ffmpeg/libavcodec/cbs_vp9_syntax_template.c

443 lines
13 KiB
C
Raw Normal View History

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static int FUNC(frame_sync_code)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
uint8_t frame_sync_byte_0 = VP9_FRAME_SYNC_0;
uint8_t frame_sync_byte_1 = VP9_FRAME_SYNC_1;
uint8_t frame_sync_byte_2 = VP9_FRAME_SYNC_2;
int err;
xf(8, frame_sync_byte_0, frame_sync_byte_0, 0);
xf(8, frame_sync_byte_1, frame_sync_byte_1, 0);
xf(8, frame_sync_byte_2, frame_sync_byte_2, 0);
if (frame_sync_byte_0 != VP9_FRAME_SYNC_0 ||
frame_sync_byte_1 != VP9_FRAME_SYNC_1 ||
frame_sync_byte_2 != VP9_FRAME_SYNC_2) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid frame sync code: "
"%02x %02x %02x.\n", frame_sync_byte_0,
frame_sync_byte_1, frame_sync_byte_2);
return AVERROR_INVALIDDATA;
}
return 0;
}
static int FUNC(color_config)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current, int profile)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err;
if (profile >= 2) {
f(1, ten_or_twelve_bit);
vp9->bit_depth = current->ten_or_twelve_bit ? 12 : 10;
} else
vp9->bit_depth = 8;
f(3, color_space);
if (current->color_space != VP9_CS_RGB) {
f(1, color_range);
if (profile == 1 || profile == 3) {
f(1, subsampling_x);
f(1, subsampling_y);
fixed(1, reserved_zero, 0);
} else {
infer(subsampling_x, 1);
infer(subsampling_y, 1);
}
} else {
infer(color_range, 1);
if (profile == 1 || profile == 3) {
infer(subsampling_x, 0);
infer(subsampling_y, 0);
fixed(1, reserved_zero, 0);
}
}
vp9->subsampling_x = current->subsampling_x;
vp9->subsampling_y = current->subsampling_y;
return 0;
}
static int FUNC(frame_size)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err;
f(16, frame_width_minus_1);
f(16, frame_height_minus_1);
vp9->frame_width = current->frame_width_minus_1 + 1;
vp9->frame_height = current->frame_height_minus_1 + 1;
vp9->mi_cols = (vp9->frame_width + 7) >> 3;
vp9->mi_rows = (vp9->frame_height + 7) >> 3;
vp9->sb64_cols = (vp9->mi_cols + 7) >> 3;
vp9->sb64_rows = (vp9->mi_rows + 7) >> 3;
return 0;
}
static int FUNC(render_size)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(1, render_and_frame_size_different);
if (current->render_and_frame_size_different) {
f(16, render_width_minus_1);
f(16, render_height_minus_1);
}
return 0;
}
static int FUNC(frame_size_with_refs)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err, i;
for (i = 0; i < VP9_REFS_PER_FRAME; i++) {
fs(1, found_ref[i], 1, i);
if (current->found_ref[i]) {
VP9ReferenceFrameState *ref =
&vp9->ref[current->ref_frame_idx[i]];
vp9->frame_width = ref->frame_width;
vp9->frame_height = ref->frame_height;
vp9->subsampling_x = ref->subsampling_x;
vp9->subsampling_y = ref->subsampling_y;
vp9->bit_depth = ref->bit_depth;
break;
}
}
if (i >= VP9_REFS_PER_FRAME)
CHECK(FUNC(frame_size)(ctx, rw, current));
else {
vp9->mi_cols = (vp9->frame_width + 7) >> 3;
vp9->mi_rows = (vp9->frame_height + 7) >> 3;
vp9->sb64_cols = (vp9->mi_cols + 7) >> 3;
vp9->sb64_rows = (vp9->mi_rows + 7) >> 3;
}
CHECK(FUNC(render_size)(ctx, rw, current));
return 0;
}
static int FUNC(interpolation_filter)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(1, is_filter_switchable);
if (!current->is_filter_switchable)
f(2, raw_interpolation_filter_type);
return 0;
}
static int FUNC(loop_filter_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err, i;
f(6, loop_filter_level);
f(3, loop_filter_sharpness);
f(1, loop_filter_delta_enabled);
if (current->loop_filter_delta_enabled) {
f(1, loop_filter_delta_update);
if (current->loop_filter_delta_update) {
for (i = 0; i < VP9_MAX_REF_FRAMES; i++) {
fs(1, update_ref_delta[i], 1, i);
if (current->update_ref_delta[i])
ss(6, loop_filter_ref_deltas[i], 1, i);
}
for (i = 0; i < 2; i++) {
fs(1, update_mode_delta[i], 1, i);
if (current->update_mode_delta[i])
ss(6, loop_filter_mode_deltas[i], 1, i);
}
}
}
return 0;
}
static int FUNC(quantization_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(8, base_q_idx);
delta_q(delta_q_y_dc);
delta_q(delta_q_uv_dc);
delta_q(delta_q_uv_ac);
return 0;
}
static int FUNC(segmentation_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
static const uint8_t segmentation_feature_bits[VP9_SEG_LVL_MAX] = { 8, 6, 2, 0 };
static const uint8_t segmentation_feature_signed[VP9_SEG_LVL_MAX] = { 1, 1, 0, 0 };
int err, i, j;
f(1, segmentation_enabled);
if (current->segmentation_enabled) {
f(1, segmentation_update_map);
if (current->segmentation_update_map) {
for (i = 0; i < 7; i++)
prob(segmentation_tree_probs[i], 1, i);
f(1, segmentation_temporal_update);
for (i = 0; i < 3; i++) {
if (current->segmentation_temporal_update)
prob(segmentation_pred_prob[i], 1, i);
else
infer(segmentation_pred_prob[i], 255);
}
}
f(1, segmentation_update_data);
if (current->segmentation_update_data) {
f(1, segmentation_abs_or_delta_update);
for (i = 0; i < VP9_MAX_SEGMENTS; i++) {
for (j = 0; j < VP9_SEG_LVL_MAX; j++) {
fs(1, feature_enabled[i][j], 2, i, j);
if (current->feature_enabled[i][j] &&
segmentation_feature_bits[j]) {
fs(segmentation_feature_bits[j],
feature_value[i][j], 2, i, j);
if (segmentation_feature_signed[j])
fs(1, feature_sign[i][j], 2, i, j);
else
infer(feature_sign[i][j], 0);
} else {
infer(feature_value[i][j], 0);
infer(feature_sign[i][j], 0);
}
}
}
}
}
return 0;
}
static int FUNC(tile_info)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int min_log2_tile_cols, max_log2_tile_cols;
int err;
min_log2_tile_cols = 0;
while ((VP9_MAX_TILE_WIDTH_B64 << min_log2_tile_cols) < vp9->sb64_cols)
++min_log2_tile_cols;
max_log2_tile_cols = 0;
while ((vp9->sb64_cols >> (max_log2_tile_cols + 1)) >= VP9_MIN_TILE_WIDTH_B64)
++max_log2_tile_cols;
increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols);
increment(tile_rows_log2, 0, 2);
return 0;
}
static int FUNC(uncompressed_header)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err, i;
f(2, frame_marker);
f(1, profile_low_bit);
f(1, profile_high_bit);
vp9->profile = (current->profile_high_bit << 1) + current->profile_low_bit;
if (vp9->profile == 3)
fixed(1, reserved_zero, 0);
f(1, show_existing_frame);
if (current->show_existing_frame) {
f(3, frame_to_show_map_idx);
infer(header_size_in_bytes, 0);
infer(refresh_frame_flags, 0x00);
infer(loop_filter_level, 0);
return 0;
}
f(1, frame_type);
f(1, show_frame);
f(1, error_resilient_mode);
if (current->frame_type == VP9_KEY_FRAME) {
CHECK(FUNC(frame_sync_code)(ctx, rw, current));
CHECK(FUNC(color_config)(ctx, rw, current, vp9->profile));
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
infer(refresh_frame_flags, 0xff);
} else {
if (current->show_frame == 0)
f(1, intra_only);
else
infer(intra_only, 0);
if (current->error_resilient_mode == 0)
f(2, reset_frame_context);
else
infer(reset_frame_context, 0);
if (current->intra_only == 1) {
CHECK(FUNC(frame_sync_code)(ctx, rw, current));
if (vp9->profile > 0) {
CHECK(FUNC(color_config)(ctx, rw, current, vp9->profile));
} else {
infer(color_space, 1);
infer(subsampling_x, 1);
infer(subsampling_y, 1);
vp9->bit_depth = 8;
vp9->subsampling_x = current->subsampling_x;
vp9->subsampling_y = current->subsampling_y;
}
f(8, refresh_frame_flags);
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
} else {
f(8, refresh_frame_flags);
for (i = 0; i < VP9_REFS_PER_FRAME; i++) {
fs(3, ref_frame_idx[i], 1, i);
fs(1, ref_frame_sign_bias[VP9_LAST_FRAME + i],
1, VP9_LAST_FRAME + i);
}
CHECK(FUNC(frame_size_with_refs)(ctx, rw, current));
f(1, allow_high_precision_mv);
CHECK(FUNC(interpolation_filter)(ctx, rw, current));
}
}
if (current->error_resilient_mode == 0) {
f(1, refresh_frame_context);
f(1, frame_parallel_decoding_mode);
} else {
infer(refresh_frame_context, 0);
infer(frame_parallel_decoding_mode, 1);
}
f(2, frame_context_idx);
CHECK(FUNC(loop_filter_params)(ctx, rw, current));
CHECK(FUNC(quantization_params)(ctx, rw, current));
CHECK(FUNC(segmentation_params)(ctx, rw, current));
CHECK(FUNC(tile_info)(ctx, rw, current));
f(16, header_size_in_bytes);
for (i = 0; i < VP9_NUM_REF_FRAMES; i++) {
if (current->refresh_frame_flags & (1 << i)) {
vp9->ref[i] = (VP9ReferenceFrameState) {
.frame_width = vp9->frame_width,
.frame_height = vp9->frame_height,
.subsampling_x = vp9->subsampling_x,
.subsampling_y = vp9->subsampling_y,
.bit_depth = vp9->bit_depth,
};
}
}
av_log(ctx->log_ctx, AV_LOG_DEBUG, "Frame: size %dx%d "
"subsample %dx%d bit_depth %d tiles %dx%d.\n",
vp9->frame_width, vp9->frame_height,
vp9->subsampling_x, vp9->subsampling_y,
vp9->bit_depth, 1 << current->tile_cols_log2,
1 << current->tile_rows_log2);
return 0;
}
static int FUNC(trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
av_unused int zero = 0;
while (byte_alignment(rw) != 0)
xf(1, zero_bit, zero, 0);
return 0;
}
static int FUNC(frame)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrame *current)
{
int err;
HEADER("Frame");
CHECK(FUNC(uncompressed_header)(ctx, rw, &current->header));
CHECK(FUNC(trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(superframe_index)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawSuperframeIndex *current)
{
int err, i;
HEADER("Superframe Index");
f(3, superframe_marker);
f(2, bytes_per_framesize_minus_1);
f(3, frames_in_superframe_minus_1);
for (i = 0; i <= current->frames_in_superframe_minus_1; i++) {
// Surprise little-endian!
fle(8 * (current->bytes_per_framesize_minus_1 + 1),
frame_sizes[i], 1, i);
}
f(3, superframe_marker);
f(2, bytes_per_framesize_minus_1);
f(3, frames_in_superframe_minus_1);
return 0;
}