb].cost + bits;
|
||||
cost_get_here = minbits + bits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][cb].prev_idx = mincb;
|
||||
path[swb+1][cb].cost = cost_get_here;
|
||||
path[swb+1][cb].run = 1;
|
||||
} else {
|
||||
path[swb+1][cb].prev_idx = cb;
|
||||
path[swb+1][cb].cost = cost_stay_here;
|
||||
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||||
}
|
||||
if (path[swb+1][cb].cost < next_minbits) {
|
||||
next_minbits = path[swb+1][cb].cost;
|
||||
next_mincb = cb;
|
||||
}
|
||||
}
|
||||
}
|
||||
start += sce->ics.swb_sizes[swb];
|
||||
}
|
||||
|
||||
//convert resulting path from backward-linked list
|
||||
stack_len = 0;
|
||||
idx = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
||||
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
||||
idx = cb;
|
||||
ppos = max_sfb;
|
||||
while (ppos > 0) {
|
||||
av_assert1(idx >= 0);
|
||||
cb = idx;
|
||||
stackrun[stack_len] = path[ppos][cb].run;
|
||||
stackcb [stack_len] = cb;
|
||||
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
||||
ppos -= path[ppos][cb].run;
|
||||
stack_len++;
|
||||
}
|
||||
//perform actual band info encoding
|
||||
start = 0;
|
||||
for (i = stack_len - 1; i >= 0; i--) {
|
||||
cb = aac_cb_out_map[stackcb[i]];
|
||||
put_bits(&s->pb, 4, cb);
|
||||
count = stackrun[i];
|
||||
memset(sce->zeroes + win*16 + start, !cb, count);
|
||||
//XXX: memset when band_type is also uint8_t
|
||||
for (j = 0; j < count; j++) {
|
||||
sce->band_type[win*16 + start] = cb;
|
||||
start++;
|
||||
}
|
||||
while (count >= run_esc) {
|
||||
put_bits(&s->pb, run_bits, run_esc);
|
||||
count -= run_esc;
|
||||
}
|
||||
put_bits(&s->pb, run_bits, count);
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct TrellisPath {
|
||||
float cost;
|
||||
@ -508,155 +381,6 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
||||
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
||||
}
|
||||
|
||||
/**
|
||||
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
||||
*/
|
||||
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
||||
AACEncContext *s,
|
||||
SingleChannelElement *sce,
|
||||
const float lambda)
|
||||
{
|
||||
int start = 0, i, w, w2, g;
|
||||
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
||||
float dists[128] = { 0 }, uplims[128] = { 0 };
|
||||
float maxvals[128];
|
||||
int fflag, minscaler;
|
||||
int its = 0;
|
||||
int allz = 0;
|
||||
float minthr = INFINITY;
|
||||
|
||||
// for values above this the decoder might end up in an endless loop
|
||||
// due to always having more bits than what can be encoded.
|
||||
destbits = FFMIN(destbits, 5800);
|
||||
//XXX: some heuristic to determine initial quantizers will reduce search time
|
||||
//determine zero bands and upper limits
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int nz = 0;
|
||||
float uplim = 0.0f, energy = 0.0f;
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||||
uplim += band->threshold;
|
||||
energy += band->energy;
|
||||
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
||||
sce->zeroes[(w+w2)*16+g] = 1;
|
||||
continue;
|
||||
}
|
||||
nz = 1;
|
||||
}
|
||||
uplims[w*16+g] = uplim *512;
|
||||
sce->zeroes[w*16+g] = !nz;
|
||||
if (nz)
|
||||
minthr = FFMIN(minthr, uplim);
|
||||
allz |= nz;
|
||||
}
|
||||
}
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
if (sce->zeroes[w*16+g]) {
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
||||
continue;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
||||
}
|
||||
}
|
||||
|
||||
if (!allz)
|
||||
return;
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *scaled = s->scoefs + start;
|
||||
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
||||
start += sce->ics.swb_sizes[g];
|
||||
}
|
||||
}
|
||||
|
||||
//perform two-loop search
|
||||
//outer loop - improve quality
|
||||
do {
|
||||
int tbits, qstep;
|
||||
minscaler = sce->sf_idx[0];
|
||||
//inner loop - quantize spectrum to fit into given number of bits
|
||||
qstep = its ? 1 : 32;
|
||||
do {
|
||||
int prev = -1;
|
||||
tbits = 0;
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *coefs = &sce->coeffs[start];
|
||||
const float *scaled = &s->scoefs[start];
|
||||
int bits = 0;
|
||||
int cb;
|
||||
float dist = 0.0f;
|
||||
|
||||
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
||||
start += sce->ics.swb_sizes[g];
|
||||
continue;
|
||||
}
|
||||
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
||||
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
int b;
|
||||
dist += quantize_band_cost(s, coefs + w2*128,
|
||||
scaled + w2*128,
|
||||
sce->ics.swb_sizes[g],
|
||||
sce->sf_idx[w*16+g],
|
||||
cb,
|
||||
1.0f,
|
||||
INFINITY,
|
||||
&b,
|
||||
0);
|
||||
bits += b;
|
||||
}
|
||||
dists[w*16+g] = dist - bits;
|
||||
if (prev != -1) {
|
||||
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
||||
}
|
||||
tbits += bits;
|
||||
start += sce->ics.swb_sizes[g];
|
||||
prev = sce->sf_idx[w*16+g];
|
||||
}
|
||||
}
|
||||
if (tbits > destbits) {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] < 218 - qstep)
|
||||
sce->sf_idx[i] += qstep;
|
||||
} else {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] > 60 - qstep)
|
||||
sce->sf_idx[i] -= qstep;
|
||||
}
|
||||
qstep >>= 1;
|
||||
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
||||
qstep = 1;
|
||||
} while (qstep);
|
||||
|
||||
fflag = 0;
|
||||
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int prevsc = sce->sf_idx[w*16+g];
|
||||
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
||||
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
||||
sce->sf_idx[w*16+g]--;
|
||||
else //Try to make sure there is some energy in every band
|
||||
sce->sf_idx[w*16+g]-=2;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
||||
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
||||
if (sce->sf_idx[w*16+g] != prevsc)
|
||||
fflag = 1;
|
||||
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
}
|
||||
}
|
||||
its++;
|
||||
} while (fflag && its < 10);
|
||||
}
|
||||
|
||||
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
||||
SingleChannelElement *sce,
|
||||
|
194
libavcodec/aaccoder_trellis.h
Normal file
194
libavcodec/aaccoder_trellis.h
Normal file
@ -0,0 +1,194 @@
|
||||
/*
|
||||
* AAC encoder trellis codebook selector
|
||||
* Copyright (C) 2008-2009 Konstantin Shishkov
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* AAC encoder trellis codebook selector
|
||||
* @author Konstantin Shishkov
|
||||
*/
|
||||
|
||||
/**
|
||||
* This file contains a template for the codebook_trellis_rate selector function.
|
||||
* It needs to be provided, externally, as an already included declaration,
|
||||
* the following functions from aacenc_quantization/util.h. They're not included
|
||||
* explicitly here to make it possible to provide alternative implementations:
|
||||
* - quantize_band_cost_bits
|
||||
* - abs_pow34_v
|
||||
*/
|
||||
|
||||
#ifndef AVCODEC_AACCODER_TRELLIS_H
|
||||
#define AVCODEC_AACCODER_TRELLIS_H
|
||||
|
||||
#include <float.h>
|
||||
#include "libavutil/mathematics.h"
|
||||
#include "avcodec.h"
|
||||
#include "put_bits.h"
|
||||
#include "aac.h"
|
||||
#include "aacenc.h"
|
||||
#include "aactab.h"
|
||||
#include "aacenctab.h"
|
||||
#include "aac_tablegen_decl.h"
|
||||
|
||||
|
||||
/**
|
||||
* structure used in optimal codebook search
|
||||
*/
|
||||
typedef struct TrellisBandCodingPath {
|
||||
int prev_idx; ///< pointer to the previous path point
|
||||
float cost; ///< path cost
|
||||
int run;
|
||||
} TrellisBandCodingPath;
|
||||
|
||||
|
||||
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
|
||||
int win, int group_len, const float lambda)
|
||||
{
|
||||
TrellisBandCodingPath path[120][CB_TOT_ALL];
|
||||
int w, swb, cb, start, size;
|
||||
int i, j;
|
||||
const int max_sfb = sce->ics.max_sfb;
|
||||
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
||||
const int run_esc = (1 << run_bits) - 1;
|
||||
int idx, ppos, count;
|
||||
int stackrun[120], stackcb[120], stack_len;
|
||||
float next_minbits = INFINITY;
|
||||
int next_mincb = 0;
|
||||
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
start = win*128;
|
||||
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||||
path[0][cb].cost = run_bits+4;
|
||||
path[0][cb].prev_idx = -1;
|
||||
path[0][cb].run = 0;
|
||||
}
|
||||
for (swb = 0; swb < max_sfb; swb++) {
|
||||
size = sce->ics.swb_sizes[swb];
|
||||
if (sce->zeroes[win*16 + swb]) {
|
||||
float cost_stay_here = path[swb][0].cost;
|
||||
float cost_get_here = next_minbits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][0].prev_idx = next_mincb;
|
||||
path[swb+1][0].cost = cost_get_here;
|
||||
path[swb+1][0].run = 1;
|
||||
} else {
|
||||
path[swb+1][0].prev_idx = 0;
|
||||
path[swb+1][0].cost = cost_stay_here;
|
||||
path[swb+1][0].run = path[swb][0].run + 1;
|
||||
}
|
||||
next_minbits = path[swb+1][0].cost;
|
||||
next_mincb = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
} else {
|
||||
float minbits = next_minbits;
|
||||
int mincb = next_mincb;
|
||||
int startcb = sce->band_type[win*16+swb];
|
||||
startcb = aac_cb_in_map[startcb];
|
||||
next_minbits = INFINITY;
|
||||
next_mincb = 0;
|
||||
for (cb = 0; cb < startcb; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
for (cb = startcb; cb < CB_TOT_ALL; cb++) {
|
||||
float cost_stay_here, cost_get_here;
|
||||
float bits = 0.0f;
|
||||
if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
continue;
|
||||
}
|
||||
for (w = 0; w < group_len; w++) {
|
||||
bits += quantize_band_cost_bits(s, &sce->coeffs[start + w*128],
|
||||
&s->scoefs[start + w*128], size,
|
||||
sce->sf_idx[win*16+swb],
|
||||
aac_cb_out_map[cb],
|
||||
0, INFINITY, NULL, 0);
|
||||
}
|
||||
cost_stay_here = path[swb][cb].cost + bits;
|
||||
cost_get_here = minbits + bits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][cb].prev_idx = mincb;
|
||||
path[swb+1][cb].cost = cost_get_here;
|
||||
path[swb+1][cb].run = 1;
|
||||
} else {
|
||||
path[swb+1][cb].prev_idx = cb;
|
||||
path[swb+1][cb].cost = cost_stay_here;
|
||||
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||||
}
|
||||
if (path[swb+1][cb].cost < next_minbits) {
|
||||
next_minbits = path[swb+1][cb].cost;
|
||||
next_mincb = cb;
|
||||
}
|
||||
}
|
||||
}
|
||||
start += sce->ics.swb_sizes[swb];
|
||||
}
|
||||
|
||||
//convert resulting path from backward-linked list
|
||||
stack_len = 0;
|
||||
idx = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
||||
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
||||
idx = cb;
|
||||
ppos = max_sfb;
|
||||
while (ppos > 0) {
|
||||
av_assert1(idx >= 0);
|
||||
cb = idx;
|
||||
stackrun[stack_len] = path[ppos][cb].run;
|
||||
stackcb [stack_len] = cb;
|
||||
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
||||
ppos -= path[ppos][cb].run;
|
||||
stack_len++;
|
||||
}
|
||||
//perform actual band info encoding
|
||||
start = 0;
|
||||
for (i = stack_len - 1; i >= 0; i--) {
|
||||
cb = aac_cb_out_map[stackcb[i]];
|
||||
put_bits(&s->pb, 4, cb);
|
||||
count = stackrun[i];
|
||||
memset(sce->zeroes + win*16 + start, !cb, count);
|
||||
//XXX: memset when band_type is also uint8_t
|
||||
for (j = 0; j < count; j++) {
|
||||
sce->band_type[win*16 + start] = cb;
|
||||
start++;
|
||||
}
|
||||
while (count >= run_esc) {
|
||||
put_bits(&s->pb, run_bits, run_esc);
|
||||
count -= run_esc;
|
||||
}
|
||||
put_bits(&s->pb, run_bits, count);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* AVCODEC_AACCODER_TRELLIS_H */
|
203
libavcodec/aaccoder_twoloop.h
Normal file
203
libavcodec/aaccoder_twoloop.h
Normal file
@ -0,0 +1,203 @@
|
||||
/*
|
||||
* AAC encoder twoloop coder
|
||||
* Copyright (C) 2008-2009 Konstantin Shishkov
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* AAC encoder twoloop coder
|
||||
* @author Konstantin Shishkov
|
||||
*/
|
||||
|
||||
/**
|
||||
* This file contains a template for the twoloop coder function.
|
||||
* It needs to be provided, externally, as an already included declaration,
|
||||
* the following functions from aacenc_quantization/util.h. They're not included
|
||||
* explicitly here to make it possible to provide alternative implementations:
|
||||
* - quantize_band_cost
|
||||
* - abs_pow34_v
|
||||
* - find_max_val
|
||||
* - find_min_book
|
||||
*/
|
||||
|
||||
#ifndef AVCODEC_AACCODER_TWOLOOP_H
|
||||
#define AVCODEC_AACCODER_TWOLOOP_H
|
||||
|
||||
#include <float.h>
|
||||
#include "libavutil/mathematics.h"
|
||||
#include "avcodec.h"
|
||||
#include "put_bits.h"
|
||||
#include "aac.h"
|
||||
#include "aacenc.h"
|
||||
#include "aactab.h"
|
||||
#include "aacenctab.h"
|
||||
#include "aac_tablegen_decl.h"
|
||||
|
||||
|
||||
/**
|
||||
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
||||
*/
|
||||
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
||||
AACEncContext *s,
|
||||
SingleChannelElement *sce,
|
||||
const float lambda)
|
||||
{
|
||||
int start = 0, i, w, w2, g;
|
||||
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
||||
float dists[128] = { 0 }, uplims[128] = { 0 };
|
||||
float maxvals[128];
|
||||
int fflag, minscaler;
|
||||
int its = 0;
|
||||
int allz = 0;
|
||||
float minthr = INFINITY;
|
||||
|
||||
// for values above this the decoder might end up in an endless loop
|
||||
// due to always having more bits than what can be encoded.
|
||||
destbits = FFMIN(destbits, 5800);
|
||||
//XXX: some heuristic to determine initial quantizers will reduce search time
|
||||
//determine zero bands and upper limits
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int nz = 0;
|
||||
float uplim = 0.0f, energy = 0.0f;
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||||
uplim += band->threshold;
|
||||
energy += band->energy;
|
||||
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
||||
sce->zeroes[(w+w2)*16+g] = 1;
|
||||
continue;
|
||||
}
|
||||
nz = 1;
|
||||
}
|
||||
uplims[w*16+g] = uplim *512;
|
||||
sce->zeroes[w*16+g] = !nz;
|
||||
if (nz)
|
||||
minthr = FFMIN(minthr, uplim);
|
||||
allz |= nz;
|
||||
}
|
||||
}
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
if (sce->zeroes[w*16+g]) {
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
||||
continue;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
||||
}
|
||||
}
|
||||
|
||||
if (!allz)
|
||||
return;
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *scaled = s->scoefs + start;
|
||||
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
||||
start += sce->ics.swb_sizes[g];
|
||||
}
|
||||
}
|
||||
|
||||
//perform two-loop search
|
||||
//outer loop - improve quality
|
||||
do {
|
||||
int tbits, qstep;
|
||||
minscaler = sce->sf_idx[0];
|
||||
//inner loop - quantize spectrum to fit into given number of bits
|
||||
qstep = its ? 1 : 32;
|
||||
do {
|
||||
int prev = -1;
|
||||
tbits = 0;
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *coefs = &sce->coeffs[start];
|
||||
const float *scaled = &s->scoefs[start];
|
||||
int bits = 0;
|
||||
int cb;
|
||||
float dist = 0.0f;
|
||||
|
||||
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
||||
start += sce->ics.swb_sizes[g];
|
||||
continue;
|
||||
}
|
||||
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
||||
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
int b;
|
||||
dist += quantize_band_cost(s, coefs + w2*128,
|
||||
scaled + w2*128,
|
||||
sce->ics.swb_sizes[g],
|
||||
sce->sf_idx[w*16+g],
|
||||
cb,
|
||||
1.0f,
|
||||
INFINITY,
|
||||
&b,
|
||||
0);
|
||||
bits += b;
|
||||
}
|
||||
dists[w*16+g] = dist - bits;
|
||||
if (prev != -1) {
|
||||
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
||||
}
|
||||
tbits += bits;
|
||||
start += sce->ics.swb_sizes[g];
|
||||
prev = sce->sf_idx[w*16+g];
|
||||
}
|
||||
}
|
||||
if (tbits > destbits) {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] < 218 - qstep)
|
||||
sce->sf_idx[i] += qstep;
|
||||
} else {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] > 60 - qstep)
|
||||
sce->sf_idx[i] -= qstep;
|
||||
}
|
||||
qstep >>= 1;
|
||||
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
||||
qstep = 1;
|
||||
} while (qstep);
|
||||
|
||||
fflag = 0;
|
||||
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int prevsc = sce->sf_idx[w*16+g];
|
||||
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
||||
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
||||
sce->sf_idx[w*16+g]--;
|
||||
else //Try to make sure there is some energy in every band
|
||||
sce->sf_idx[w*16+g]-=2;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
||||
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
||||
if (sce->sf_idx[w*16+g] != prevsc)
|
||||
fflag = 1;
|
||||
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
}
|
||||
}
|
||||
its++;
|
||||
} while (fflag && its < 10);
|
||||
}
|
||||
|
||||
#endif /* AVCODEC_AACCODER_TWOLOOP_H */
|
@ -249,6 +249,20 @@ static inline float quantize_band_cost(struct AACEncContext *s, const float *in,
|
||||
cb, lambda, uplim, bits, rtz);
|
||||
}
|
||||
|
||||
static inline int quantize_band_cost_bits(struct AACEncContext *s, const float *in,
|
||||
const float *scaled, int size, int scale_idx,
|
||||
int cb, const float lambda, const float uplim,
|
||||
int *bits, int rtz)
|
||||
{
|
||||
int _bits;
|
||||
quantize_and_encode_band_cost(s, NULL, in, NULL, scaled, size, scale_idx,
|
||||
cb, 0.0f, uplim, &_bits, rtz);
|
||||
if (bits) {
|
||||
*bits = _bits;
|
||||
}
|
||||
return _bits;
|
||||
}
|
||||
|
||||
static inline void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
|
||||
const float *in, float *out, int size, int scale_idx,
|
||||
int cb, const float lambda, int rtz)
|
||||
|
@ -63,6 +63,7 @@
|
||||
#include "libavcodec/aacenc.h"
|
||||
#include "libavcodec/aacenctab.h"
|
||||
#include "libavcodec/aactab.h"
|
||||
#include "libavcodec/aacenctab.h"
|
||||
|
||||
#if HAVE_INLINE_ASM
|
||||
typedef struct BandCodingPath {
|
||||
@ -199,11 +200,13 @@ static void quantize_and_encode_band_cost_SQUAD_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
|
||||
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
|
||||
float *p_vec = (float *)ff_aac_codebook_vectors[cb-1];
|
||||
|
||||
abs_pow34_v(s->scoefs, in, size);
|
||||
scaled = s->scoefs;
|
||||
@ -211,6 +214,7 @@ static void quantize_and_encode_band_cost_SQUAD_mips(struct AACEncContext *s,
|
||||
int curidx;
|
||||
int *in_int = (int *)&in[i];
|
||||
int t0, t1, t2, t3, t4, t5, t6, t7;
|
||||
const float *vec;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUND_STANDARD;
|
||||
qc2 = scaled[i+1] * Q34 + ROUND_STANDARD;
|
||||
@ -262,6 +266,14 @@ static void quantize_and_encode_band_cost_SQUAD_mips(struct AACEncContext *s,
|
||||
curidx += 40;
|
||||
|
||||
put_bits(pb, p_bits[curidx], p_codes[curidx]);
|
||||
|
||||
if (out) {
|
||||
vec = &p_vec[curidx*4];
|
||||
out[i+0] = vec[0] * IQ;
|
||||
out[i+1] = vec[1] * IQ;
|
||||
out[i+2] = vec[2] * IQ;
|
||||
out[i+3] = vec[3] * IQ;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -272,11 +284,13 @@ static void quantize_and_encode_band_cost_UQUAD_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
|
||||
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
|
||||
float *p_vec = (float *)ff_aac_codebook_vectors[cb-1];
|
||||
|
||||
abs_pow34_v(s->scoefs, in, size);
|
||||
scaled = s->scoefs;
|
||||
@ -286,6 +300,7 @@ static void quantize_and_encode_band_cost_UQUAD_mips(struct AACEncContext *s,
|
||||
uint8_t v_bits;
|
||||
unsigned int v_codes;
|
||||
int t0, t1, t2, t3, t4;
|
||||
const float *vec;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUND_STANDARD;
|
||||
qc2 = scaled[i+1] * Q34 + ROUND_STANDARD;
|
||||
@ -354,6 +369,14 @@ static void quantize_and_encode_band_cost_UQUAD_mips(struct AACEncContext *s,
|
||||
v_codes = (p_codes[curidx] << count) | (sign & ((1 << count) - 1));
|
||||
v_bits = p_bits[curidx] + count;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
if (out) {
|
||||
vec = &p_vec[curidx*4];
|
||||
out[i+0] = copysignf(vec[0] * IQ, in[i+0]);
|
||||
out[i+1] = copysignf(vec[1] * IQ, in[i+1]);
|
||||
out[i+2] = copysignf(vec[2] * IQ, in[i+2]);
|
||||
out[i+3] = copysignf(vec[3] * IQ, in[i+3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -364,11 +387,13 @@ static void quantize_and_encode_band_cost_SPAIR_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
|
||||
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
|
||||
float *p_vec = (float *)ff_aac_codebook_vectors[cb-1];
|
||||
|
||||
abs_pow34_v(s->scoefs, in, size);
|
||||
scaled = s->scoefs;
|
||||
@ -378,6 +403,7 @@ static void quantize_and_encode_band_cost_SPAIR_mips(struct AACEncContext *s,
|
||||
uint8_t v_bits;
|
||||
unsigned int v_codes;
|
||||
int t0, t1, t2, t3, t4, t5, t6, t7;
|
||||
const float *vec1, *vec2;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUND_STANDARD;
|
||||
qc2 = scaled[i+1] * Q34 + ROUND_STANDARD;
|
||||
@ -433,6 +459,15 @@ static void quantize_and_encode_band_cost_SPAIR_mips(struct AACEncContext *s,
|
||||
v_codes = (p_codes[curidx] << p_bits[curidx2]) | (p_codes[curidx2]);
|
||||
v_bits = p_bits[curidx] + p_bits[curidx2];
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
if (out) {
|
||||
vec1 = &p_vec[curidx*2 ];
|
||||
vec2 = &p_vec[curidx2*2];
|
||||
out[i+0] = vec1[0] * IQ;
|
||||
out[i+1] = vec1[1] * IQ;
|
||||
out[i+2] = vec2[0] * IQ;
|
||||
out[i+3] = vec2[1] * IQ;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -443,20 +478,23 @@ static void quantize_and_encode_band_cost_UPAIR7_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
uint8_t *p_bits = (uint8_t*) ff_aac_spectral_bits[cb-1];
|
||||
uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1];
|
||||
float *p_vec = (float *)ff_aac_codebook_vectors[cb-1];
|
||||
|
||||
abs_pow34_v(s->scoefs, in, size);
|
||||
scaled = s->scoefs;
|
||||
for (i = 0; i < size; i += 4) {
|
||||
int curidx, sign1, count1, sign2, count2;
|
||||
int curidx1, curidx2, sign1, count1, sign2, count2;
|
||||
int *in_int = (int *)&in[i];
|
||||
uint8_t v_bits;
|
||||
unsigned int v_codes;
|
||||
int t0, t1, t2, t3, t4;
|
||||
const float *vec1, *vec2;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUND_STANDARD;
|
||||
qc2 = scaled[i+1] * Q34 + ROUND_STANDARD;
|
||||
@ -514,19 +552,28 @@ static void quantize_and_encode_band_cost_UPAIR7_mips(struct AACEncContext *s,
|
||||
"memory"
|
||||
);
|
||||
|
||||
curidx = 8 * qc1;
|
||||
curidx += qc2;
|
||||
curidx1 = 8 * qc1;
|
||||
curidx1 += qc2;
|
||||
|
||||
v_codes = (p_codes[curidx] << count1) | sign1;
|
||||
v_bits = p_bits[curidx] + count1;
|
||||
v_codes = (p_codes[curidx1] << count1) | sign1;
|
||||
v_bits = p_bits[curidx1] + count1;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
curidx = 8 * qc3;
|
||||
curidx += qc4;
|
||||
curidx2 = 8 * qc3;
|
||||
curidx2 += qc4;
|
||||
|
||||
v_codes = (p_codes[curidx] << count2) | sign2;
|
||||
v_bits = p_bits[curidx] + count2;
|
||||
v_codes = (p_codes[curidx2] << count2) | sign2;
|
||||
v_bits = p_bits[curidx2] + count2;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
if (out) {
|
||||
vec1 = &p_vec[curidx1*2];
|
||||
vec2 = &p_vec[curidx2*2];
|
||||
out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
|
||||
out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
|
||||
out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
|
||||
out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -537,20 +584,23 @@ static void quantize_and_encode_band_cost_UPAIR12_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
uint8_t *p_bits = (uint8_t*) ff_aac_spectral_bits[cb-1];
|
||||
uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1];
|
||||
float *p_vec = (float *)ff_aac_codebook_vectors[cb-1];
|
||||
|
||||
abs_pow34_v(s->scoefs, in, size);
|
||||
scaled = s->scoefs;
|
||||
for (i = 0; i < size; i += 4) {
|
||||
int curidx, sign1, count1, sign2, count2;
|
||||
int curidx1, curidx2, sign1, count1, sign2, count2;
|
||||
int *in_int = (int *)&in[i];
|
||||
uint8_t v_bits;
|
||||
unsigned int v_codes;
|
||||
int t0, t1, t2, t3, t4;
|
||||
const float *vec1, *vec2;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUND_STANDARD;
|
||||
qc2 = scaled[i+1] * Q34 + ROUND_STANDARD;
|
||||
@ -607,19 +657,28 @@ static void quantize_and_encode_band_cost_UPAIR12_mips(struct AACEncContext *s,
|
||||
: "memory"
|
||||
);
|
||||
|
||||
curidx = 13 * qc1;
|
||||
curidx += qc2;
|
||||
curidx1 = 13 * qc1;
|
||||
curidx1 += qc2;
|
||||
|
||||
v_codes = (p_codes[curidx] << count1) | sign1;
|
||||
v_bits = p_bits[curidx] + count1;
|
||||
v_codes = (p_codes[curidx1] << count1) | sign1;
|
||||
v_bits = p_bits[curidx1] + count1;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
curidx = 13 * qc3;
|
||||
curidx += qc4;
|
||||
curidx2 = 13 * qc3;
|
||||
curidx2 += qc4;
|
||||
|
||||
v_codes = (p_codes[curidx] << count2) | sign2;
|
||||
v_bits = p_bits[curidx] + count2;
|
||||
v_codes = (p_codes[curidx2] << count2) | sign2;
|
||||
v_bits = p_bits[curidx2] + count2;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
if (out) {
|
||||
vec1 = &p_vec[curidx1*2];
|
||||
vec2 = &p_vec[curidx2*2];
|
||||
out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
|
||||
out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
|
||||
out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
|
||||
out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -630,6 +689,7 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
|
||||
int *bits, const float ROUNDING)
|
||||
{
|
||||
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
||||
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
||||
int i;
|
||||
int qc1, qc2, qc3, qc4;
|
||||
|
||||
@ -647,6 +707,7 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
|
||||
uint8_t v_bits;
|
||||
unsigned int v_codes;
|
||||
int t0, t1, t2, t3, t4;
|
||||
const float *vec1, *vec2;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUNDING;
|
||||
qc2 = scaled[i+1] * Q34 + ROUNDING;
|
||||
@ -715,6 +776,15 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
|
||||
v_codes = (p_codes[curidx2] << count2) | sign2;
|
||||
v_bits = p_bits[curidx2] + count2;
|
||||
put_bits(pb, v_bits, v_codes);
|
||||
|
||||
if (out) {
|
||||
vec1 = &p_vectors[curidx*2 ];
|
||||
vec2 = &p_vectors[curidx2*2];
|
||||
out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
|
||||
out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
|
||||
out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
|
||||
out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (i = 0; i < size; i += 4) {
|
||||
@ -724,6 +794,7 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
|
||||
unsigned int v_codes;
|
||||
int c1, c2, c3, c4;
|
||||
int t0, t1, t2, t3, t4;
|
||||
const float *vec1, *vec2;
|
||||
|
||||
qc1 = scaled[i ] * Q34 + ROUNDING;
|
||||
qc2 = scaled[i+1] * Q34 + ROUNDING;
|
||||
@ -825,6 +896,15 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
|
||||
v_codes = (((1 << (len - 3)) - 2) << len) | (c4 & ((1 << len) - 1));
|
||||
put_bits(pb, len * 2 - 3, v_codes);
|
||||
}
|
||||
|
||||
if (out) {
|
||||
vec1 = &p_vectors[curidx*2];
|
||||
vec2 = &p_vectors[curidx2*2];
|
||||
out[i+0] = copysignf(c1 * cbrtf(c1) * IQ, in[i+0]);
|
||||
out[i+1] = copysignf(c2 * cbrtf(c2) * IQ, in[i+1]);
|
||||
out[i+2] = copysignf(c3 * cbrtf(c3) * IQ, in[i+2]);
|
||||
out[i+3] = copysignf(c4 * cbrtf(c4) * IQ, in[i+3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1370,7 +1450,7 @@ static float (*const get_band_numbits_arr[])(struct AACEncContext *s,
|
||||
static float quantize_band_cost_bits(struct AACEncContext *s, const float *in,
|
||||
const float *scaled, int size, int scale_idx,
|
||||
int cb, const float lambda, const float uplim,
|
||||
int *bits)
|
||||
int *bits, int rtz)
|
||||
{
|
||||
return get_band_numbits(s, NULL, in, scaled, size, scale_idx, cb, lambda, uplim, bits);
|
||||
}
|
||||
@ -2175,195 +2255,12 @@ static float (*const get_band_cost_arr[])(struct AACEncContext *s,
|
||||
static float quantize_band_cost(struct AACEncContext *s, const float *in,
|
||||
const float *scaled, int size, int scale_idx,
|
||||
int cb, const float lambda, const float uplim,
|
||||
int *bits)
|
||||
int *bits, int rtz)
|
||||
{
|
||||
return get_band_cost(s, NULL, in, scaled, size, scale_idx, cb, lambda, uplim, bits);
|
||||
}
|
||||
|
||||
static void search_for_quantizers_twoloop_mips(AVCodecContext *avctx,
|
||||
AACEncContext *s,
|
||||
SingleChannelElement *sce,
|
||||
const float lambda)
|
||||
{
|
||||
int start = 0, i, w, w2, g;
|
||||
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
||||
float dists[128] = { 0 }, uplims[128] = { 0 };
|
||||
float maxvals[128];
|
||||
int fflag, minscaler;
|
||||
int its = 0;
|
||||
int allz = 0;
|
||||
float minthr = INFINITY;
|
||||
|
||||
// for values above this the decoder might end up in an endless loop
|
||||
// due to always having more bits than what can be encoded.
|
||||
destbits = FFMIN(destbits, 5800);
|
||||
//XXX: some heuristic to determine initial quantizers will reduce search time
|
||||
//determine zero bands and upper limits
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int nz = 0;
|
||||
float uplim = 0.0f, energy = 0.0f;
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||||
uplim += band->threshold;
|
||||
energy += band->energy;
|
||||
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
||||
sce->zeroes[(w+w2)*16+g] = 1;
|
||||
continue;
|
||||
}
|
||||
nz = 1;
|
||||
}
|
||||
uplims[w*16+g] = uplim *512;
|
||||
sce->zeroes[w*16+g] = !nz;
|
||||
if (nz)
|
||||
minthr = FFMIN(minthr, uplim);
|
||||
allz |= nz;
|
||||
}
|
||||
}
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
if (sce->zeroes[w*16+g]) {
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
||||
continue;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
||||
}
|
||||
}
|
||||
|
||||
if (!allz)
|
||||
return;
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *scaled = s->scoefs + start;
|
||||
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
||||
start += sce->ics.swb_sizes[g];
|
||||
}
|
||||
}
|
||||
|
||||
//perform two-loop search
|
||||
//outer loop - improve quality
|
||||
do {
|
||||
int tbits, qstep;
|
||||
minscaler = sce->sf_idx[0];
|
||||
//inner loop - quantize spectrum to fit into given number of bits
|
||||
qstep = its ? 1 : 32;
|
||||
do {
|
||||
int prev = -1;
|
||||
tbits = 0;
|
||||
fflag = 0;
|
||||
|
||||
if (qstep > 1) {
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *coefs = sce->coeffs + start;
|
||||
const float *scaled = s->scoefs + start;
|
||||
int bits = 0;
|
||||
int cb;
|
||||
|
||||
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
||||
start += sce->ics.swb_sizes[g];
|
||||
continue;
|
||||
}
|
||||
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
||||
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
int b;
|
||||
bits += quantize_band_cost_bits(s, coefs + w2*128,
|
||||
scaled + w2*128,
|
||||
sce->ics.swb_sizes[g],
|
||||
sce->sf_idx[w*16+g],
|
||||
cb,
|
||||
1.0f,
|
||||
INFINITY,
|
||||
&b);
|
||||
}
|
||||
if (prev != -1) {
|
||||
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
||||
}
|
||||
tbits += bits;
|
||||
start += sce->ics.swb_sizes[g];
|
||||
prev = sce->sf_idx[w*16+g];
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
start = w*128;
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
const float *coefs = sce->coeffs + start;
|
||||
const float *scaled = s->scoefs + start;
|
||||
int bits = 0;
|
||||
int cb;
|
||||
float dist = 0.0f;
|
||||
|
||||
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
||||
start += sce->ics.swb_sizes[g];
|
||||
continue;
|
||||
}
|
||||
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
||||
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||||
int b;
|
||||
dist += quantize_band_cost(s, coefs + w2*128,
|
||||
scaled + w2*128,
|
||||
sce->ics.swb_sizes[g],
|
||||
sce->sf_idx[w*16+g],
|
||||
cb,
|
||||
1.0f,
|
||||
INFINITY,
|
||||
&b);
|
||||
bits += b;
|
||||
}
|
||||
dists[w*16+g] = dist - bits;
|
||||
if (prev != -1) {
|
||||
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
||||
}
|
||||
tbits += bits;
|
||||
start += sce->ics.swb_sizes[g];
|
||||
prev = sce->sf_idx[w*16+g];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (tbits > destbits) {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] < 218 - qstep)
|
||||
sce->sf_idx[i] += qstep;
|
||||
} else {
|
||||
for (i = 0; i < 128; i++)
|
||||
if (sce->sf_idx[i] > 60 - qstep)
|
||||
sce->sf_idx[i] -= qstep;
|
||||
}
|
||||
qstep >>= 1;
|
||||
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
||||
qstep = 1;
|
||||
} while (qstep);
|
||||
|
||||
fflag = 0;
|
||||
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
||||
|
||||
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||||
for (g = 0; g < sce->ics.num_swb; g++) {
|
||||
int prevsc = sce->sf_idx[w*16+g];
|
||||
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
||||
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
||||
sce->sf_idx[w*16+g]--;
|
||||
else //Try to make sure there is some energy in every band
|
||||
sce->sf_idx[w*16+g]-=2;
|
||||
}
|
||||
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
||||
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
||||
if (sce->sf_idx[w*16+g] != prevsc)
|
||||
fflag = 1;
|
||||
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||||
}
|
||||
}
|
||||
its++;
|
||||
} while (fflag && its < 10);
|
||||
}
|
||||
#include "libavcodec/aaccoder_twoloop.h"
|
||||
|
||||
static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe)
|
||||
{
|
||||
@ -2413,25 +2310,25 @@ static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe)
|
||||
sce0->ics.swb_sizes[g],
|
||||
sce0->sf_idx[(w+w2)*16+g],
|
||||
sce0->band_type[(w+w2)*16+g],
|
||||
lambda / band0->threshold, INFINITY, NULL);
|
||||
lambda / band0->threshold, INFINITY, NULL, 0);
|
||||
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
|
||||
R34,
|
||||
sce1->ics.swb_sizes[g],
|
||||
sce1->sf_idx[(w+w2)*16+g],
|
||||
sce1->band_type[(w+w2)*16+g],
|
||||
lambda / band1->threshold, INFINITY, NULL);
|
||||
lambda / band1->threshold, INFINITY, NULL, 0);
|
||||
dist2 += quantize_band_cost(s, M,
|
||||
M34,
|
||||
sce0->ics.swb_sizes[g],
|
||||
sce0->sf_idx[(w+w2)*16+g],
|
||||
sce0->band_type[(w+w2)*16+g],
|
||||
lambda / maxthr, INFINITY, NULL);
|
||||
lambda / maxthr, INFINITY, NULL, 0);
|
||||
dist2 += quantize_band_cost(s, S,
|
||||
S34,
|
||||
sce1->ics.swb_sizes[g],
|
||||
sce1->sf_idx[(w+w2)*16+g],
|
||||
sce1->band_type[(w+w2)*16+g],
|
||||
lambda / minthr, INFINITY, NULL);
|
||||
lambda / minthr, INFINITY, NULL, 0);
|
||||
}
|
||||
cpe->ms_mask[w*16+g] = dist2 < dist1;
|
||||
}
|
||||
@ -2441,137 +2338,8 @@ static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe)
|
||||
}
|
||||
#endif /*HAVE_MIPSFPU */
|
||||
|
||||
static void codebook_trellis_rate_mips(AACEncContext *s, SingleChannelElement *sce,
|
||||
int win, int group_len, const float lambda)
|
||||
{
|
||||
BandCodingPath path[120][CB_TOT_ALL];
|
||||
int w, swb, cb, start, size;
|
||||
int i, j;
|
||||
const int max_sfb = sce->ics.max_sfb;
|
||||
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
||||
const int run_esc = (1 << run_bits) - 1;
|
||||
int idx, ppos, count;
|
||||
int stackrun[120], stackcb[120], stack_len;
|
||||
float next_minbits = INFINITY;
|
||||
int next_mincb = 0;
|
||||
#include "libavcodec/aaccoder_trellis.h"
|
||||
|
||||
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
||||
start = win*128;
|
||||
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||||
path[0][cb].cost = run_bits+4;
|
||||
path[0][cb].prev_idx = -1;
|
||||
path[0][cb].run = 0;
|
||||
}
|
||||
for (swb = 0; swb < max_sfb; swb++) {
|
||||
size = sce->ics.swb_sizes[swb];
|
||||
if (sce->zeroes[win*16 + swb]) {
|
||||
float cost_stay_here = path[swb][0].cost;
|
||||
float cost_get_here = next_minbits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][0].prev_idx = next_mincb;
|
||||
path[swb+1][0].cost = cost_get_here;
|
||||
path[swb+1][0].run = 1;
|
||||
} else {
|
||||
path[swb+1][0].prev_idx = 0;
|
||||
path[swb+1][0].cost = cost_stay_here;
|
||||
path[swb+1][0].run = path[swb][0].run + 1;
|
||||
}
|
||||
next_minbits = path[swb+1][0].cost;
|
||||
next_mincb = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
} else {
|
||||
float minbits = next_minbits;
|
||||
int mincb = next_mincb;
|
||||
int startcb = sce->band_type[win*16+swb];
|
||||
startcb = aac_cb_in_map[startcb];
|
||||
next_minbits = INFINITY;
|
||||
next_mincb = 0;
|
||||
for (cb = 0; cb < startcb; cb++) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
}
|
||||
for (cb = startcb; cb < CB_TOT_ALL; cb++) {
|
||||
float cost_stay_here, cost_get_here;
|
||||
float bits = 0.0f;
|
||||
if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
|
||||
path[swb+1][cb].cost = 61450;
|
||||
path[swb+1][cb].prev_idx = -1;
|
||||
path[swb+1][cb].run = 0;
|
||||
continue;
|
||||
}
|
||||
for (w = 0; w < group_len; w++) {
|
||||
bits += quantize_band_cost_bits(s, sce->coeffs + start + w*128,
|
||||
s->scoefs + start + w*128, size,
|
||||
sce->sf_idx[(win+w)*16+swb],
|
||||
aac_cb_out_map[cb],
|
||||
0, INFINITY, NULL);
|
||||
}
|
||||
cost_stay_here = path[swb][cb].cost + bits;
|
||||
cost_get_here = minbits + bits + run_bits + 4;
|
||||
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
||||
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
||||
cost_stay_here += run_bits;
|
||||
if (cost_get_here < cost_stay_here) {
|
||||
path[swb+1][cb].prev_idx = mincb;
|
||||
path[swb+1][cb].cost = cost_get_here;
|
||||
path[swb+1][cb].run = 1;
|
||||
} else {
|
||||
path[swb+1][cb].prev_idx = cb;
|
||||
path[swb+1][cb].cost = cost_stay_here;
|
||||
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||||
}
|
||||
if (path[swb+1][cb].cost < next_minbits) {
|
||||
next_minbits = path[swb+1][cb].cost;
|
||||
next_mincb = cb;
|
||||
}
|
||||
}
|
||||
}
|
||||
start += sce->ics.swb_sizes[swb];
|
||||
}
|
||||
|
||||
//convert resulting path from backward-linked list
|
||||
stack_len = 0;
|
||||
idx = 0;
|
||||
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
||||
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
||||
idx = cb;
|
||||
ppos = max_sfb;
|
||||
while (ppos > 0) {
|
||||
av_assert1(idx >= 0);
|
||||
cb = idx;
|
||||
stackrun[stack_len] = path[ppos][cb].run;
|
||||
stackcb [stack_len] = cb;
|
||||
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
||||
ppos -= path[ppos][cb].run;
|
||||
stack_len++;
|
||||
}
|
||||
//perform actual band info encoding
|
||||
start = 0;
|
||||
for (i = stack_len - 1; i >= 0; i--) {
|
||||
cb = aac_cb_out_map[stackcb[i]];
|
||||
put_bits(&s->pb, 4, cb);
|
||||
count = stackrun[i];
|
||||
memset(sce->zeroes + win*16 + start, !cb, count);
|
||||
//XXX: memset when band_type is also uint8_t
|
||||
for (j = 0; j < count; j++) {
|
||||
sce->band_type[win*16 + start] = cb;
|
||||
start++;
|
||||
}
|
||||
while (count >= run_esc) {
|
||||
put_bits(&s->pb, run_bits, run_esc);
|
||||
count -= run_esc;
|
||||
}
|
||||
put_bits(&s->pb, run_bits, count);
|
||||
}
|
||||
}
|
||||
#endif /* HAVE_INLINE_ASM */
|
||||
|
||||
void ff_aac_coder_init_mips(AACEncContext *c) {
|
||||
@ -2581,11 +2349,13 @@ void ff_aac_coder_init_mips(AACEncContext *c) {
|
||||
|
||||
if (option == 2) {
|
||||
e->quantize_and_encode_band = quantize_and_encode_band_mips;
|
||||
e->encode_window_bands_info = codebook_trellis_rate_mips;
|
||||
e->encode_window_bands_info = codebook_trellis_rate;
|
||||
#if HAVE_MIPSFPU
|
||||
e->search_for_quantizers = search_for_quantizers_twoloop_mips;
|
||||
e->search_for_ms = search_for_ms_mips;
|
||||
e->search_for_quantizers = search_for_quantizers_twoloop;
|
||||
#endif /* HAVE_MIPSFPU */
|
||||
}
|
||||
#if HAVE_MIPSFPU
|
||||
e->search_for_ms = search_for_ms_mips;
|
||||
#endif /* HAVE_MIPSFPU */
|
||||
#endif /* HAVE_INLINE_ASM */
|
||||
}
|
||||
|
@ -158,6 +158,15 @@ fate-aac-ln-encode: CMP_SHIFT = -4096
|
||||
fate-aac-ln-encode: CMP_TARGET = 68
|
||||
fate-aac-ln-encode: SIZE_TOLERANCE = 3560
|
||||
|
||||
FATE_AAC_ENCODE += fate-aac-ln-encode-128k
|
||||
fate-aac-ln-encode-128k: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_is 0 -aac_pns 0 -b:a 128k
|
||||
fate-aac-ln-encode-128k: CMP = stddev
|
||||
fate-aac-ln-encode-128k: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
|
||||
fate-aac-ln-encode-128k: CMP_SHIFT = -4096
|
||||
fate-aac-ln-encode-128k: CMP_TARGET = 638
|
||||
fate-aac-ln-encode-128k: SIZE_TOLERANCE = 3560
|
||||
fate-aac-ln-encode-128k: FUZZ = 5
|
||||
|
||||
FATE_AAC_ENCODE += fate-aac-pns-encode
|
||||
fate-aac-pns-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_pns 1 -aac_is 0 -b:a 128k
|
||||
fate-aac-pns-encode: CMP = stddev
|
||||
@ -165,7 +174,7 @@ fate-aac-pns-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.w
|
||||
fate-aac-pns-encode: CMP_SHIFT = -4096
|
||||
fate-aac-pns-encode: CMP_TARGET = 633.77
|
||||
fate-aac-pns-encode: SIZE_TOLERANCE = 3560
|
||||
fate-aac-pns-encode: FUZZ = 5
|
||||
fate-aac-pns-encode: FUZZ = 1
|
||||
|
||||
FATE_AAC_ENCODE += fate-aac-tns-encode
|
||||
fate-aac-tns-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_tns 1 -aac_is 0 -aac_pns 0 -b:a 128k
|
||||
@ -183,7 +192,7 @@ fate-aac-is-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wa
|
||||
fate-aac-is-encode: CMP_SHIFT = -4096
|
||||
fate-aac-is-encode: CMP_TARGET = 616.75
|
||||
fate-aac-is-encode: SIZE_TOLERANCE = 3560
|
||||
fate-aac-is-encode: FUZZ = 35
|
||||
fate-aac-is-encode: FUZZ = 1
|
||||
|
||||
FATE_AAC_ENCODE += fate-aac-pred-encode
|
||||
fate-aac-pred-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -profile:a aac_main -c:a aac -aac_is 0 -aac_pns 0 -b:a 128k
|
||||
@ -191,7 +200,7 @@ fate-aac-pred-encode: CMP = stddev
|
||||
fate-aac-pred-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
|
||||
fate-aac-pred-encode: CMP_SHIFT = -4096
|
||||
fate-aac-pred-encode: CMP_TARGET = 652.60
|
||||
fate-aac-pred-encode: FUZZ = 10
|
||||
fate-aac-pred-encode: FUZZ = 5
|
||||
fate-aac-pred-encode: SIZE_TOLERANCE = 3560
|
||||
|
||||
FATE_AAC_LATM += fate-aac-latm_000000001180bc60
|
||||
|
Loading…
Reference in New Issue
Block a user