mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-18 21:45:10 +00:00
avfilter/dnn_backend_openvino: simplify memory allocation
Signed-off-by: Zhao Zhili <zhilizhao@tencent.com> Reviewed-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
ac52cee72e
commit
57a3c2cd40
@ -41,8 +41,8 @@
|
||||
#include "dnn_backend_common.h"
|
||||
|
||||
typedef struct OVModel{
|
||||
DNNModel model;
|
||||
DnnContext *ctx;
|
||||
DNNModel *model;
|
||||
#if HAVE_OPENVINO2
|
||||
ov_core_t *core;
|
||||
ov_model_t *ov_model;
|
||||
@ -300,11 +300,11 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
|
||||
return ov2_map_error(status, NULL);
|
||||
}
|
||||
#endif
|
||||
switch (ov_model->model->func_type) {
|
||||
switch (ov_model->model.func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
if (task->do_ioproc) {
|
||||
if (ov_model->model->frame_pre_proc != NULL) {
|
||||
ov_model->model->frame_pre_proc(task->in_frame, &input, ov_model->model->filter_ctx);
|
||||
if (ov_model->model.frame_pre_proc != NULL) {
|
||||
ov_model->model.frame_pre_proc(task->in_frame, &input, ov_model->model.filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||
}
|
||||
@ -442,11 +442,11 @@ static void infer_completion_callback(void *args)
|
||||
for (int i = 0; i < request->lltask_count; ++i) {
|
||||
task = request->lltasks[i]->task;
|
||||
|
||||
switch (ov_model->model->func_type) {
|
||||
switch (ov_model->model.func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
if (task->do_ioproc) {
|
||||
if (ov_model->model->frame_post_proc != NULL) {
|
||||
ov_model->model->frame_post_proc(task->out_frame, outputs, ov_model->model->filter_ctx);
|
||||
if (ov_model->model.frame_post_proc != NULL) {
|
||||
ov_model->model.frame_post_proc(task->out_frame, outputs, ov_model->model.filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
|
||||
}
|
||||
@ -458,23 +458,23 @@ static void infer_completion_callback(void *args)
|
||||
}
|
||||
break;
|
||||
case DFT_ANALYTICS_DETECT:
|
||||
if (!ov_model->model->detect_post_proc) {
|
||||
if (!ov_model->model.detect_post_proc) {
|
||||
av_log(ctx, AV_LOG_ERROR, "detect filter needs to provide post proc\n");
|
||||
goto end;
|
||||
}
|
||||
ov_model->model->detect_post_proc(task->in_frame, outputs,
|
||||
ov_model->model.detect_post_proc(task->in_frame, outputs,
|
||||
ov_model->nb_outputs,
|
||||
ov_model->model->filter_ctx);
|
||||
ov_model->model.filter_ctx);
|
||||
break;
|
||||
case DFT_ANALYTICS_CLASSIFY:
|
||||
if (!ov_model->model->classify_post_proc) {
|
||||
if (!ov_model->model.classify_post_proc) {
|
||||
av_log(ctx, AV_LOG_ERROR, "classify filter needs to provide post proc\n");
|
||||
goto end;
|
||||
}
|
||||
for (int output_i = 0; output_i < ov_model->nb_outputs; output_i++)
|
||||
ov_model->model->classify_post_proc(task->in_frame, outputs,
|
||||
ov_model->model.classify_post_proc(task->in_frame, outputs,
|
||||
request->lltasks[i]->bbox_index,
|
||||
ov_model->model->filter_ctx);
|
||||
ov_model->model.filter_ctx);
|
||||
break;
|
||||
default:
|
||||
av_assert0(!"should not reach here");
|
||||
@ -571,7 +571,7 @@ static void dnn_free_model_ov(DNNModel **model)
|
||||
av_free(ov_model->all_input_names);
|
||||
#endif
|
||||
av_freep(&ov_model);
|
||||
av_freep(model);
|
||||
*model = NULL;
|
||||
}
|
||||
|
||||
|
||||
@ -598,7 +598,7 @@ static int init_model_ov(OVModel *ov_model, const char *input_name, const char *
|
||||
#endif
|
||||
// We scale pixel by default when do frame processing.
|
||||
if (fabsf(ctx->ov_option.scale) < 1e-6f)
|
||||
ctx->ov_option.scale = ov_model->model->func_type == DFT_PROCESS_FRAME ? 255 : 1;
|
||||
ctx->ov_option.scale = ov_model->model.func_type == DFT_PROCESS_FRAME ? 255 : 1;
|
||||
// batch size
|
||||
if (ctx->ov_option.batch_size <= 0) {
|
||||
ctx->ov_option.batch_size = 1;
|
||||
@ -702,7 +702,7 @@ static int init_model_ov(OVModel *ov_model, const char *input_name, const char *
|
||||
ret = ov2_map_error(status, NULL);
|
||||
goto err;
|
||||
}
|
||||
if (ov_model->model->func_type != DFT_PROCESS_FRAME)
|
||||
if (ov_model->model.func_type != DFT_PROCESS_FRAME)
|
||||
status |= ov_preprocess_output_set_element_type(output_tensor_info, F32);
|
||||
else if (fabsf(ctx->ov_option.scale - 1) > 1e-6f || fabsf(ctx->ov_option.mean) > 1e-6f)
|
||||
status |= ov_preprocess_output_set_element_type(output_tensor_info, F32);
|
||||
@ -1280,7 +1280,7 @@ static int get_output_ov(void *model, const char *input_name, int input_width, i
|
||||
.out_frame = NULL,
|
||||
};
|
||||
|
||||
if (ov_model->model->func_type != DFT_PROCESS_FRAME) {
|
||||
if (ov_model->model.func_type != DFT_PROCESS_FRAME) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Get output dim only when processing frame.\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
@ -1342,7 +1342,7 @@ static int get_output_ov(void *model, const char *input_name, int input_width, i
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = extract_lltask_from_task(ov_model->model->func_type, &task, ov_model->lltask_queue, NULL);
|
||||
ret = extract_lltask_from_task(ov_model->model.func_type, &task, ov_model->lltask_queue, NULL);
|
||||
if (ret != 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
|
||||
goto err;
|
||||
@ -1378,19 +1378,12 @@ static DNNModel *dnn_load_model_ov(DnnContext *ctx, DNNFunctionType func_type, A
|
||||
IEStatusCode status;
|
||||
#endif
|
||||
|
||||
model = av_mallocz(sizeof(DNNModel));
|
||||
if (!model){
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ov_model = av_mallocz(sizeof(OVModel));
|
||||
if (!ov_model) {
|
||||
av_freep(&model);
|
||||
if (!ov_model)
|
||||
return NULL;
|
||||
}
|
||||
ov_model->ctx = ctx;
|
||||
model = &ov_model->model;
|
||||
model->model = ov_model;
|
||||
ov_model->model = model;
|
||||
|
||||
#if HAVE_OPENVINO2
|
||||
status = ov_core_create(&core);
|
||||
|
Loading…
Reference in New Issue
Block a user