mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-18 13:21:08 +00:00
ppc: dsputil: comment formatting and wording/grammar improvements
This commit is contained in:
parent
cce791b17b
commit
82ee14d2ce
@ -47,27 +47,27 @@ static int sad16_x2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size
|
||||
sad = (vector unsigned int)vec_splat_u32(0);
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
pix1v: pix1[0]-pix1[15]
|
||||
pix2v: pix2[0]-pix2[15] pix2iv: pix2[1]-pix2[16] */
|
||||
* pix1v: pix1[0] - pix1[15]
|
||||
* pix2v: pix2[0] - pix2[15] pix2iv: pix2[1] - pix2[16] */
|
||||
pix1v = vec_ld( 0, pix1);
|
||||
pix2l = vec_ld( 0, pix2);
|
||||
pix2r = vec_ld(16, pix2);
|
||||
pix2v = vec_perm(pix2l, pix2r, perm1);
|
||||
pix2iv = vec_perm(pix2l, pix2r, perm2);
|
||||
|
||||
/* Calculate the average vector */
|
||||
/* Calculate the average vector. */
|
||||
avgv = vec_avg(pix2v, pix2iv);
|
||||
|
||||
/* Calculate a sum of abs differences vector */
|
||||
/* Calculate a sum of abs differences vector. */
|
||||
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t5, sad);
|
||||
|
||||
pix1 += line_size;
|
||||
pix2 += line_size;
|
||||
}
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -91,33 +91,33 @@ static int sad16_y2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size
|
||||
sad = (vector unsigned int)vec_splat_u32(0);
|
||||
|
||||
/* Due to the fact that pix3 = pix2 + line_size, the pix3 of one
|
||||
iteration becomes pix2 in the next iteration. We can use this
|
||||
fact to avoid a potentially expensive unaligned read, each
|
||||
time around the loop.
|
||||
Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
pix2v: pix2[0]-pix2[15]
|
||||
Split the pixel vectors into shorts */
|
||||
* iteration becomes pix2 in the next iteration. We can use this
|
||||
* fact to avoid a potentially expensive unaligned read, each
|
||||
* time around the loop.
|
||||
* Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
* pix2v: pix2[0] - pix2[15]
|
||||
* Split the pixel vectors into shorts. */
|
||||
pix2l = vec_ld( 0, pix2);
|
||||
pix2r = vec_ld(15, pix2);
|
||||
pix2v = vec_perm(pix2l, pix2r, perm);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
pix1v: pix1[0]-pix1[15]
|
||||
pix3v: pix3[0]-pix3[15] */
|
||||
* pix1v: pix1[0] - pix1[15]
|
||||
* pix3v: pix3[0] - pix3[15] */
|
||||
pix1v = vec_ld(0, pix1);
|
||||
|
||||
pix2l = vec_ld( 0, pix3);
|
||||
pix2r = vec_ld(15, pix3);
|
||||
pix3v = vec_perm(pix2l, pix2r, perm);
|
||||
|
||||
/* Calculate the average vector */
|
||||
/* Calculate the average vector. */
|
||||
avgv = vec_avg(pix2v, pix3v);
|
||||
|
||||
/* Calculate a sum of abs differences vector */
|
||||
/* Calculate a sum of abs differences vector. */
|
||||
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t5, sad);
|
||||
|
||||
pix1 += line_size;
|
||||
@ -126,7 +126,7 @@ static int sad16_y2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size
|
||||
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -157,12 +157,12 @@ static int sad16_xy2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_siz
|
||||
s = 0;
|
||||
|
||||
/* Due to the fact that pix3 = pix2 + line_size, the pix3 of one
|
||||
iteration becomes pix2 in the next iteration. We can use this
|
||||
fact to avoid a potentially expensive unaligned read, as well
|
||||
as some splitting, and vector addition each time around the loop.
|
||||
Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
pix2v: pix2[0]-pix2[15] pix2iv: pix2[1]-pix2[16]
|
||||
Split the pixel vectors into shorts */
|
||||
* iteration becomes pix2 in the next iteration. We can use this
|
||||
* fact to avoid a potentially expensive unaligned read, as well
|
||||
* as some splitting, and vector addition each time around the loop.
|
||||
* Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
* pix2v: pix2[0] - pix2[15] pix2iv: pix2[1] - pix2[16]
|
||||
* Split the pixel vectors into shorts. */
|
||||
pix2l = vec_ld( 0, pix2);
|
||||
pix2r = vec_ld(16, pix2);
|
||||
pix2v = vec_perm(pix2l, pix2r, perm1);
|
||||
@ -177,8 +177,8 @@ static int sad16_xy2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_siz
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read unaligned pixels into our vectors. The vectors are as follows:
|
||||
pix1v: pix1[0]-pix1[15]
|
||||
pix3v: pix3[0]-pix3[15] pix3iv: pix3[1]-pix3[16] */
|
||||
* pix1v: pix1[0] - pix1[15]
|
||||
* pix3v: pix3[0] - pix3[15] pix3iv: pix3[1] - pix3[16] */
|
||||
pix1v = vec_ld(0, pix1);
|
||||
|
||||
pix2l = vec_ld( 0, pix3);
|
||||
@ -187,40 +187,40 @@ static int sad16_xy2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_siz
|
||||
pix3iv = vec_perm(pix2l, pix2r, perm2);
|
||||
|
||||
/* Note that AltiVec does have vec_avg, but this works on vector pairs
|
||||
and rounds up. We could do avg(avg(a,b),avg(c,d)), but the rounding
|
||||
would mean that, for example, avg(3,0,0,1) = 2, when it should be 1.
|
||||
Instead, we have to split the pixel vectors into vectors of shorts,
|
||||
and do the averaging by hand. */
|
||||
* and rounds up. We could do avg(avg(a, b), avg(c, d)), but the
|
||||
* rounding would mean that, for example, avg(3, 0, 0, 1) = 2, when
|
||||
* it should be 1. Instead, we have to split the pixel vectors into
|
||||
* vectors of shorts and do the averaging by hand. */
|
||||
|
||||
/* Split the pixel vectors into shorts */
|
||||
/* Split the pixel vectors into shorts. */
|
||||
pix3hv = (vector unsigned short) vec_mergeh(zero, pix3v);
|
||||
pix3lv = (vector unsigned short) vec_mergel(zero, pix3v);
|
||||
pix3ihv = (vector unsigned short) vec_mergeh(zero, pix3iv);
|
||||
pix3ilv = (vector unsigned short) vec_mergel(zero, pix3iv);
|
||||
|
||||
/* Do the averaging on them */
|
||||
/* Do the averaging on them. */
|
||||
t3 = vec_add(pix3hv, pix3ihv);
|
||||
t4 = vec_add(pix3lv, pix3ilv);
|
||||
|
||||
avghv = vec_sr(vec_add(vec_add(t1, t3), two), two);
|
||||
avglv = vec_sr(vec_add(vec_add(t2, t4), two), two);
|
||||
|
||||
/* Pack the shorts back into a result */
|
||||
/* Pack the shorts back into a result. */
|
||||
avgv = vec_pack(avghv, avglv);
|
||||
|
||||
/* Calculate a sum of abs differences vector */
|
||||
/* Calculate a sum of abs differences vector. */
|
||||
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t5, sad);
|
||||
|
||||
pix1 += line_size;
|
||||
pix3 += line_size;
|
||||
/* Transfer the calculated values for pix3 into pix2 */
|
||||
/* Transfer the calculated values for pix3 into pix2. */
|
||||
t1 = t3;
|
||||
t2 = t4;
|
||||
}
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -242,25 +242,25 @@ static int sad16_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, i
|
||||
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read potentially unaligned pixels into t1 and t2 */
|
||||
/* Read potentially unaligned pixels into t1 and t2. */
|
||||
vector unsigned char pix2l = vec_ld( 0, pix2);
|
||||
vector unsigned char pix2r = vec_ld(15, pix2);
|
||||
t1 = vec_ld(0, pix1);
|
||||
t2 = vec_perm(pix2l, pix2r, perm);
|
||||
|
||||
/* Calculate a sum of abs differences vector */
|
||||
/* Calculate a sum of abs differences vector. */
|
||||
t3 = vec_max(t1, t2);
|
||||
t4 = vec_min(t1, t2);
|
||||
t5 = vec_sub(t3, t4);
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t5, sad);
|
||||
|
||||
pix1 += line_size;
|
||||
pix2 += line_size;
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -283,9 +283,9 @@ static int sad8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, in
|
||||
sad = (vector unsigned int)vec_splat_u32(0);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read potentially unaligned pixels into t1 and t2
|
||||
Since we're reading 16 pixels, and actually only want 8,
|
||||
mask out the last 8 pixels. The 0s don't change the sum. */
|
||||
/* Read potentially unaligned pixels into t1 and t2.
|
||||
* Since we're reading 16 pixels, and actually only want 8,
|
||||
* mask out the last 8 pixels. The 0s don't change the sum. */
|
||||
vector unsigned char pix1l = vec_ld(0, pix1);
|
||||
vector unsigned char pix1r = vec_ld(7, pix1);
|
||||
vector unsigned char pix2l = vec_ld(0, pix2);
|
||||
@ -293,19 +293,19 @@ static int sad8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, in
|
||||
t1 = vec_and(vec_perm(pix1l, pix1r, perm1), permclear);
|
||||
t2 = vec_and(vec_perm(pix2l, pix2r, perm2), permclear);
|
||||
|
||||
/* Calculate a sum of abs differences vector */
|
||||
/* Calculate a sum of abs differences vector. */
|
||||
t3 = vec_max(t1, t2);
|
||||
t4 = vec_min(t1, t2);
|
||||
t5 = vec_sub(t3, t4);
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t5, sad);
|
||||
|
||||
pix1 += line_size;
|
||||
pix2 += line_size;
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -327,17 +327,17 @@ static int pix_norm1_altivec(uint8_t *pix, int line_size)
|
||||
|
||||
s = 0;
|
||||
for (i = 0; i < 16; i++) {
|
||||
/* Read in the potentially unaligned pixels */
|
||||
/* Read the potentially unaligned pixels. */
|
||||
vector unsigned char pixl = vec_ld( 0, pix);
|
||||
vector unsigned char pixr = vec_ld(15, pix);
|
||||
pixv = vec_perm(pixl, pixr, perm);
|
||||
|
||||
/* Square the values, and add them to our sum */
|
||||
/* Square the values, and add them to our sum. */
|
||||
sv = vec_msum(pixv, pixv, sv);
|
||||
|
||||
pix += line_size;
|
||||
}
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sum = vec_sums((vector signed int) sv, (vector signed int) zero);
|
||||
sum = vec_splat(sum, 3);
|
||||
vec_ste(sum, 0, &s);
|
||||
@ -345,11 +345,8 @@ static int pix_norm1_altivec(uint8_t *pix, int line_size)
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sum of Squared Errors for a 8x8 block.
|
||||
* AltiVec-enhanced.
|
||||
* It's the sad8_altivec code above w/ squaring added.
|
||||
*/
|
||||
/* Sum of Squared Errors for an 8x8 block, AltiVec-enhanced.
|
||||
* It's the sad8_altivec code above w/ squaring added. */
|
||||
static int sse8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, int h)
|
||||
{
|
||||
int i;
|
||||
@ -365,9 +362,9 @@ static int sse8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, in
|
||||
sum = (vector unsigned int)vec_splat_u32(0);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read potentially unaligned pixels into t1 and t2
|
||||
Since we're reading 16 pixels, and actually only want 8,
|
||||
mask out the last 8 pixels. The 0s don't change the sum. */
|
||||
/* Read potentially unaligned pixels into t1 and t2.
|
||||
* Since we're reading 16 pixels, and actually only want 8,
|
||||
* mask out the last 8 pixels. The 0s don't change the sum. */
|
||||
vector unsigned char pix1l = vec_ld(0, pix1);
|
||||
vector unsigned char pix1r = vec_ld(7, pix1);
|
||||
vector unsigned char pix2l = vec_ld(0, pix2);
|
||||
@ -376,21 +373,21 @@ static int sse8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, in
|
||||
t2 = vec_and(vec_perm(pix2l, pix2r, perm2), permclear);
|
||||
|
||||
/* Since we want to use unsigned chars, we can take advantage
|
||||
of the fact that abs(a-b)^2 = (a-b)^2. */
|
||||
* of the fact that abs(a - b) ^ 2 = (a - b) ^ 2. */
|
||||
|
||||
/* Calculate abs differences vector */
|
||||
/* Calculate abs differences vector. */
|
||||
t3 = vec_max(t1, t2);
|
||||
t4 = vec_min(t1, t2);
|
||||
t5 = vec_sub(t3, t4);
|
||||
|
||||
/* Square the values and add them to our sum */
|
||||
/* Square the values and add them to our sum. */
|
||||
sum = vec_msum(t5, t5, sum);
|
||||
|
||||
pix1 += line_size;
|
||||
pix2 += line_size;
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumsqr = vec_sums((vector signed int) sum, (vector signed int) zero);
|
||||
sumsqr = vec_splat(sumsqr, 3);
|
||||
vec_ste(sumsqr, 0, &s);
|
||||
@ -398,11 +395,8 @@ static int sse8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, in
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sum of Squared Errors for a 16x16 block.
|
||||
* AltiVec-enhanced.
|
||||
* It's the sad16_altivec code above w/ squaring added.
|
||||
*/
|
||||
/* Sum of Squared Errors for a 16x16 block, AltiVec-enhanced.
|
||||
* It's the sad16_altivec code above w/ squaring added. */
|
||||
static int sse16_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, int h)
|
||||
{
|
||||
int i;
|
||||
@ -416,28 +410,28 @@ static int sse16_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, i
|
||||
sum = (vector unsigned int)vec_splat_u32(0);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
/* Read potentially unaligned pixels into t1 and t2 */
|
||||
/* Read potentially unaligned pixels into t1 and t2. */
|
||||
vector unsigned char pix2l = vec_ld( 0, pix2);
|
||||
vector unsigned char pix2r = vec_ld(15, pix2);
|
||||
t1 = vec_ld(0, pix1);
|
||||
t2 = vec_perm(pix2l, pix2r, perm);
|
||||
|
||||
/* Since we want to use unsigned chars, we can take advantage
|
||||
of the fact that abs(a-b)^2 = (a-b)^2. */
|
||||
* of the fact that abs(a - b) ^ 2 = (a - b) ^ 2. */
|
||||
|
||||
/* Calculate abs differences vector */
|
||||
/* Calculate abs differences vector. */
|
||||
t3 = vec_max(t1, t2);
|
||||
t4 = vec_min(t1, t2);
|
||||
t5 = vec_sub(t3, t4);
|
||||
|
||||
/* Square the values and add them to our sum */
|
||||
/* Square the values and add them to our sum. */
|
||||
sum = vec_msum(t5, t5, sum);
|
||||
|
||||
pix1 += line_size;
|
||||
pix2 += line_size;
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumsqr = vec_sums((vector signed int) sum, (vector signed int) zero);
|
||||
sumsqr = vec_splat(sumsqr, 3);
|
||||
vec_ste(sumsqr, 0, &s);
|
||||
@ -459,18 +453,18 @@ static int pix_sum_altivec(uint8_t * pix, int line_size)
|
||||
sad = (vector unsigned int)vec_splat_u32(0);
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
/* Read the potentially unaligned 16 pixels into t1 */
|
||||
/* Read the potentially unaligned 16 pixels into t1. */
|
||||
vector unsigned char pixl = vec_ld( 0, pix);
|
||||
vector unsigned char pixr = vec_ld(15, pix);
|
||||
t1 = vec_perm(pixl, pixr, perm);
|
||||
|
||||
/* Add each 4 pixel group together and put 4 results into sad */
|
||||
/* Add each 4 pixel group together and put 4 results into sad. */
|
||||
sad = vec_sum4s(t1, sad);
|
||||
|
||||
pix += line_size;
|
||||
}
|
||||
|
||||
/* Sum up the four partial sums, and put the result into s */
|
||||
/* Sum up the four partial sums, and put the result into s. */
|
||||
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
|
||||
sumdiffs = vec_splat(sumdiffs, 3);
|
||||
vec_ste(sumdiffs, 0, &s);
|
||||
@ -487,6 +481,9 @@ static void get_pixels_altivec(int16_t *restrict block, const uint8_t *pixels, i
|
||||
vector signed short shorts;
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
/* Read potentially unaligned pixels.
|
||||
* We're reading 16 pixels, and actually only want 8,
|
||||
* but we simply ignore the extras. */
|
||||
// Read potentially unaligned pixels.
|
||||
// We're reading 16 pixels, and actually only want 8,
|
||||
// but we simply ignore the extras.
|
||||
@ -494,10 +491,10 @@ static void get_pixels_altivec(int16_t *restrict block, const uint8_t *pixels, i
|
||||
vector unsigned char pixr = vec_ld(7, pixels);
|
||||
bytes = vec_perm(pixl, pixr, perm);
|
||||
|
||||
// convert the bytes into shorts
|
||||
// Convert the bytes into shorts.
|
||||
shorts = (vector signed short)vec_mergeh(zero, bytes);
|
||||
|
||||
// save the data to the block, we assume the block is 16-byte aligned
|
||||
// Save the data to the block, we assume the block is 16-byte aligned.
|
||||
vec_st(shorts, i*16, (vector signed short*)block);
|
||||
|
||||
pixels += line_size;
|
||||
@ -515,60 +512,59 @@ static void diff_pixels_altivec(int16_t *restrict block, const uint8_t *s1,
|
||||
vector signed short shorts1, shorts2;
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
// Read potentially unaligned pixels
|
||||
// We're reading 16 pixels, and actually only want 8,
|
||||
// but we simply ignore the extras.
|
||||
/* Read potentially unaligned pixels.
|
||||
* We're reading 16 pixels, and actually only want 8,
|
||||
* but we simply ignore the extras. */
|
||||
pixl = vec_ld( 0, s1);
|
||||
pixr = vec_ld(15, s1);
|
||||
bytes = vec_perm(pixl, pixr, perm1);
|
||||
|
||||
// convert the bytes into shorts
|
||||
// Convert the bytes into shorts.
|
||||
shorts1 = (vector signed short)vec_mergeh(zero, bytes);
|
||||
|
||||
// Do the same for the second block of pixels
|
||||
// Do the same for the second block of pixels.
|
||||
pixl = vec_ld( 0, s2);
|
||||
pixr = vec_ld(15, s2);
|
||||
bytes = vec_perm(pixl, pixr, perm2);
|
||||
|
||||
// convert the bytes into shorts
|
||||
// Convert the bytes into shorts.
|
||||
shorts2 = (vector signed short)vec_mergeh(zero, bytes);
|
||||
|
||||
// Do the subtraction
|
||||
// Do the subtraction.
|
||||
shorts1 = vec_sub(shorts1, shorts2);
|
||||
|
||||
// save the data to the block, we assume the block is 16-byte aligned
|
||||
// Save the data to the block, we assume the block is 16-byte aligned.
|
||||
vec_st(shorts1, 0, (vector signed short*)block);
|
||||
|
||||
s1 += stride;
|
||||
s2 += stride;
|
||||
block += 8;
|
||||
|
||||
/* The code below is a copy of the code above...
|
||||
* This is a manual unroll. */
|
||||
|
||||
// The code below is a copy of the code above... This is a manual
|
||||
// unroll.
|
||||
|
||||
// Read potentially unaligned pixels
|
||||
// We're reading 16 pixels, and actually only want 8,
|
||||
// but we simply ignore the extras.
|
||||
/* Read potentially unaligned pixels.
|
||||
* We're reading 16 pixels, and actually only want 8,
|
||||
* but we simply ignore the extras. */
|
||||
pixl = vec_ld( 0, s1);
|
||||
pixr = vec_ld(15, s1);
|
||||
bytes = vec_perm(pixl, pixr, perm1);
|
||||
|
||||
// convert the bytes into shorts
|
||||
// Convert the bytes into shorts.
|
||||
shorts1 = (vector signed short)vec_mergeh(zero, bytes);
|
||||
|
||||
// Do the same for the second block of pixels
|
||||
// Do the same for the second block of pixels.
|
||||
pixl = vec_ld( 0, s2);
|
||||
pixr = vec_ld(15, s2);
|
||||
bytes = vec_perm(pixl, pixr, perm2);
|
||||
|
||||
// convert the bytes into shorts
|
||||
// Convert the bytes into shorts.
|
||||
shorts2 = (vector signed short)vec_mergeh(zero, bytes);
|
||||
|
||||
// Do the subtraction
|
||||
// Do the subtraction.
|
||||
shorts1 = vec_sub(shorts1, shorts2);
|
||||
|
||||
// save the data to the block, we assume the block is 16-byte aligned
|
||||
// Save the data to the block, we assume the block is 16-byte aligned.
|
||||
vec_st(shorts1, 0, (vector signed short*)block);
|
||||
|
||||
s1 += stride;
|
||||
@ -595,14 +591,14 @@ static void add_bytes_altivec(uint8_t *dst, uint8_t *src, int w) {
|
||||
register int i;
|
||||
register vector unsigned char vdst, vsrc;
|
||||
|
||||
/* dst and src are 16 bytes-aligned (guaranteed) */
|
||||
/* dst and src are 16 bytes-aligned (guaranteed). */
|
||||
for (i = 0 ; (i + 15) < w ; i+=16) {
|
||||
vdst = vec_ld(i, (unsigned char*)dst);
|
||||
vsrc = vec_ld(i, (unsigned char*)src);
|
||||
vdst = vec_add(vsrc, vdst);
|
||||
vec_st(vdst, i, (unsigned char*)dst);
|
||||
}
|
||||
/* if w is not a multiple of 16 */
|
||||
/* If w is not a multiple of 16. */
|
||||
for (; (i < w) ; i++) {
|
||||
dst[i] = src[i];
|
||||
}
|
||||
@ -643,8 +639,8 @@ static int hadamard8_diff8x8_altivec(/*MpegEncContext*/ void *s, uint8_t *dst, u
|
||||
dst1 = vec_ld(stride * i, dst); \
|
||||
dst2 = vec_ld((stride * i) + 15, dst); \
|
||||
dstO = vec_perm(dst1, dst2, vec_lvsl(stride * i, dst)); \
|
||||
/* promote the unsigned chars to signed shorts */ \
|
||||
/* we're in the 8x8 function, we only care for the first 8 */ \
|
||||
/* Promote the unsigned chars to signed shorts. */ \
|
||||
/* We're in the 8x8 function, we only care for the first 8. */ \
|
||||
srcV = (vector signed short)vec_mergeh((vector signed char)vzero, \
|
||||
(vector signed char)srcO); \
|
||||
dstV = (vector signed short)vec_mergeh((vector signed char)vzero, \
|
||||
@ -713,24 +709,23 @@ static int hadamard8_diff8x8_altivec(/*MpegEncContext*/ void *s, uint8_t *dst, u
|
||||
}
|
||||
|
||||
/*
|
||||
16x8 works with 16 elements; it allows to avoid replicating loads, and
|
||||
give the compiler more rooms for scheduling. It's only used from
|
||||
inside hadamard8_diff16_altivec.
|
||||
|
||||
Unfortunately, it seems gcc-3.3 is a bit dumb, and the compiled code has a LOT
|
||||
of spill code, it seems gcc (unlike xlc) cannot keep everything in registers
|
||||
by itself. The following code include hand-made registers allocation. It's not
|
||||
clean, but on a 7450 the resulting code is much faster (best case fall from
|
||||
700+ cycles to 550).
|
||||
|
||||
xlc doesn't add spill code, but it doesn't know how to schedule for the 7450,
|
||||
and its code isn't much faster than gcc-3.3 on the 7450 (but uses 25% less
|
||||
instructions...)
|
||||
|
||||
On the 970, the hand-made RA is still a win (around 690 vs. around 780), but
|
||||
xlc goes to around 660 on the regular C code...
|
||||
*/
|
||||
|
||||
* 16x8 works with 16 elements; it allows to avoid replicating loads, and
|
||||
* gives the compiler more room for scheduling. It's only used from
|
||||
* inside hadamard8_diff16_altivec.
|
||||
*
|
||||
* Unfortunately, it seems gcc-3.3 is a bit dumb, and the compiled code has
|
||||
* a LOT of spill code, it seems gcc (unlike xlc) cannot keep everything in
|
||||
* registers by itself. The following code includes hand-made register
|
||||
* allocation. It's not clean, but on a 7450 the resulting code is much faster
|
||||
* (best case falls from 700+ cycles to 550).
|
||||
*
|
||||
* xlc doesn't add spill code, but it doesn't know how to schedule for the
|
||||
* 7450, and its code isn't much faster than gcc-3.3 on the 7450 (but uses
|
||||
* 25% fewer instructions...)
|
||||
*
|
||||
* On the 970, the hand-made RA is still a win (around 690 vs. around 780),
|
||||
* but xlc goes to around 660 on the regular C code...
|
||||
*/
|
||||
static int hadamard8_diff16x8_altivec(/*MpegEncContext*/ void *s, uint8_t *dst, uint8_t *src, int stride, int h) {
|
||||
int sum;
|
||||
register vector signed short
|
||||
@ -805,7 +800,7 @@ static int hadamard8_diff16x8_altivec(/*MpegEncContext*/ void *s, uint8_t *dst,
|
||||
dst1 = vec_ld(stride * i, dst); \
|
||||
dst2 = vec_ld((stride * i) + 16, dst); \
|
||||
dstO = vec_perm(dst1, dst2, vec_lvsl(stride * i, dst)); \
|
||||
/* promote the unsigned chars to signed shorts */ \
|
||||
/* Promote the unsigned chars to signed shorts. */ \
|
||||
srcV = (vector signed short)vec_mergeh((vector signed char)vzero, \
|
||||
(vector signed char)srcO); \
|
||||
dstV = (vector signed short)vec_mergeh((vector signed char)vzero, \
|
||||
|
@ -32,24 +32,23 @@
|
||||
|
||||
/* ***** WARNING ***** WARNING ***** WARNING ***** */
|
||||
/*
|
||||
clear_blocks_dcbz32_ppc will not work properly on PowerPC processors with a
|
||||
cache line size not equal to 32 bytes.
|
||||
Fortunately all processor used by Apple up to at least the 7450 (aka second
|
||||
generation G4) use 32 bytes cache line.
|
||||
This is due to the use of the 'dcbz' instruction. It simply clear to zero a
|
||||
single cache line, so you need to know the cache line size to use it !
|
||||
It's absurd, but it's fast...
|
||||
|
||||
update 24/06/2003 : Apple released yesterday the G5, with a PPC970. cache line
|
||||
size: 128 bytes. Oups.
|
||||
The semantic of dcbz was changed, it always clear 32 bytes. so the function
|
||||
below will work, but will be slow. So I fixed check_dcbz_effect to use dcbzl,
|
||||
which is defined to clear a cache line (as dcbz before). So we still can
|
||||
distinguish, and use dcbz (32 bytes) or dcbzl (one cache line) as required.
|
||||
|
||||
see <http://developer.apple.com/technotes/tn/tn2087.html>
|
||||
and <http://developer.apple.com/technotes/tn/tn2086.html>
|
||||
*/
|
||||
* clear_blocks_dcbz32_ppc will not work properly on PowerPC processors with
|
||||
* a cache line size not equal to 32 bytes. Fortunately all processors used
|
||||
* by Apple up to at least the 7450 (AKA second generation G4) use 32-byte
|
||||
* cache lines. This is due to the use of the 'dcbz' instruction. It simply
|
||||
* clears a single cache line to zero, so you need to know the cache line
|
||||
* size to use it! It's absurd, but it's fast...
|
||||
*
|
||||
* update 24/06/2003: Apple released the G5 yesterday, with a PPC970.
|
||||
* cache line size: 128 bytes. Oups.
|
||||
* The semantics of dcbz was changed, it always clears 32 bytes. So the function
|
||||
* below will work, but will be slow. So I fixed check_dcbz_effect to use dcbzl,
|
||||
* which is defined to clear a cache line (as dcbz before). So we can still
|
||||
* distinguish, and use dcbz (32 bytes) or dcbzl (one cache line) as required.
|
||||
*
|
||||
* see <http://developer.apple.com/technotes/tn/tn2087.html>
|
||||
* and <http://developer.apple.com/technotes/tn/tn2086.html>
|
||||
*/
|
||||
static void clear_blocks_dcbz32_ppc(int16_t *blocks)
|
||||
{
|
||||
register int misal = ((unsigned long)blocks & 0x00000010);
|
||||
@ -73,17 +72,17 @@ static void clear_blocks_dcbz32_ppc(int16_t *blocks)
|
||||
}
|
||||
}
|
||||
|
||||
/* same as above, when dcbzl clear a whole 128B cache line
|
||||
i.e. the PPC970 aka G5 */
|
||||
/* Same as above, when dcbzl clears a whole 128 bytes cache line
|
||||
* i.e. the PPC970 AKA G5. */
|
||||
#if HAVE_DCBZL
|
||||
static void clear_blocks_dcbz128_ppc(int16_t *blocks)
|
||||
{
|
||||
register int misal = ((unsigned long)blocks & 0x0000007f);
|
||||
register int i = 0;
|
||||
if (misal) {
|
||||
// we could probably also optimize this case,
|
||||
// but there's not much point as the machines
|
||||
// aren't available yet (2003-06-26)
|
||||
/* We could probably also optimize this case,
|
||||
* but there's not much point as the machines
|
||||
* aren't available yet (2003-06-26). */
|
||||
memset(blocks, 0, sizeof(int16_t)*6*64);
|
||||
}
|
||||
else
|
||||
@ -99,11 +98,10 @@ static void clear_blocks_dcbz128_ppc(int16_t *blocks)
|
||||
#endif
|
||||
|
||||
#if HAVE_DCBZL
|
||||
/* check dcbz report how many bytes are set to 0 by dcbz */
|
||||
/* update 24/06/2003 : replace dcbz by dcbzl to get
|
||||
the intended effect (Apple "fixed" dcbz)
|
||||
unfortunately this cannot be used unless the assembler
|
||||
knows about dcbzl ... */
|
||||
/* Check dcbz report how many bytes are set to 0 by dcbz. */
|
||||
/* update 24/06/2003: Replace dcbz by dcbzl to get the intended effect
|
||||
* (Apple "fixed" dcbz). Unfortunately this cannot be used unless the
|
||||
* assembler knows about dcbzl ... */
|
||||
static long check_dcbzl_effect(void)
|
||||
{
|
||||
register char *fakedata = av_malloc(1024);
|
||||
@ -120,8 +118,8 @@ static long check_dcbzl_effect(void)
|
||||
|
||||
memset(fakedata, 0xFF, 1024);
|
||||
|
||||
/* below the constraint "b" seems to mean "Address base register"
|
||||
in gcc-3.3 / RS/6000 speaks. seems to avoid using r0, so.... */
|
||||
/* Below the constraint "b" seems to mean "address base register"
|
||||
* in gcc-3.3 / RS/6000 speaks. Seems to avoid using r0, so.... */
|
||||
__asm__ volatile("dcbzl %0, %1" : : "b" (fakedata_middle), "r" (zero));
|
||||
|
||||
for (i = 0; i < 1024 ; i ++) {
|
||||
@ -144,7 +142,7 @@ av_cold void ff_dsputil_init_ppc(DSPContext *c, AVCodecContext *avctx)
|
||||
{
|
||||
const int high_bit_depth = avctx->bits_per_raw_sample > 8;
|
||||
|
||||
// Common optimizations whether AltiVec is available or not
|
||||
// common optimizations whether AltiVec is available or not
|
||||
if (!high_bit_depth) {
|
||||
switch (check_dcbzl_effect()) {
|
||||
case 32:
|
||||
|
@ -259,11 +259,10 @@ void ff_fdct_altivec(int16_t *block)
|
||||
#undef MERGE_S16
|
||||
/* }}} */
|
||||
|
||||
/* Some of the initial calculations can be done as vector short
|
||||
* before conversion to vector float. The following code section
|
||||
* takes advantage of this. */
|
||||
|
||||
/* Some of the initial calculations can be done as vector short before
|
||||
* conversion to vector float. The following code section takes advantage
|
||||
* of this.
|
||||
*/
|
||||
/* fdct rows {{{ */
|
||||
x0 = ((vector float)vec_add(vs16(b00), vs16(b70)));
|
||||
x7 = ((vector float)vec_sub(vs16(b00), vs16(b70)));
|
||||
|
@ -27,12 +27,12 @@
|
||||
#include "libavcodec/fft.h"
|
||||
|
||||
/**
|
||||
* Do a complex FFT with the parameters defined in ff_fft_init(). The
|
||||
* input data must be permuted before with s->revtab table. No
|
||||
* 1.0/sqrt(n) normalization is done.
|
||||
* AltiVec-enabled
|
||||
* This code assumes that the 'z' pointer is 16 bytes-aligned
|
||||
* It also assumes all FFTComplex are 8 bytes-aligned pair of float
|
||||
* Do a complex FFT with the parameters defined in ff_fft_init().
|
||||
* The input data must be permuted before with s->revtab table.
|
||||
* No 1.0 / sqrt(n) normalization is done.
|
||||
* AltiVec-enabled:
|
||||
* This code assumes that the 'z' pointer is 16 bytes-aligned.
|
||||
* It also assumes all FFTComplex are 8 bytes-aligned pairs of floats.
|
||||
*/
|
||||
|
||||
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*
|
||||
* GMC (Global Motion Compensation)
|
||||
* AltiVec-enabled
|
||||
* GMC (Global Motion Compensation), AltiVec-enabled
|
||||
*
|
||||
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
|
||||
*
|
||||
* This file is part of Libav.
|
||||
@ -25,10 +25,8 @@
|
||||
#include "libavutil/ppc/util_altivec.h"
|
||||
#include "dsputil_altivec.h"
|
||||
|
||||
/*
|
||||
altivec-enhanced gmc1. ATM this code assume stride is a multiple of 8,
|
||||
to preserve proper dst alignment.
|
||||
*/
|
||||
/* AltiVec-enhanced gmc1. ATM this code assumes stride is a multiple of 8
|
||||
* to preserve proper dst alignment. */
|
||||
void ff_gmc1_altivec(uint8_t *dst /* align 8 */, uint8_t *src /* align1 */, int stride, int h, int x16, int y16, int rounder)
|
||||
{
|
||||
const DECLARE_ALIGNED(16, unsigned short, rounder_a) = rounder;
|
||||
@ -56,18 +54,16 @@ void ff_gmc1_altivec(uint8_t *dst /* align 8 */, uint8_t *src /* align1 */, int
|
||||
|
||||
rounderV = vec_splat((vec_u16)vec_lde(0, &rounder_a), 0);
|
||||
|
||||
// we'll be able to pick-up our 9 char elements
|
||||
// at src from those 32 bytes
|
||||
// we load the first batch here, as inside the loop
|
||||
// we can re-use 'src+stride' from one iteration
|
||||
// as the 'src' of the next.
|
||||
/* we'll be able to pick-up our 9 char elements at src from those
|
||||
* 32 bytes we load the first batch here, as inside the loop we can
|
||||
* reuse 'src + stride' from one iteration as the 'src' of the next. */
|
||||
src_0 = vec_ld(0, src);
|
||||
src_1 = vec_ld(16, src);
|
||||
srcvA = vec_perm(src_0, src_1, vec_lvsl(0, src));
|
||||
|
||||
if (src_really_odd != 0x0000000F) {
|
||||
// if src & 0xF == 0xF, then (src+1) is properly aligned
|
||||
// on the second vector.
|
||||
/* If src & 0xF == 0xF, then (src + 1) is properly aligned
|
||||
* on the second vector. */
|
||||
srcvB = vec_perm(src_0, src_1, vec_lvsl(1, src));
|
||||
} else {
|
||||
srcvB = src_1;
|
||||
@ -81,17 +77,16 @@ void ff_gmc1_altivec(uint8_t *dst /* align 8 */, uint8_t *src /* align1 */, int
|
||||
|
||||
dstv = vec_ld(0, dst);
|
||||
|
||||
// we we'll be able to pick-up our 9 char elements
|
||||
// at src + stride from those 32 bytes
|
||||
// then reuse the resulting 2 vectors srvcC and srcvD
|
||||
// as the next srcvA and srcvB
|
||||
/* We'll be able to pick-up our 9 char elements at src + stride from
|
||||
* those 32 bytes then reuse the resulting 2 vectors srvcC and srcvD
|
||||
* as the next srcvA and srcvB. */
|
||||
src_0 = vec_ld(stride + 0, src);
|
||||
src_1 = vec_ld(stride + 16, src);
|
||||
srcvC = vec_perm(src_0, src_1, vec_lvsl(stride + 0, src));
|
||||
|
||||
if (src_really_odd != 0x0000000F) {
|
||||
// if src & 0xF == 0xF, then (src+1) is properly aligned
|
||||
// on the second vector.
|
||||
/* If src & 0xF == 0xF, then (src + 1) is properly aligned
|
||||
* on the second vector. */
|
||||
srcvD = vec_perm(src_0, src_1, vec_lvsl(stride + 1, src));
|
||||
} else {
|
||||
srcvD = src_1;
|
||||
@ -100,10 +95,9 @@ void ff_gmc1_altivec(uint8_t *dst /* align 8 */, uint8_t *src /* align1 */, int
|
||||
srcvC = vec_mergeh(vczero, srcvC);
|
||||
srcvD = vec_mergeh(vczero, srcvD);
|
||||
|
||||
|
||||
// OK, now we (finally) do the math :-)
|
||||
// those four instructions replaces 32 int muls & 32 int adds.
|
||||
// isn't AltiVec nice ?
|
||||
/* OK, now we (finally) do the math :-)
|
||||
* Those four instructions replace 32 int muls & 32 int adds.
|
||||
* Isn't AltiVec nice? */
|
||||
tempA = vec_mladd((vector unsigned short)srcvA, Av, rounderV);
|
||||
tempB = vec_mladd((vector unsigned short)srcvB, Bv, tempA);
|
||||
tempC = vec_mladd((vector unsigned short)srcvC, Cv, tempB);
|
||||
|
@ -18,24 +18,19 @@
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* NOTE: This code is based on GPL code from the libmpeg2 project. The
|
||||
/* NOTE: This code is based on GPL code from the libmpeg2 project. The
|
||||
* author, Michel Lespinasses, has given explicit permission to release
|
||||
* under LGPL as part of Libav.
|
||||
*/
|
||||
|
||||
/*
|
||||
*
|
||||
* Libav integration by Dieter Shirley
|
||||
*
|
||||
* This file is a direct copy of the AltiVec IDCT module from the libmpeg2
|
||||
* project. I've deleted all of the libmpeg2-specific code, renamed the
|
||||
* functions and reordered the function parameters. The only change to the
|
||||
* IDCT function itself was to factor out the partial transposition, and to
|
||||
* perform a full transpose at the end of the function.
|
||||
*/
|
||||
* perform a full transpose at the end of the function. */
|
||||
|
||||
|
||||
#include <stdlib.h> /* malloc(), free() */
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "config.h"
|
||||
#if HAVE_ALTIVEC_H
|
||||
|
@ -19,9 +19,9 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
** @file
|
||||
** integer misc ops.
|
||||
**/
|
||||
* @file
|
||||
* miscellaneous integer operations
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
#if HAVE_ALTIVEC_H
|
||||
@ -43,8 +43,8 @@ static int ssd_int8_vs_int16_altivec(const int8_t *pix1, const int16_t *pix2,
|
||||
int32_t score[4];
|
||||
} u;
|
||||
u.vscore = vec_splat_s32(0);
|
||||
//
|
||||
//XXX lazy way, fix it later
|
||||
|
||||
// XXX lazy way, fix it later
|
||||
|
||||
#define vec_unaligned_load(b) \
|
||||
vec_perm(vec_ld(0,b),vec_ld(15,b),vec_lvsl(0, b));
|
||||
@ -52,12 +52,12 @@ static int ssd_int8_vs_int16_altivec(const int8_t *pix1, const int16_t *pix2,
|
||||
size16 = size >> 4;
|
||||
while(size16) {
|
||||
// score += (pix1[i]-pix2[i])*(pix1[i]-pix2[i]);
|
||||
//load pix1 and the first batch of pix2
|
||||
// load pix1 and the first batch of pix2
|
||||
|
||||
vpix1 = vec_unaligned_load(pix1);
|
||||
vpix2 = vec_unaligned_load(pix2);
|
||||
pix2 += 8;
|
||||
//unpack
|
||||
// unpack
|
||||
vpix1h = vec_unpackh(vpix1);
|
||||
vdiff = vec_sub(vpix1h, vpix2);
|
||||
vpix1l = vec_unpackl(vpix1);
|
||||
|
Loading…
Reference in New Issue
Block a user