avfilter/af_aiir: add cascaded biquads support

Also add precision option.

Signed-off-by: Paul B Mahol <onemda@gmail.com>
This commit is contained in:
Paul B Mahol 2018-01-08 21:14:23 +01:00
parent 42a5fe340f
commit 7add1ca2b5
1 changed files with 253 additions and 11 deletions

View File

@ -27,31 +27,44 @@
#include "avfilter.h"
#include "internal.h"
typedef struct Pair {
int a, b;
} Pair;
typedef struct BiquadContext {
double a0, a1, a2;
double b0, b1, b2;
double i1, i2;
double o1, o2;
} BiquadContext;
typedef struct AudioIIRContext {
const AVClass *class;
char *a_str, *b_str, *g_str;
double dry_gain, wet_gain;
int format;
int process;
int precision;
int *nb_a, *nb_b;
double **a, **b;
double *g;
double **input, **output;
BiquadContext **biquads;
int clippings;
int channels;
enum AVSampleFormat sample_format;
void (*iir_frame)(AVFilterContext *ctx, AVFrame *in, AVFrame *out);
} AudioIIRContext;
static int query_formats(AVFilterContext *ctx)
{
AudioIIRContext *s = ctx->priv;
AVFilterFormats *formats;
AVFilterChannelLayouts *layouts;
static const enum AVSampleFormat sample_fmts[] = {
enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE
};
int ret;
@ -63,6 +76,7 @@ static int query_formats(AVFilterContext *ctx)
if (ret < 0)
return ret;
sample_fmts[0] = s->sample_format;
formats = ff_make_format_list(sample_fmts);
if (!formats)
return AVERROR(ENOMEM);
@ -127,6 +141,63 @@ IIR_FRAME(s32p, int32_t, INT32_MIN, INT32_MAX, 1)
IIR_FRAME(fltp, float, -1., 1., 0)
IIR_FRAME(dblp, double, -1., 1., 0)
#define SERIAL_IIR_FRAME(name, type, min, max, need_clipping) \
static void iir_frame_serial_## name(AVFilterContext *ctx, AVFrame *in, AVFrame *out) \
{ \
AudioIIRContext *s = ctx->priv; \
const double ig = s->dry_gain; \
const double og = s->wet_gain; \
int ch, n, i; \
\
for (ch = 0; ch < out->channels; ch++) { \
const type *src = (const type *)in->extended_data[ch]; \
type *dst = (type *)out->extended_data[ch]; \
int nb_biquads = (FFMAX(s->nb_a[ch], s->nb_b[ch]) + 1) / 2; \
\
for (i = 0; i < nb_biquads; i++) { \
const double a1 = -s->biquads[ch][i].a1; \
const double a2 = -s->biquads[ch][i].a2; \
const double b0 = s->biquads[ch][i].b0; \
const double b1 = s->biquads[ch][i].b1; \
const double b2 = s->biquads[ch][i].b2; \
double i1 = s->biquads[ch][i].i1; \
double i2 = s->biquads[ch][i].i2; \
double o1 = s->biquads[ch][i].o1; \
double o2 = s->biquads[ch][i].o2; \
\
for (n = 0; n < in->nb_samples; n++) { \
double sample = ig * (i ? dst[n] : src[n]); \
double o0 = sample * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
\
i2 = i1; \
i1 = src[n]; \
o2 = o1; \
o1 = o0; \
o0 *= og; \
\
if (need_clipping && o0 < min) { \
s->clippings++; \
dst[n] = min; \
} else if (need_clipping && o0 > max) { \
s->clippings++; \
dst[n] = max; \
} else { \
dst[n] = o0; \
} \
} \
s->biquads[ch][i].i1 = i1; \
s->biquads[ch][i].i2 = i2; \
s->biquads[ch][i].o1 = o1; \
s->biquads[ch][i].o2 = o2; \
} \
} \
}
SERIAL_IIR_FRAME(s16p, int16_t, INT16_MIN, INT16_MAX, 1)
SERIAL_IIR_FRAME(s32p, int32_t, INT32_MIN, INT32_MAX, 1)
SERIAL_IIR_FRAME(fltp, float, -1., 1., 0)
SERIAL_IIR_FRAME(dblp, double, -1., 1., 0)
static void count_coefficients(char *item_str, int *nb_items)
{
char *p;
@ -304,7 +375,7 @@ static int expand(AVFilterContext *ctx, double *pz, int nb, double *coeffs)
multiply(pz[2 * i], pz[2 * i + 1], nb, coeffs);
for (i = 0; i < nb + 1; i++) {
if (fabs(coeffs[2 * i + 1]) > DBL_EPSILON) {
if (fabs(coeffs[2 * i + 1]) > FLT_EPSILON) {
av_log(ctx, AV_LOG_ERROR, "coeff: %lf of z^%d is not real; poles/zeros are not complex conjugates.\n",
coeffs[2 * i + 1], i);
return AVERROR(EINVAL);
@ -358,6 +429,144 @@ static int convert_zp2tf(AVFilterContext *ctx, int channels)
return 0;
}
static int decompose_zp2biquads(AVFilterContext *ctx, int channels)
{
AudioIIRContext *s = ctx->priv;
int ch, ret;
for (ch = 0; ch < channels; ch++) {
int nb_biquads = (FFMAX(s->nb_a[ch], s->nb_b[ch]) + 1) / 2;
int current_biquad = 0;
s->biquads[ch] = av_calloc(nb_biquads, sizeof(BiquadContext));
if (!s->biquads[ch])
return AVERROR(ENOMEM);
while (nb_biquads--) {
Pair outmost_pole = { -1, -1 };
Pair nearest_zero = { -1, -1 };
double zeros[4] = { 0 };
double poles[4] = { 0 };
double b[6] = { 0 };
double a[6] = { 0 };
double min_distance = DBL_MAX;
double max_mag = 0;
int i;
for (i = 0; i < s->nb_a[ch]; i++) {
double mag;
if (isnan(s->a[ch][2 * i]) || isnan(s->a[ch][2 * i + 1]))
continue;
mag = hypot(s->a[ch][2 * i], s->a[ch][2 * i + 1]);
if (mag > max_mag) {
max_mag = mag;
outmost_pole.a = i;
}
}
for (i = 0; i < s->nb_a[ch]; i++) {
if (isnan(s->a[ch][2 * i]) || isnan(s->a[ch][2 * i + 1]))
continue;
if (s->a[ch][2 * i ] == s->a[ch][2 * outmost_pole.a ] &&
s->a[ch][2 * i + 1] == -s->a[ch][2 * outmost_pole.a + 1]) {
outmost_pole.b = i;
break;
}
}
av_log(ctx, AV_LOG_VERBOSE, "outmost_pole is %d.%d\n", outmost_pole.a, outmost_pole.b);
if (outmost_pole.a < 0 || outmost_pole.b < 0)
return AVERROR(EINVAL);
for (i = 0; i < s->nb_b[ch]; i++) {
double distance;
if (isnan(s->b[ch][2 * i]) || isnan(s->b[ch][2 * i + 1]))
continue;
distance = hypot(s->a[ch][2 * outmost_pole.a ] - s->b[ch][2 * i ],
s->a[ch][2 * outmost_pole.a + 1] - s->b[ch][2 * i + 1]);
if (distance < min_distance) {
min_distance = distance;
nearest_zero.a = i;
}
}
for (i = 0; i < s->nb_b[ch]; i++) {
if (isnan(s->b[ch][2 * i]) || isnan(s->b[ch][2 * i + 1]))
continue;
if (s->b[ch][2 * i ] == s->b[ch][2 * nearest_zero.a ] &&
s->b[ch][2 * i + 1] == -s->b[ch][2 * nearest_zero.a + 1]) {
nearest_zero.b = i;
break;
}
}
av_log(ctx, AV_LOG_VERBOSE, "nearest_zero is %d.%d\n", nearest_zero.a, nearest_zero.b);
if (nearest_zero.a < 0 || nearest_zero.b < 0)
return AVERROR(EINVAL);
poles[0] = s->a[ch][2 * outmost_pole.a ];
poles[1] = s->a[ch][2 * outmost_pole.a + 1];
zeros[0] = s->b[ch][2 * nearest_zero.a ];
zeros[1] = s->b[ch][2 * nearest_zero.a + 1];
if (nearest_zero.a == nearest_zero.b && outmost_pole.a == outmost_pole.b) {
zeros[2] = 0;
zeros[3] = 0;
poles[2] = 0;
poles[3] = 0;
} else {
poles[2] = s->a[ch][2 * outmost_pole.b ];
poles[3] = s->a[ch][2 * outmost_pole.b + 1];
zeros[2] = s->b[ch][2 * nearest_zero.b ];
zeros[3] = s->b[ch][2 * nearest_zero.b + 1];
}
ret = expand(ctx, zeros, 2, b);
if (ret < 0)
return ret;
ret = expand(ctx, poles, 2, a);
if (ret < 0)
return ret;
s->a[ch][2 * outmost_pole.a] = s->a[ch][2 * outmost_pole.a + 1] = NAN;
s->a[ch][2 * outmost_pole.b] = s->a[ch][2 * outmost_pole.b + 1] = NAN;
s->b[ch][2 * nearest_zero.a] = s->b[ch][2 * nearest_zero.a + 1] = NAN;
s->b[ch][2 * nearest_zero.b] = s->b[ch][2 * nearest_zero.b + 1] = NAN;
s->biquads[ch][current_biquad].a0 = 1.0;
s->biquads[ch][current_biquad].a1 = a[2] / a[4];
s->biquads[ch][current_biquad].a2 = a[0] / a[4];
s->biquads[ch][current_biquad].b0 = b[4] / a[4] * (current_biquad ? 1.0 : s->g[ch]);
s->biquads[ch][current_biquad].b1 = b[2] / a[4] * (current_biquad ? 1.0 : s->g[ch]);
s->biquads[ch][current_biquad].b2 = b[0] / a[4] * (current_biquad ? 1.0 : s->g[ch]);
av_log(ctx, AV_LOG_VERBOSE, "a=%lf %lf %lf:b=%lf %lf %lf\n",
s->biquads[ch][current_biquad].a0,
s->biquads[ch][current_biquad].a1,
s->biquads[ch][current_biquad].a2,
s->biquads[ch][current_biquad].b0,
s->biquads[ch][current_biquad].b1,
s->biquads[ch][current_biquad].b2);
current_biquad++;
}
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
@ -388,10 +597,20 @@ static int config_output(AVFilterLink *outlink)
if (ret < 0)
return ret;
if (s->format) {
if (s->format == 1 && s->process == 0) {
ret = convert_zp2tf(ctx, inlink->channels);
if (ret < 0)
return ret;
} else if (s->format == 0 && s->process == 1) {
av_log(ctx, AV_LOG_ERROR, "Serial cascading is not implemented for transfer function.\n");
return AVERROR_PATCHWELCOME;
} else if (s->format == 1 && s->process == 1) {
s->biquads = av_calloc(inlink->channels, sizeof(*s->biquads));
if (!s->biquads)
return AVERROR(ENOMEM);
ret = decompose_zp2biquads(ctx, inlink->channels);
if (ret < 0)
return ret;
}
for (ch = 0; ch < inlink->channels; ch++) {
@ -405,10 +624,10 @@ static int config_output(AVFilterLink *outlink)
}
switch (inlink->format) {
case AV_SAMPLE_FMT_DBLP: s->iir_frame = iir_frame_dblp; break;
case AV_SAMPLE_FMT_FLTP: s->iir_frame = iir_frame_fltp; break;
case AV_SAMPLE_FMT_S32P: s->iir_frame = iir_frame_s32p; break;
case AV_SAMPLE_FMT_S16P: s->iir_frame = iir_frame_s16p; break;
case AV_SAMPLE_FMT_DBLP: s->iir_frame = s->process == 1 ? iir_frame_serial_dblp : iir_frame_dblp; break;
case AV_SAMPLE_FMT_FLTP: s->iir_frame = s->process == 1 ? iir_frame_serial_fltp : iir_frame_fltp; break;
case AV_SAMPLE_FMT_S32P: s->iir_frame = s->process == 1 ? iir_frame_serial_s32p : iir_frame_s32p; break;
case AV_SAMPLE_FMT_S16P: s->iir_frame = s->process == 1 ? iir_frame_serial_s16p : iir_frame_s16p; break;
}
return 0;
@ -453,6 +672,14 @@ static av_cold int init(AVFilterContext *ctx)
return AVERROR(EINVAL);
}
switch (s->precision) {
case 0: s->sample_format = AV_SAMPLE_FMT_DBLP; break;
case 1: s->sample_format = AV_SAMPLE_FMT_FLTP; break;
case 2: s->sample_format = AV_SAMPLE_FMT_S32P; break;
case 3: s->sample_format = AV_SAMPLE_FMT_S16P; break;
default: return AVERROR_BUG;
}
return 0;
}
@ -482,6 +709,13 @@ static av_cold void uninit(AVFilterContext *ctx)
av_freep(&s->input);
av_freep(&s->output);
if (s->biquads) {
for (ch = 0; ch < s->channels; ch++) {
av_freep(&s->biquads[ch]);
}
}
av_freep(&s->biquads);
av_freep(&s->nb_a);
av_freep(&s->nb_b);
}
@ -513,9 +747,17 @@ static const AVOption aiir_options[] = {
{ "k", "set channels gains", OFFSET(g_str), AV_OPT_TYPE_STRING, {.str="1|1"}, 0, 0, AF },
{ "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, AF },
{ "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, AF },
{ "f", "set coefficients format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, AF, "format" },
{ "f", "set coefficients format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "format" },
{ "tf", "transfer function", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "format" },
{ "zp", "Z-plane zeros/poles", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "format" },
{ "r", "set kind of processing", OFFSET(process), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, AF, "process" },
{ "d", "direct", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "process" },
{ "s", "serial cascading", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "process" },
{ "e", "set precision", OFFSET(precision),AV_OPT_TYPE_INT, {.i64=0}, 0, 3, AF, "precision" },
{ "dbl", "double-precision floating-point", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision" },
{ "flt", "single-precision floating-point", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision" },
{ "i32", "32-bit integers", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision" },
{ "i16", "16-bit integers", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision" },
{ NULL },
};