diff --git a/tests/checkasm/vp9dsp.c b/tests/checkasm/vp9dsp.c index f0cc2a7e45..690e0cf536 100644 --- a/tests/checkasm/vp9dsp.c +++ b/tests/checkasm/vp9dsp.c @@ -18,13 +18,16 @@ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ +#include #include #include "libavutil/common.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" +#include "libavutil/mathematics.h" #include "libavcodec/vp9.h" +#include "libavcodec/vp9data.h" #include "checkasm.h" @@ -33,6 +36,274 @@ static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff }; #define BIT_DEPTH 8 #define SIZEOF_PIXEL ((BIT_DEPTH + 7) / 8) +#define randomize_buffers() \ + do { \ + uint32_t mask = pixel_mask[(BIT_DEPTH - 8) >> 1]; \ + for (y = 0; y < sz; y++) { \ + for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \ + uint32_t r = rnd() & mask; \ + AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \ + AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \ + } \ + for (x = 0; x < sz; x++) { \ + if (BIT_DEPTH == 8) { \ + coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \ + } else { \ + ((int32_t *) coef)[y * sz + x] = \ + ((uint16_t *) src)[y * sz + x] - \ + ((uint16_t *) dst)[y * sz + x]; \ + } \ + } \ + } \ + } while(0) + +// wht function copied from libvpx +static void fwht_1d(double *out, const double *in, int sz) +{ + double t0 = in[0] + in[1]; + double t3 = in[3] - in[2]; + double t4 = trunc((t0 - t3) * 0.5); + double t1 = t4 - in[1]; + double t2 = t4 - in[2]; + + out[0] = t0 - t2; + out[1] = t2; + out[2] = t3 + t1; + out[3] = t1; +} + +// standard DCT-II +static void fdct_1d(double *out, const double *in, int sz) +{ + int k, n; + + for (k = 0; k < sz; k++) { + out[k] = 0.0; + for (n = 0; n < sz; n++) + out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0)); + } + out[0] *= M_SQRT1_2; +} + +// see "Towards jointly optimal spatial prediction and adaptive transform in +// video/image coding", by J. Han, A. Saxena, and K. Rose +// IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. +static void fadst4_1d(double *out, const double *in, int sz) +{ + int k, n; + + for (k = 0; k < sz; k++) { + out[k] = 0.0; + for (n = 0; n < sz; n++) + out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0)); + } +} + +// see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", +// by Jingning Han, Yaowu Xu, and Debargha Mukherjee +// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf +static void fadst_1d(double *out, const double *in, int sz) +{ + int k, n; + + for (k = 0; k < sz; k++) { + out[k] = 0.0; + for (n = 0; n < sz; n++) + out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0)); + } +} + +typedef void (*ftx1d_fn)(double *out, const double *in, int sz); +static void ftx_2d(double *out, const double *in, enum TxfmMode tx, + enum TxfmType txtp, int sz) +{ + static const double scaling_factors[5][4] = { + { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 }, + { 2.0, 2.0, 2.0, 2.0 }, + { 1.0, 1.0, 1.0, 1.0 }, + { 0.25 }, + { 4.0 } + }; + static const ftx1d_fn ftx1d_tbl[5][4][2] = { + { + { fdct_1d, fdct_1d }, + { fadst4_1d, fdct_1d }, + { fdct_1d, fadst4_1d }, + { fadst4_1d, fadst4_1d }, + }, { + { fdct_1d, fdct_1d }, + { fadst_1d, fdct_1d }, + { fdct_1d, fadst_1d }, + { fadst_1d, fadst_1d }, + }, { + { fdct_1d, fdct_1d }, + { fadst_1d, fdct_1d }, + { fdct_1d, fadst_1d }, + { fadst_1d, fadst_1d }, + }, { + { fdct_1d, fdct_1d }, + }, { + { fwht_1d, fwht_1d }, + }, + }; + double temp[1024]; + double scaling_factor = scaling_factors[tx][txtp]; + int i, j; + + // cols + for (i = 0; i < sz; ++i) { + double temp_out[32]; + + ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz); + // scale and transpose + for (j = 0; j < sz; ++j) + temp[j * sz + i] = temp_out[j] * scaling_factor; + } + + // rows + for (i = 0; i < sz; i++) + ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz); +} + +static void ftx(int16_t *buf, enum TxfmMode tx, + enum TxfmType txtp, int sz, int bit_depth) +{ + double ind[1024], outd[1024]; + int n; + + emms_c(); + for (n = 0; n < sz * sz; n++) { + if (bit_depth == 8) + ind[n] = buf[n]; + else + ind[n] = ((int32_t *) buf)[n]; + } + ftx_2d(outd, ind, tx, txtp, sz); + for (n = 0; n < sz * sz; n++) { + if (bit_depth == 8) + buf[n] = lrint(outd[n]); + else + ((int32_t *) buf)[n] = lrint(outd[n]); + } +} + +static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx, + enum TxfmType txtp, int sz, int sub, int bit_depth) +{ + // copy the topleft coefficients such that the return value (being the + // coefficient scantable index for the eob token) guarantees that only + // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both + // dimensions are non-zero. This leads to braching to specific optimized + // simd versions (e.g. dc-only) so that we get full asm coverage in this + // test + + int n; + const int16_t *scan = ff_vp9_scans[tx][txtp]; + int eob; + + for (n = 0; n < sz * sz; n++) { + int rc = scan[n], rcx = rc % sz, rcy = rc / sz; + + // find eob for this sub-idct + if (rcx >= sub || rcy >= sub) + break; + + // copy coef + if (bit_depth == 8) { + out[rc] = in[rc]; + } else { + AV_COPY32(&out[rc * 2], &in[rc * 2]); + } + } + + eob = n; + + for (; n < sz * sz; n++) { + int rc = scan[n]; + + // zero + if (bit_depth == 8) { + out[rc] = 0; + } else { + AV_ZERO32(&out[rc * 2]); + } + } + + return eob; +} + +static int iszero(const int16_t *c, int sz) +{ + int n; + + for (n = 0; n < sz / sizeof(int16_t); n += 2) + if (AV_RN32A(&c[n])) + return 0; + + return 1; +} + +#define SIZEOF_COEF (2 * ((BIT_DEPTH + 7) / 8)) + +static void check_itxfm(void) +{ + LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]); + LOCAL_ALIGNED(32, uint8_t, dst, [32 * 32 * 2]); + LOCAL_ALIGNED(32, uint8_t, dst0, [32 * 32 * 2]); + LOCAL_ALIGNED(32, uint8_t, dst1, [32 * 32 * 2]); + LOCAL_ALIGNED(32, int16_t, coef, [32 * 32 * 2]); + LOCAL_ALIGNED(32, int16_t, subcoef0, [32 * 32 * 2]); + LOCAL_ALIGNED(32, int16_t, subcoef1, [32 * 32 * 2]); + declare_func(void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob); + VP9DSPContext dsp; + int y, x, tx, txtp, sub; + static const char *const txtp_types[N_TXFM_TYPES] = { + [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct", + [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst" + }; + + ff_vp9dsp_init(&dsp); + + for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) { + int sz = 4 << (tx & 3); + int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1; + + for (txtp = 0; txtp < n_txtps; txtp++) { + if (check_func(dsp.itxfm_add[tx][txtp], "vp9_inv_%s_%dx%d_add", + tx == 4 ? "wht_wht" : txtp_types[txtp], sz, sz)) { + randomize_buffers(); + ftx(coef, tx, txtp, sz, BIT_DEPTH); + + for (sub = (txtp == 0) ? 1 : 2; sub <= sz; sub <<= 1) { + int eob; + + if (sub < sz) { + eob = copy_subcoefs(subcoef0, coef, tx, txtp, + sz, sub, BIT_DEPTH); + } else { + eob = sz * sz; + memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); + } + + memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL); + memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL); + memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); + call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob); + call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob); + if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) || + !iszero(subcoef0, sz * sz * SIZEOF_COEF) || + !iszero(subcoef1, sz * sz * SIZEOF_COEF)) + fail(); + } + bench_new(dst, sz * SIZEOF_PIXEL, coef, sz * sz); + } + } + } + report("itxfm"); +} + +#undef randomize_buffers + #define setpx(a,b,c) \ do { \ if (SIZEOF_PIXEL == 1) { \ @@ -279,6 +550,7 @@ static void check_mc(void) void checkasm_check_vp9dsp(void) { + check_itxfm(); check_loopfilter(); check_mc(); }