mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-24 16:22:51 +00:00
dnn: introduce dnn operand (in c code) to hold operand infos within network
the info can be saved in dnn operand object without regenerating again and again, and it is also needed for layer split/merge, and for memory reuse. to make things step by step, this patch just focuses on c code, the change within python script will be added later. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
20a12448aa
commit
09a455a246
@ -30,77 +30,30 @@
|
||||
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
|
||||
InputParams *input_params;
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
int cur_width, cur_height, cur_channels;
|
||||
int32_t layer;
|
||||
|
||||
if (network->layers_num <= 0 || network->layers[0].type != INPUT){
|
||||
if (network->layers_num <= 0 || network->operands_num <= 0)
|
||||
return DNN_ERROR;
|
||||
}
|
||||
else{
|
||||
input_params = (InputParams *)network->layers[0].params;
|
||||
input_params->width = cur_width = input->width;
|
||||
input_params->height = cur_height = input->height;
|
||||
input_params->channels = cur_channels = input->channels;
|
||||
if (input->data){
|
||||
av_freep(&input->data);
|
||||
}
|
||||
av_assert0(input->dt == DNN_FLOAT);
|
||||
network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
|
||||
if (!network->layers[0].output){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
for (layer = 1; layer < network->layers_num; ++layer){
|
||||
switch (network->layers[layer].type){
|
||||
case CONV:
|
||||
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
||||
if (conv_params->input_num != cur_channels){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
cur_channels = conv_params->output_num;
|
||||
av_assert0(input->dt == DNN_FLOAT);
|
||||
|
||||
if (conv_params->padding_method == VALID) {
|
||||
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
|
||||
cur_height -= pad_size;
|
||||
cur_width -= pad_size;
|
||||
}
|
||||
break;
|
||||
case DEPTH_TO_SPACE:
|
||||
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
|
||||
if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size);
|
||||
cur_height *= depth_to_space_params->block_size;
|
||||
cur_width *= depth_to_space_params->block_size;
|
||||
break;
|
||||
case MIRROR_PAD:
|
||||
pad_params = (LayerPadParams *)network->layers[layer].params;
|
||||
cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
||||
cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
||||
cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
||||
break;
|
||||
default:
|
||||
return DNN_ERROR;
|
||||
}
|
||||
if (network->layers[layer].output){
|
||||
av_freep(&network->layers[layer].output);
|
||||
}
|
||||
/**
|
||||
* as the first step, suppose network->operands[0] is the input operand.
|
||||
*/
|
||||
network->operands[0].dims[0] = 1;
|
||||
network->operands[0].dims[1] = input->height;
|
||||
network->operands[0].dims[2] = input->width;
|
||||
network->operands[0].dims[3] = input->channels;
|
||||
network->operands[0].type = DOT_INPUT;
|
||||
network->operands[0].data_type = DNN_FLOAT;
|
||||
network->operands[0].isNHWC = 1;
|
||||
|
||||
if (cur_height <= 0 || cur_width <= 0)
|
||||
return DNN_ERROR;
|
||||
|
||||
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
|
||||
if (!network->layers[layer].output){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
}
|
||||
av_freep(&network->operands[0].data);
|
||||
network->operands[0].length = calculate_operand_data_length(&network->operands[0]);
|
||||
network->operands[0].data = av_malloc(network->operands[0].length);
|
||||
if (!network->operands[0].data)
|
||||
return DNN_ERROR;
|
||||
|
||||
input->data = network->operands[0].data;
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
@ -119,6 +72,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
int32_t operand_index = 0;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
if (!model){
|
||||
@ -131,7 +85,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
}
|
||||
file_size = avio_size(model_file_context);
|
||||
|
||||
network = av_malloc(sizeof(ConvolutionalNetwork));
|
||||
network = av_mallocz(sizeof(ConvolutionalNetwork));
|
||||
if (!network){
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
@ -139,32 +93,33 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
}
|
||||
model->model = (void *)network;
|
||||
|
||||
network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
|
||||
network->layers_num = (int32_t)avio_rl32(model_file_context);
|
||||
dnn_size = 4;
|
||||
|
||||
network->layers = av_malloc(network->layers_num * sizeof(Layer));
|
||||
network->layers = av_mallocz(network->layers_num * sizeof(Layer));
|
||||
if (!network->layers){
|
||||
av_freep(&network);
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
network->layers[layer].output = NULL;
|
||||
network->layers[layer].params = NULL;
|
||||
}
|
||||
network->layers[0].type = INPUT;
|
||||
network->layers[0].params = av_malloc(sizeof(InputParams));
|
||||
if (!network->layers[0].params){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (layer = 1; layer < network->layers_num; ++layer){
|
||||
/**
|
||||
* Operands should be read from model file, the whole change will be huge.
|
||||
* to make things step by step, we first mock the operands, instead of reading from model file.
|
||||
*/
|
||||
network->operands_num = network->layers_num + 1;
|
||||
network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
|
||||
if (!network->operands){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
layer_type = (int32_t)avio_rl32(model_file_context);
|
||||
dnn_size += 4;
|
||||
network->layers[layer].input_operand_indexes[0] = operand_index++;
|
||||
network->layers[layer].output_operand_index = operand_index;
|
||||
switch (layer_type){
|
||||
case CONV:
|
||||
conv_params = av_malloc(sizeof(ConvolutionalParams));
|
||||
@ -258,14 +213,35 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
|
||||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
||||
|
||||
static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
|
||||
static int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
|
||||
{
|
||||
float *output;
|
||||
int32_t input_operand_index = input_operand_indexes[0];
|
||||
int number = operands[input_operand_index].dims[0];
|
||||
int height = operands[input_operand_index].dims[1];
|
||||
int width = operands[input_operand_index].dims[2];
|
||||
int channel = operands[input_operand_index].dims[3];
|
||||
const float *input = operands[input_operand_index].data;
|
||||
|
||||
int radius = conv_params->kernel_size >> 1;
|
||||
int src_linesize = width * conv_params->input_num;
|
||||
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
|
||||
int filter_size = conv_params->kernel_size * filter_linesize;
|
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index];
|
||||
output_operand->dims[0] = number;
|
||||
output_operand->dims[1] = height - pad_size * 2;
|
||||
output_operand->dims[2] = width - pad_size * 2;
|
||||
output_operand->dims[3] = conv_params->output_num;
|
||||
output_operand->length = calculate_operand_data_length(output_operand);
|
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
||||
if (!output_operand->data)
|
||||
return -1;
|
||||
output = output_operand->data;
|
||||
|
||||
av_assert0(channel == conv_params->input_num);
|
||||
|
||||
for (int y = pad_size; y < height - pad_size; ++y) {
|
||||
for (int x = pad_size; x < width - pad_size; ++x) {
|
||||
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
||||
@ -311,16 +287,36 @@ static void convolve(const float *input, float *output, const ConvolutionalParam
|
||||
output += conv_params->output_num;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
|
||||
static int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size)
|
||||
{
|
||||
float *output;
|
||||
int32_t input_operand_index = input_operand_indexes[0];
|
||||
int number = operands[input_operand_index].dims[0];
|
||||
int height = operands[input_operand_index].dims[1];
|
||||
int width = operands[input_operand_index].dims[2];
|
||||
int channels = operands[input_operand_index].dims[3];
|
||||
const float *input = operands[input_operand_index].data;
|
||||
|
||||
int y, x, by, bx, ch;
|
||||
int new_channels = channels / (block_size * block_size);
|
||||
int output_linesize = width * channels;
|
||||
int by_linesize = output_linesize / block_size;
|
||||
int x_linesize = new_channels * block_size;
|
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index];
|
||||
output_operand->dims[0] = number;
|
||||
output_operand->dims[1] = height * block_size;
|
||||
output_operand->dims[2] = width * block_size;
|
||||
output_operand->dims[3] = new_channels;
|
||||
output_operand->length = calculate_operand_data_length(output_operand);
|
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
||||
if (!output_operand->data)
|
||||
return -1;
|
||||
output = output_operand->data;
|
||||
|
||||
for (y = 0; y < height; ++y){
|
||||
for (x = 0; x < width; ++x){
|
||||
for (by = 0; by < block_size; ++by){
|
||||
@ -334,58 +330,38 @@ static void depth_to_space(const float *input, float *output, int block_size, in
|
||||
}
|
||||
output += output_linesize;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
|
||||
{
|
||||
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
|
||||
int cur_width, cur_height, cur_channels;
|
||||
int32_t layer;
|
||||
InputParams *input_params;
|
||||
ConvolutionalParams *conv_params;
|
||||
DepthToSpaceParams *depth_to_space_params;
|
||||
LayerPadParams *pad_params;
|
||||
|
||||
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
|
||||
if (network->layers_num <= 0 || network->operands_num <= 0)
|
||||
return DNN_ERROR;
|
||||
if (!network->operands[0].data)
|
||||
return DNN_ERROR;
|
||||
}
|
||||
else{
|
||||
input_params = (InputParams *)network->layers[0].params;
|
||||
cur_width = input_params->width;
|
||||
cur_height = input_params->height;
|
||||
cur_channels = input_params->channels;
|
||||
}
|
||||
|
||||
for (layer = 1; layer < network->layers_num; ++layer){
|
||||
if (!network->layers[layer].output){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
switch (network->layers[layer].type){
|
||||
case CONV:
|
||||
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
||||
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
|
||||
cur_channels = conv_params->output_num;
|
||||
if (conv_params->padding_method == VALID) {
|
||||
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
|
||||
cur_height -= pad_size;
|
||||
cur_width -= pad_size;
|
||||
}
|
||||
convolve(network->operands, network->layers[layer].input_operand_indexes,
|
||||
network->layers[layer].output_operand_index, conv_params);
|
||||
break;
|
||||
case DEPTH_TO_SPACE:
|
||||
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
|
||||
depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
|
||||
depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
|
||||
cur_height *= depth_to_space_params->block_size;
|
||||
cur_width *= depth_to_space_params->block_size;
|
||||
cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size;
|
||||
depth_to_space(network->operands, network->layers[layer].input_operand_indexes,
|
||||
network->layers[layer].output_operand_index, depth_to_space_params->block_size);
|
||||
break;
|
||||
case MIRROR_PAD:
|
||||
pad_params = (LayerPadParams *)network->layers[layer].params;
|
||||
dnn_execute_layer_pad(network->layers[layer - 1].output, network->layers[layer].output,
|
||||
pad_params, 1, cur_height, cur_width, cur_channels);
|
||||
cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
||||
cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
||||
cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
||||
dnn_execute_layer_pad(network->operands, network->layers[layer].input_operand_indexes,
|
||||
network->layers[layer].output_operand_index, pad_params);
|
||||
break;
|
||||
case INPUT:
|
||||
return DNN_ERROR;
|
||||
@ -395,14 +371,24 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
// native mode does not support multiple outputs yet
|
||||
if (nb_output > 1)
|
||||
return DNN_ERROR;
|
||||
outputs[0].data = network->layers[network->layers_num - 1].output;
|
||||
outputs[0].height = cur_height;
|
||||
outputs[0].width = cur_width;
|
||||
outputs[0].channels = cur_channels;
|
||||
|
||||
/**
|
||||
* as the first step, suppose network->operands[network->operands_num - 1] is the output operand.
|
||||
*/
|
||||
outputs[0].data = network->operands[network->operands_num - 1].data;
|
||||
outputs[0].height = network->operands[network->operands_num - 1].dims[1];
|
||||
outputs[0].width = network->operands[network->operands_num - 1].dims[2];
|
||||
outputs[0].channels = network->operands[network->operands_num - 1].dims[3];
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t calculate_operand_data_length(DnnOperand* operand)
|
||||
{
|
||||
// currently, we just support DNN_FLOAT
|
||||
return operand->dims[0] * operand->dims[1] * operand->dims[2] * operand->dims[3] * sizeof(float);
|
||||
}
|
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model)
|
||||
{
|
||||
ConvolutionalNetwork *network;
|
||||
@ -413,7 +399,6 @@ void ff_dnn_free_model_native(DNNModel **model)
|
||||
{
|
||||
network = (ConvolutionalNetwork *)(*model)->model;
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
av_freep(&network->layers[layer].output);
|
||||
if (network->layers[layer].type == CONV){
|
||||
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
||||
av_freep(&conv_params->kernel);
|
||||
@ -422,6 +407,11 @@ void ff_dnn_free_model_native(DNNModel **model)
|
||||
av_freep(&network->layers[layer].params);
|
||||
}
|
||||
av_freep(&network->layers);
|
||||
|
||||
for (uint32_t operand = 0; operand < network->operands_num; ++operand)
|
||||
av_freep(&network->operands[operand].data);
|
||||
av_freep(&network->operands);
|
||||
|
||||
av_freep(&network);
|
||||
av_freep(model);
|
||||
}
|
||||
|
@ -36,12 +36,60 @@ typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
|
||||
|
||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
|
||||
|
||||
typedef enum {DOT_INPUT, DOT_INTERMEDIATE, DOT_OUTPUT} DNNOperandType;
|
||||
|
||||
typedef struct Layer{
|
||||
DNNLayerType type;
|
||||
float *output;
|
||||
/**
|
||||
* a layer can have multiple inputs and one output.
|
||||
* 4 is just a big enough number for input operands (increase it if necessary),
|
||||
* do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks.
|
||||
*/
|
||||
int32_t input_operand_indexes[4];
|
||||
int32_t output_operand_index;
|
||||
void *params;
|
||||
} Layer;
|
||||
|
||||
typedef struct DnnOperand{
|
||||
/**
|
||||
* there are two memory layouts, NHWC or NCHW, so we use dims,
|
||||
* dims[0] is Number.
|
||||
*/
|
||||
int32_t dims[4];
|
||||
|
||||
/**
|
||||
* input/output/intermediate operand of the network
|
||||
*/
|
||||
DNNOperandType type;
|
||||
|
||||
/**
|
||||
* support different kinds of data type such as float, half float, int8 etc,
|
||||
* first support float now.
|
||||
*/
|
||||
DNNDataType data_type;
|
||||
|
||||
/**
|
||||
* NHWC if 1, otherwise NCHW.
|
||||
* let's first support NHWC only, this flag is for extensive usage.
|
||||
*/
|
||||
int8_t isNHWC;
|
||||
|
||||
/**
|
||||
* to avoid possible memory leak, do not use char *name
|
||||
*/
|
||||
char name[128];
|
||||
|
||||
/**
|
||||
* data pointer with data length in bytes.
|
||||
* usedNumbersLeft is only valid for intermediate operand,
|
||||
* it means how many layers still depend on this operand,
|
||||
* todo: the memory can be reused when usedNumbersLeft is zero.
|
||||
*/
|
||||
void *data;
|
||||
int32_t length;
|
||||
int32_t usedNumbersLeft;
|
||||
}DnnOperand;
|
||||
|
||||
typedef struct ConvolutionalParams{
|
||||
int32_t input_num, output_num, kernel_size;
|
||||
DNNActivationFunc activation;
|
||||
@ -63,6 +111,8 @@ typedef struct DepthToSpaceParams{
|
||||
typedef struct ConvolutionalNetwork{
|
||||
Layer *layers;
|
||||
int32_t layers_num;
|
||||
DnnOperand *operands;
|
||||
int32_t operands_num;
|
||||
} ConvolutionalNetwork;
|
||||
|
||||
DNNModel *ff_dnn_load_model_native(const char *model_filename);
|
||||
@ -71,4 +121,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model);
|
||||
|
||||
int32_t calculate_operand_data_length(DnnOperand *operand);
|
||||
|
||||
#endif
|
||||
|
@ -48,12 +48,21 @@ static int after_get_buddy(int given, int border, LayerPadModeParam mode)
|
||||
}
|
||||
}
|
||||
|
||||
void dnn_execute_layer_pad(const float *input, float *output, const LayerPadParams *params, int number, int height, int width, int channel)
|
||||
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index,
|
||||
const LayerPadParams *params)
|
||||
{
|
||||
int32_t before_paddings;
|
||||
int32_t after_paddings;
|
||||
float* output;
|
||||
|
||||
// suppose format is <N, H, W, C>
|
||||
int32_t input_operand_index = input_operand_indexes[0];
|
||||
int number = operands[input_operand_index].dims[0];
|
||||
int height = operands[input_operand_index].dims[1];
|
||||
int width = operands[input_operand_index].dims[2];
|
||||
int channel = operands[input_operand_index].dims[3];
|
||||
const float *input = operands[input_operand_index].data;
|
||||
|
||||
int new_number = number + params->paddings[0][0] + params->paddings[0][1];
|
||||
int new_height = height + params->paddings[1][0] + params->paddings[1][1];
|
||||
int new_width = width + params->paddings[2][0] + params->paddings[2][1];
|
||||
@ -67,6 +76,17 @@ void dnn_execute_layer_pad(const float *input, float *output, const LayerPadPara
|
||||
int new_wc_stride = new_c_stride * new_width;
|
||||
int new_hwc_stride = new_wc_stride * new_height;
|
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index];
|
||||
output_operand->dims[0] = new_number;
|
||||
output_operand->dims[1] = new_height;
|
||||
output_operand->dims[2] = new_width;
|
||||
output_operand->dims[3] = new_channel;
|
||||
output_operand->length = calculate_operand_data_length(output_operand);
|
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
||||
if (!output_operand->data)
|
||||
return -1;
|
||||
output = output_operand->data;
|
||||
|
||||
// copy the original data
|
||||
for (int n = 0; n < number; n++) {
|
||||
for (int h = 0; h < height; h++) {
|
||||
@ -208,4 +228,6 @@ void dnn_execute_layer_pad(const float *input, float *output, const LayerPadPara
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "dnn_backend_native.h"
|
||||
|
||||
typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam;
|
||||
|
||||
@ -35,6 +36,7 @@ typedef struct LayerPadParams{
|
||||
float constant_values;
|
||||
} LayerPadParams;
|
||||
|
||||
void dnn_execute_layer_pad(const float *input, float *output, const LayerPadParams *params, int number, int height, int width, int channel);
|
||||
int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index,
|
||||
const LayerPadParams *params);
|
||||
|
||||
#endif
|
||||
|
@ -5,7 +5,7 @@ DNNTESTPROGS := $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test$(EXESUF))
|
||||
-include $(wildcard $(DNNTESTOBJS:.o=.d))
|
||||
|
||||
$(DNNTESTPROGS): %$(EXESUF): %.o $(FF_STATIC_DEP_LIBS)
|
||||
$(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) $(FF_STATIC_DEP_LIBS) $(ELIBS)
|
||||
$(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) $(FF_STATIC_DEP_LIBS) $(EXTRALIBS-avcodec) $(EXTRALIBS-avfilter) $(EXTRALIBS-avformat) $(EXTRALIBS-avutil) $(EXTRALIBS-swresample) $(EXTRALIBS)
|
||||
|
||||
testclean::
|
||||
$(RM) $(addprefix $(DNNTESTSDIR)/,$(CLEANSUFFIXES) *-test$(EXESUF))
|
||||
|
@ -44,6 +44,8 @@ static int test_with_mode_symmetric(void)
|
||||
*/
|
||||
|
||||
LayerPadParams params;
|
||||
DnnOperand operands[2];
|
||||
int32_t input_indexes[1];
|
||||
float input[1*4*4*3] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
|
||||
};
|
||||
@ -57,8 +59,7 @@ static int test_with_mode_symmetric(void)
|
||||
27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0,
|
||||
13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0
|
||||
};
|
||||
float output[1*9*9*3];
|
||||
memset(output, 0, sizeof(output));
|
||||
float *output;
|
||||
|
||||
params.mode = LPMP_SYMMETRIC;
|
||||
params.paddings[0][0] = 0;
|
||||
@ -70,15 +71,26 @@ static int test_with_mode_symmetric(void)
|
||||
params.paddings[3][0] = 0;
|
||||
params.paddings[3][1] = 0;
|
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 1, 4, 4, 3);
|
||||
operands[0].data = input;
|
||||
operands[0].dims[0] = 1;
|
||||
operands[0].dims[1] = 4;
|
||||
operands[0].dims[2] = 4;
|
||||
operands[0].dims[3] = 3;
|
||||
operands[1].data = NULL;
|
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) {
|
||||
input_indexes[0] = 0;
|
||||
dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms);
|
||||
|
||||
output = operands[1].data;
|
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
|
||||
if (fabs(output[i] - expected_output[i]) > EPSON) {
|
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
|
||||
av_freep(&output);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
av_freep(&output);
|
||||
return 0;
|
||||
|
||||
}
|
||||
@ -102,6 +114,8 @@ static int test_with_mode_reflect(void)
|
||||
*/
|
||||
|
||||
LayerPadParams params;
|
||||
DnnOperand operands[2];
|
||||
int32_t input_indexes[1];
|
||||
float input[3*2*2*3] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
|
||||
};
|
||||
@ -110,8 +124,7 @@ static int test_with_mode_reflect(void)
|
||||
12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0,
|
||||
35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
|
||||
};
|
||||
float output[6*2*2*3];
|
||||
memset(output, 0, sizeof(output));
|
||||
float *output;
|
||||
|
||||
params.mode = LPMP_REFLECT;
|
||||
params.paddings[0][0] = 1;
|
||||
@ -123,15 +136,26 @@ static int test_with_mode_reflect(void)
|
||||
params.paddings[3][0] = 0;
|
||||
params.paddings[3][1] = 0;
|
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 3, 2, 2, 3);
|
||||
operands[0].data = input;
|
||||
operands[0].dims[0] = 3;
|
||||
operands[0].dims[1] = 2;
|
||||
operands[0].dims[2] = 2;
|
||||
operands[0].dims[3] = 3;
|
||||
operands[1].data = NULL;
|
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) {
|
||||
input_indexes[0] = 0;
|
||||
dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms);
|
||||
|
||||
output = operands[1].data;
|
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
|
||||
if (fabs(output[i] - expected_output[i]) > EPSON) {
|
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
|
||||
av_freep(&output);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
av_freep(&output);
|
||||
return 0;
|
||||
|
||||
}
|
||||
@ -155,6 +179,8 @@ static int test_with_mode_constant(void)
|
||||
*/
|
||||
|
||||
LayerPadParams params;
|
||||
DnnOperand operands[2];
|
||||
int32_t input_indexes[1];
|
||||
float input[1*2*2*3] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
||||
};
|
||||
@ -163,8 +189,7 @@ static int test_with_mode_constant(void)
|
||||
728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0,
|
||||
728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0
|
||||
};
|
||||
float output[1*3*2*6];
|
||||
memset(output, 0, sizeof(output));
|
||||
float *output;
|
||||
|
||||
params.mode = LPMP_CONSTANT;
|
||||
params.constant_values = 728;
|
||||
@ -177,15 +202,26 @@ static int test_with_mode_constant(void)
|
||||
params.paddings[3][0] = 1;
|
||||
params.paddings[3][1] = 2;
|
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 1, 2, 2, 3);
|
||||
operands[0].data = input;
|
||||
operands[0].dims[0] = 3;
|
||||
operands[0].dims[1] = 2;
|
||||
operands[0].dims[2] = 2;
|
||||
operands[0].dims[3] = 3;
|
||||
operands[1].data = NULL;
|
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) {
|
||||
input_indexes[0] = 0;
|
||||
dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms);
|
||||
|
||||
output = operands[1].data;
|
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
|
||||
if (fabs(output[i] - expected_output[i]) > EPSON) {
|
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
|
||||
av_freep(&output);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
av_freep(&output);
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user