mirror of https://git.ffmpeg.org/ffmpeg.git
aacenc: Finish 3GPP psymodel analysis for non mid/side cases.
There is still are still a few sections missing relating to TNS (not present) and mid/side (contains other bugs). Overall this improves quality, and vastly improves rate-control. Signed-off-by: Martin Storsjö <martin@martin.st>
This commit is contained in:
parent
cfc2a0cf84
commit
230c1a9075
|
@ -606,8 +606,10 @@ static int aac_encode_frame(AVCodecContext *avctx,
|
|||
}
|
||||
|
||||
frame_bits = put_bits_count(&s->pb);
|
||||
if (frame_bits <= 6144 * avctx->channels - 3)
|
||||
if (frame_bits <= 6144 * avctx->channels - 3) {
|
||||
s->psy.bitres.bits = frame_bits / avctx->channels;
|
||||
break;
|
||||
}
|
||||
|
||||
s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
|
||||
|
||||
|
|
|
@ -30,7 +30,6 @@
|
|||
|
||||
/***********************************
|
||||
* TODOs:
|
||||
* thresholds linearization after their modifications for attaining given bitrate
|
||||
* try other bitrate controlling mechanism (maybe use ratecontrol.c?)
|
||||
* control quality for quality-based output
|
||||
**********************************/
|
||||
|
@ -41,10 +40,51 @@
|
|||
*/
|
||||
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
|
||||
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
|
||||
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
|
||||
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
|
||||
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
|
||||
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
|
||||
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
|
||||
#define PSY_3GPP_EN_SPREAD_HI_S 1.5f
|
||||
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
|
||||
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
|
||||
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
|
||||
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
|
||||
|
||||
#define PSY_3GPP_RPEMIN 0.01f
|
||||
#define PSY_3GPP_RPELEV 2.0f
|
||||
|
||||
#define PSY_3GPP_C1 3.0f /* log2(8) */
|
||||
#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
|
||||
#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
|
||||
|
||||
#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
|
||||
#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
|
||||
|
||||
#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
|
||||
#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
|
||||
#define PSY_3GPP_SAVE_ADD_L -0.84285712f
|
||||
#define PSY_3GPP_SAVE_ADD_S -0.75f
|
||||
#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
|
||||
#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
|
||||
#define PSY_3GPP_SPEND_ADD_L -0.35f
|
||||
#define PSY_3GPP_SPEND_ADD_S -0.26111111f
|
||||
#define PSY_3GPP_CLIP_LO_L 0.2f
|
||||
#define PSY_3GPP_CLIP_LO_S 0.2f
|
||||
#define PSY_3GPP_CLIP_HI_L 0.95f
|
||||
#define PSY_3GPP_CLIP_HI_S 0.75f
|
||||
|
||||
#define PSY_3GPP_AH_THR_LONG 0.5f
|
||||
#define PSY_3GPP_AH_THR_SHORT 0.63f
|
||||
|
||||
enum {
|
||||
PSY_3GPP_AH_NONE,
|
||||
PSY_3GPP_AH_INACTIVE,
|
||||
PSY_3GPP_AH_ACTIVE
|
||||
};
|
||||
|
||||
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
|
||||
|
||||
/* LAME psy model constants */
|
||||
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
|
||||
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
|
||||
|
@ -63,6 +103,12 @@ typedef struct AacPsyBand{
|
|||
float energy; ///< band energy
|
||||
float thr; ///< energy threshold
|
||||
float thr_quiet; ///< threshold in quiet
|
||||
float nz_lines; ///< number of non-zero spectral lines
|
||||
float active_lines; ///< number of active spectral lines
|
||||
float pe; ///< perceptual entropy
|
||||
float pe_const; ///< constant part of the PE calculation
|
||||
float norm_fac; ///< normalization factor for linearization
|
||||
int avoid_holes; ///< hole avoidance flag
|
||||
}AacPsyBand;
|
||||
|
||||
/**
|
||||
|
@ -97,6 +143,15 @@ typedef struct AacPsyCoeffs{
|
|||
* 3GPP TS26.403-inspired psychoacoustic model specific data
|
||||
*/
|
||||
typedef struct AacPsyContext{
|
||||
int chan_bitrate; ///< bitrate per channel
|
||||
int frame_bits; ///< average bits per frame
|
||||
int fill_level; ///< bit reservoir fill level
|
||||
struct {
|
||||
float min; ///< minimum allowed PE for bit factor calculation
|
||||
float max; ///< maximum allowed PE for bit factor calculation
|
||||
float previous; ///< allowed PE of the previous frame
|
||||
float correction; ///< PE correction factor
|
||||
} pe;
|
||||
AacPsyCoeffs psy_coef[2][64];
|
||||
AacPsyChannel *ch;
|
||||
}AacPsyContext;
|
||||
|
@ -235,16 +290,33 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
|
|||
AacPsyContext *pctx;
|
||||
float bark;
|
||||
int i, j, g, start;
|
||||
float prev, minscale, minath;
|
||||
float prev, minscale, minath, minsnr, pe_min;
|
||||
const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
|
||||
const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : ctx->avctx->sample_rate / 2;
|
||||
const float num_bark = calc_bark((float)bandwidth);
|
||||
|
||||
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
|
||||
pctx = (AacPsyContext*) ctx->model_priv_data;
|
||||
|
||||
pctx->chan_bitrate = chan_bitrate;
|
||||
pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
|
||||
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
|
||||
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
|
||||
ctx->bitres.size = 6144 - pctx->frame_bits;
|
||||
ctx->bitres.size -= ctx->bitres.size % 8;
|
||||
pctx->fill_level = ctx->bitres.size;
|
||||
minath = ath(3410, ATH_ADD);
|
||||
for (j = 0; j < 2; j++) {
|
||||
AacPsyCoeffs *coeffs = pctx->psy_coef[j];
|
||||
const uint8_t *band_sizes = ctx->bands[j];
|
||||
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
|
||||
float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f);
|
||||
/* reference encoder uses 2.4% here instead of 60% like the spec says */
|
||||
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
|
||||
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
|
||||
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
|
||||
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
|
||||
|
||||
i = 0;
|
||||
prev = 0.0;
|
||||
for (g = 0; g < ctx->num_bands[j]; g++) {
|
||||
|
@ -258,6 +330,11 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
|
|||
float bark_width = coeffs[g+1].barks - coeffs->barks;
|
||||
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
|
||||
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
|
||||
coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
|
||||
coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
|
||||
pe_min = bark_pe * bark_width;
|
||||
minsnr = pow(2.0f, pe_min / band_sizes[g]) - 1.5f;
|
||||
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
|
||||
}
|
||||
start = 0;
|
||||
for (g = 0; g < ctx->num_bands[j]; g++) {
|
||||
|
@ -385,6 +462,97 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
|
|||
return wi;
|
||||
}
|
||||
|
||||
/* 5.6.1.2 "Calculation of Bit Demand" */
|
||||
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
|
||||
int short_window)
|
||||
{
|
||||
const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
|
||||
const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
|
||||
const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
|
||||
const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
|
||||
const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
|
||||
const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
|
||||
float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
|
||||
|
||||
ctx->fill_level += ctx->frame_bits - bits;
|
||||
ctx->fill_level = av_clip(ctx->fill_level, 0, size);
|
||||
fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
|
||||
clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
|
||||
bit_save = (fill_level + bitsave_add) * bitsave_slope;
|
||||
assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
|
||||
bit_spend = (fill_level + bitspend_add) * bitspend_slope;
|
||||
assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
|
||||
/* The bit factor graph in the spec is obviously incorrect.
|
||||
* bit_spend + ((bit_spend - bit_spend))...
|
||||
* The reference encoder subtracts everything from 1, but also seems incorrect.
|
||||
* 1 - bit_save + ((bit_spend + bit_save))...
|
||||
* Hopefully below is correct.
|
||||
*/
|
||||
bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
|
||||
/* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
|
||||
ctx->pe.max = FFMAX(pe, ctx->pe.max);
|
||||
ctx->pe.min = FFMIN(pe, ctx->pe.min);
|
||||
|
||||
return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
|
||||
}
|
||||
|
||||
static float calc_pe_3gpp(AacPsyBand *band)
|
||||
{
|
||||
float pe, a;
|
||||
|
||||
band->pe = 0.0f;
|
||||
band->pe_const = 0.0f;
|
||||
band->active_lines = 0.0f;
|
||||
if (band->energy > band->thr) {
|
||||
a = log2f(band->energy);
|
||||
pe = a - log2f(band->thr);
|
||||
band->active_lines = band->nz_lines;
|
||||
if (pe < PSY_3GPP_C1) {
|
||||
pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
|
||||
a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
|
||||
band->active_lines *= PSY_3GPP_C3;
|
||||
}
|
||||
band->pe = pe * band->nz_lines;
|
||||
band->pe_const = a * band->nz_lines;
|
||||
}
|
||||
|
||||
return band->pe;
|
||||
}
|
||||
|
||||
static float calc_reduction_3gpp(float a, float desired_pe, float pe,
|
||||
float active_lines)
|
||||
{
|
||||
float thr_avg, reduction;
|
||||
|
||||
thr_avg = powf(2.0f, (a - pe) / (4.0f * active_lines));
|
||||
reduction = powf(2.0f, (a - desired_pe) / (4.0f * active_lines)) - thr_avg;
|
||||
|
||||
return FFMAX(reduction, 0.0f);
|
||||
}
|
||||
|
||||
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
|
||||
float reduction)
|
||||
{
|
||||
float thr = band->thr;
|
||||
|
||||
if (band->energy > thr) {
|
||||
thr = powf(thr, 0.25f) + reduction;
|
||||
thr = powf(thr, 4.0f);
|
||||
|
||||
/* This deviates from the 3GPP spec to match the reference encoder.
|
||||
* It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
|
||||
* that have hole avoidance on (active or inactive). It always reduces the
|
||||
* threshold of bands with hole avoidance off.
|
||||
*/
|
||||
if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
|
||||
thr = FFMAX(band->thr, band->energy * min_snr);
|
||||
band->avoid_holes = PSY_3GPP_AH_ACTIVE;
|
||||
}
|
||||
}
|
||||
|
||||
return thr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate band thresholds as suggested in 3GPP TS26.403
|
||||
*/
|
||||
|
@ -395,18 +563,27 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
|
|||
AacPsyChannel *pch = &pctx->ch[channel];
|
||||
int start = 0;
|
||||
int i, w, g;
|
||||
float desired_bits, desired_pe, delta_pe, reduction, spread_en[128] = {0};
|
||||
float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
|
||||
float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
|
||||
const int num_bands = ctx->num_bands[wi->num_windows == 8];
|
||||
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
|
||||
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
|
||||
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
|
||||
|
||||
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
|
||||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
float form_factor = 0.0f;
|
||||
band->energy = 0.0f;
|
||||
for (i = 0; i < band_sizes[g]; i++)
|
||||
for (i = 0; i < band_sizes[g]; i++) {
|
||||
band->energy += coefs[start+i] * coefs[start+i];
|
||||
form_factor += sqrtf(fabs(coefs[start+i]));
|
||||
}
|
||||
band->thr = band->energy * 0.001258925f;
|
||||
band->nz_lines = form_factor / powf(band->energy / band_sizes[g], 0.25f);
|
||||
|
||||
start += band_sizes[g];
|
||||
}
|
||||
}
|
||||
|
@ -414,10 +591,15 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
|
|||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
AacPsyBand *bands = &pch->band[w];
|
||||
//5.4.2.3 "Spreading" & 5.4.3 "Spreaded Energy Calculation"
|
||||
for (g = 1; g < num_bands; g++)
|
||||
spread_en[0] = bands[0].energy;
|
||||
for (g = 1; g < num_bands; g++) {
|
||||
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
|
||||
for (g = num_bands - 2; g >= 0; g--)
|
||||
spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
|
||||
}
|
||||
for (g = num_bands - 2; g >= 0; g--) {
|
||||
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
|
||||
spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
|
||||
}
|
||||
//5.4.2.4 "Threshold in quiet"
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &bands[g];
|
||||
|
@ -426,6 +608,119 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
|
|||
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
|
||||
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
|
||||
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
|
||||
|
||||
/* 5.6.1.3.1 "Prepatory steps of the perceptual entropy calculation" */
|
||||
pe += calc_pe_3gpp(band);
|
||||
a += band->pe_const;
|
||||
active_lines += band->active_lines;
|
||||
|
||||
/* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
|
||||
if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
|
||||
band->avoid_holes = PSY_3GPP_AH_NONE;
|
||||
else
|
||||
band->avoid_holes = PSY_3GPP_AH_INACTIVE;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
|
||||
ctx->pe[channel] = pe;
|
||||
desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
|
||||
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
|
||||
/* NOTE: PE correction is kept simple. During initial testing it had very
|
||||
* little effect on the final bitrate. Probably a good idea to come
|
||||
* back and do more testing later.
|
||||
*/
|
||||
if (ctx->bitres.bits > 0)
|
||||
desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
|
||||
0.85f, 1.15f);
|
||||
pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
|
||||
|
||||
if (desired_pe < pe) {
|
||||
/* 5.6.1.3.4 "First Estimation of the reduction value" */
|
||||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
|
||||
pe = 0.0f;
|
||||
a = 0.0f;
|
||||
active_lines = 0.0f;
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
|
||||
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
|
||||
/* recalculate PE */
|
||||
pe += calc_pe_3gpp(band);
|
||||
a += band->pe_const;
|
||||
active_lines += band->active_lines;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5.6.1.3.5 "Second Estimation of the reduction value" */
|
||||
for (i = 0; i < 2; i++) {
|
||||
float pe_no_ah = 0.0f, desired_pe_no_ah;
|
||||
active_lines = a = 0.0f;
|
||||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
|
||||
if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
|
||||
pe_no_ah += band->pe;
|
||||
a += band->pe_const;
|
||||
active_lines += band->active_lines;
|
||||
}
|
||||
}
|
||||
}
|
||||
desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
|
||||
if (active_lines > 0.0f)
|
||||
reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
|
||||
|
||||
pe = 0.0f;
|
||||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
|
||||
if (active_lines > 0.0f)
|
||||
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
|
||||
pe += calc_pe_3gpp(band);
|
||||
band->norm_fac = band->active_lines / band->thr;
|
||||
norm_fac += band->norm_fac;
|
||||
}
|
||||
}
|
||||
delta_pe = desired_pe - pe;
|
||||
if (fabs(delta_pe) > 0.05f * desired_pe)
|
||||
break;
|
||||
}
|
||||
|
||||
if (pe < 1.15f * desired_pe) {
|
||||
/* 6.6.1.3.6 "Final threshold modification by linearization" */
|
||||
norm_fac = 1.0f / norm_fac;
|
||||
for (w = 0; w < wi->num_windows*16; w += 16) {
|
||||
for (g = 0; g < num_bands; g++) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
|
||||
if (band->active_lines > 0.5f) {
|
||||
float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
|
||||
float thr = band->thr;
|
||||
|
||||
thr *= powf(2.0f, delta_sfb_pe / band->active_lines);
|
||||
if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
|
||||
thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
|
||||
band->thr = thr;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* 5.6.1.3.7 "Further perceptual entropy reduction" */
|
||||
g = num_bands;
|
||||
while (pe > desired_pe && g--) {
|
||||
for (w = 0; w < wi->num_windows*16; w+= 16) {
|
||||
AacPsyBand *band = &pch->band[w+g];
|
||||
if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
|
||||
coeffs[g].min_snr = PSY_SNR_1DB;
|
||||
band->thr = band->energy * PSY_SNR_1DB;
|
||||
pe += band->active_lines * 1.5f - band->pe;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* TODO: allow more holes (unused without mid/side) */
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue