mirror of https://git.ffmpeg.org/ffmpeg.git
libavfilter: Add derain filter
Remove the rain in the input image/video by applying the derain methods based on convolutional neural networks. Training scripts as well as scripts for model generation are provided in the repository at https://github.com/XueweiMeng/derain_filter.git. Signed-off-by: Xuewei Meng <xwmeng96@gmail.com>
This commit is contained in:
parent
3be4490014
commit
78e1d7f421
|
@ -8264,6 +8264,40 @@ delogo=x=0:y=0:w=100:h=77:band=10
|
|||
|
||||
@end itemize
|
||||
|
||||
@section derain
|
||||
|
||||
Remove the rain in the input image/video by applying the derain methods based on
|
||||
convolutional neural networks. Supported models:
|
||||
|
||||
@itemize
|
||||
@item
|
||||
Recurrent Squeeze-and-Excitation Context Aggregation Net (RESCAN).
|
||||
See @url{http://openaccess.thecvf.com/content_ECCV_2018/papers/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.pdf}.
|
||||
@end itemize
|
||||
|
||||
Training scripts as well as scripts for model generation are provided in
|
||||
the repository at @url{https://github.com/XueweiMeng/derain_filter.git}.
|
||||
|
||||
The filter accepts the following options:
|
||||
|
||||
@table @option
|
||||
@item dnn_backend
|
||||
Specify which DNN backend to use for model loading and execution. This option accepts
|
||||
the following values:
|
||||
|
||||
@table @samp
|
||||
@item native
|
||||
Native implementation of DNN loading and execution.
|
||||
@end table
|
||||
Default value is @samp{native}.
|
||||
|
||||
@item model
|
||||
Set path to model file specifying network architecture and its parameters.
|
||||
Note that different backends use different file formats. TensorFlow backend
|
||||
can load files for both formats, while native backend can load files for only
|
||||
its format.
|
||||
@end table
|
||||
|
||||
@section deshake
|
||||
|
||||
Attempt to fix small changes in horizontal and/or vertical shift. This
|
||||
|
|
|
@ -200,6 +200,7 @@ OBJS-$(CONFIG_DCTDNOIZ_FILTER) += vf_dctdnoiz.o
|
|||
OBJS-$(CONFIG_DEBAND_FILTER) += vf_deband.o
|
||||
OBJS-$(CONFIG_DEBLOCK_FILTER) += vf_deblock.o
|
||||
OBJS-$(CONFIG_DECIMATE_FILTER) += vf_decimate.o
|
||||
OBJS-$(CONFIG_DERAIN_FILTER) += vf_derain.o
|
||||
OBJS-$(CONFIG_DECONVOLVE_FILTER) += vf_convolve.o framesync.o
|
||||
OBJS-$(CONFIG_DEDOT_FILTER) += vf_dedot.o
|
||||
OBJS-$(CONFIG_DEFLATE_FILTER) += vf_neighbor.o
|
||||
|
|
|
@ -196,6 +196,7 @@ extern AVFilter ff_vf_deinterlace_vaapi;
|
|||
extern AVFilter ff_vf_dejudder;
|
||||
extern AVFilter ff_vf_delogo;
|
||||
extern AVFilter ff_vf_denoise_vaapi;
|
||||
extern AVFilter ff_vf_derain;
|
||||
extern AVFilter ff_vf_deshake;
|
||||
extern AVFilter ff_vf_despill;
|
||||
extern AVFilter ff_vf_detelecine;
|
||||
|
|
|
@ -0,0 +1,212 @@
|
|||
/*
|
||||
* Copyright (c) 2019 Xuewei Meng
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* Filter implementing image derain filter using deep convolutional networks.
|
||||
* http://openaccess.thecvf.com/content_ECCV_2018/html/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.html
|
||||
*/
|
||||
|
||||
#include "libavformat/avio.h"
|
||||
#include "libavutil/opt.h"
|
||||
#include "avfilter.h"
|
||||
#include "dnn_interface.h"
|
||||
#include "formats.h"
|
||||
#include "internal.h"
|
||||
|
||||
typedef struct DRContext {
|
||||
const AVClass *class;
|
||||
|
||||
char *model_filename;
|
||||
DNNBackendType backend_type;
|
||||
DNNModule *dnn_module;
|
||||
DNNModel *model;
|
||||
DNNInputData input;
|
||||
DNNData output;
|
||||
} DRContext;
|
||||
|
||||
#define CLIP(x, min, max) (x < min ? min : (x > max ? max : x))
|
||||
#define OFFSET(x) offsetof(DRContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
||||
static const AVOption derain_options[] = {
|
||||
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
|
||||
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
|
||||
#if (CONFIG_LIBTENSORFLOW == 1)
|
||||
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
|
||||
#endif
|
||||
{ "model", "path to model file", OFFSET(model_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFILTER_DEFINE_CLASS(derain);
|
||||
|
||||
static int query_formats(AVFilterContext *ctx)
|
||||
{
|
||||
AVFilterFormats *formats;
|
||||
const enum AVPixelFormat pixel_fmts[] = {
|
||||
AV_PIX_FMT_RGB24,
|
||||
AV_PIX_FMT_NONE
|
||||
};
|
||||
|
||||
formats = ff_make_format_list(pixel_fmts);
|
||||
|
||||
return ff_set_common_formats(ctx, formats);
|
||||
}
|
||||
|
||||
static int config_inputs(AVFilterLink *inlink)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
DRContext *dr_context = ctx->priv;
|
||||
const char *model_output_name = "y";
|
||||
DNNReturnType result;
|
||||
|
||||
dr_context->input.width = inlink->w;
|
||||
dr_context->input.height = inlink->h;
|
||||
dr_context->input.channels = 3;
|
||||
|
||||
result = (dr_context->model->set_input_output)(dr_context->model->model, &dr_context->input, "x", &model_output_name, 1);
|
||||
if (result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
AVFilterLink *outlink = ctx->outputs[0];
|
||||
DRContext *dr_context = ctx->priv;
|
||||
DNNReturnType dnn_result;
|
||||
int pad_size;
|
||||
|
||||
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
||||
if (!out) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n");
|
||||
av_frame_free(&in);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
av_frame_copy_props(out, in);
|
||||
|
||||
for (int i = 0; i < in->height; i++){
|
||||
for(int j = 0; j < in->width * 3; j++){
|
||||
int k = i * in->linesize[0] + j;
|
||||
int t = i * in->width * 3 + j;
|
||||
((float *)dr_context->input.data)[t] = in->data[0][k] / 255.0;
|
||||
}
|
||||
}
|
||||
|
||||
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, &dr_context->output, 1);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
out->height = dr_context->output.height;
|
||||
out->width = dr_context->output.width;
|
||||
outlink->h = dr_context->output.height;
|
||||
outlink->w = dr_context->output.width;
|
||||
pad_size = (in->height - out->height) >> 1;
|
||||
|
||||
for (int i = 0; i < out->height; i++){
|
||||
for(int j = 0; j < out->width * 3; j++){
|
||||
int k = i * out->linesize[0] + j;
|
||||
int t = i * out->width * 3 + j;
|
||||
|
||||
int t_in = (i + pad_size) * in->width * 3 + j + pad_size * 3;
|
||||
out->data[0][k] = CLIP((int)((((float *)dr_context->input.data)[t_in] - dr_context->output.data[t]) * 255), 0, 255);
|
||||
}
|
||||
}
|
||||
|
||||
av_frame_free(&in);
|
||||
|
||||
return ff_filter_frame(outlink, out);
|
||||
}
|
||||
|
||||
static av_cold int init(AVFilterContext *ctx)
|
||||
{
|
||||
DRContext *dr_context = ctx->priv;
|
||||
|
||||
dr_context->input.dt = DNN_FLOAT;
|
||||
dr_context->dnn_module = ff_get_dnn_module(dr_context->backend_type);
|
||||
if (!dr_context->dnn_module) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
if (!dr_context->model_filename) {
|
||||
av_log(ctx, AV_LOG_ERROR, "model file for network is not specified\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
if (!dr_context->dnn_module->load_model) {
|
||||
av_log(ctx, AV_LOG_ERROR, "load_model for network is not specified\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
dr_context->model = (dr_context->dnn_module->load_model)(dr_context->model_filename);
|
||||
if (!dr_context->model) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static av_cold void uninit(AVFilterContext *ctx)
|
||||
{
|
||||
DRContext *dr_context = ctx->priv;
|
||||
|
||||
if (dr_context->dnn_module) {
|
||||
(dr_context->dnn_module->free_model)(&dr_context->model);
|
||||
av_freep(&dr_context->dnn_module);
|
||||
}
|
||||
}
|
||||
|
||||
static const AVFilterPad derain_inputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_inputs,
|
||||
.filter_frame = filter_frame,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
static const AVFilterPad derain_outputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFilter ff_vf_derain = {
|
||||
.name = "derain",
|
||||
.description = NULL_IF_CONFIG_SMALL("Apply derain filter to the input."),
|
||||
.priv_size = sizeof(DRContext),
|
||||
.init = init,
|
||||
.uninit = uninit,
|
||||
.query_formats = query_formats,
|
||||
.inputs = derain_inputs,
|
||||
.outputs = derain_outputs,
|
||||
.priv_class = &derain_class,
|
||||
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
|
||||
};
|
Loading…
Reference in New Issue