ffmpeg/libavcodec/roqvideoenc.c

1086 lines
32 KiB
C
Raw Normal View History

/*
* RoQ Video Encoder.
*
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
* Copyright (C) 2004-2007 Eric Lasota
* Based on RoQ specs (C) 2001 Tim Ferguson
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* id RoQ encoder by Vitor. Based on the Switchblade3 library and the
* Switchblade3 FFmpeg glue by Eric Lasota.
*/
/*
* COSTS:
* Level 1:
* SKIP - 2 bits
* MOTION - 2 + 8 bits
* CODEBOOK - 2 + 8 bits
* SUBDIVIDE - 2 + combined subcel cost
*
* Level 2:
* SKIP - 2 bits
* MOTION - 2 + 8 bits
* CODEBOOK - 2 + 8 bits
* SUBDIVIDE - 2 + 4*8 bits
*
* Maximum cost: 138 bits per cel
*
* Proper evaluation requires LCD fraction comparison, which requires
* Squared Error (SE) loss * savings increase
*
* Maximum savings increase: 136 bits
* Maximum SE loss without overflow: 31580641
* Components in 8x8 supercel: 192
* Maximum SE precision per component: 164482
* >65025, so no truncation is needed (phew)
*/
#include <string.h>
#include "roqvideo.h"
#include "bytestream.h"
#include "elbg.h"
2012-02-12 08:32:40 +00:00
#include "internal.h"
#include "mathops.h"
#define CHROMA_BIAS 1
/**
* Maximum number of generated 4x4 codebooks. Can't be 256 to workaround a
* Quake 3 bug.
*/
#define MAX_CBS_4x4 255
#define MAX_CBS_2x2 256 ///< Maximum number of 2x2 codebooks.
/* The cast is useful when multiplying it by INT_MAX */
#define ROQ_LAMBDA_SCALE ((uint64_t) FF_LAMBDA_SCALE)
/* Macroblock support functions */
static void unpack_roq_cell(roq_cell *cell, uint8_t u[4*3])
{
memcpy(u , cell->y, 4);
memset(u+4, cell->u, 4);
memset(u+8, cell->v, 4);
}
static void unpack_roq_qcell(uint8_t cb2[], roq_qcell *qcell, uint8_t u[4*4*3])
{
int i,cp;
static const int offsets[4] = {0, 2, 8, 10};
for (cp=0; cp<3; cp++)
for (i=0; i<4; i++) {
u[4*4*cp + offsets[i] ] = cb2[qcell->idx[i]*2*2*3 + 4*cp ];
u[4*4*cp + offsets[i]+1] = cb2[qcell->idx[i]*2*2*3 + 4*cp+1];
u[4*4*cp + offsets[i]+4] = cb2[qcell->idx[i]*2*2*3 + 4*cp+2];
u[4*4*cp + offsets[i]+5] = cb2[qcell->idx[i]*2*2*3 + 4*cp+3];
}
}
static void enlarge_roq_mb4(uint8_t base[3*16], uint8_t u[3*64])
{
int x,y,cp;
for(cp=0; cp<3; cp++)
for(y=0; y<8; y++)
for(x=0; x<8; x++)
*u++ = base[(y/2)*4 + (x/2) + 16*cp];
}
static inline int square(int x)
{
return x*x;
}
static inline int eval_sse(const uint8_t *a, const uint8_t *b, int count)
{
int diff=0;
while(count--)
diff += square(*b++ - *a++);
return diff;
}
// FIXME Could use DSPContext.sse, but it is not so speed critical (used
// just for motion estimation).
static int block_sse(uint8_t * const *buf1, uint8_t * const *buf2, int x1, int y1,
int x2, int y2, const int *stride1, const int *stride2, int size)
{
int i, k;
int sse=0;
for (k=0; k<3; k++) {
int bias = (k ? CHROMA_BIAS : 4);
for (i=0; i<size; i++)
sse += bias*eval_sse(buf1[k] + (y1+i)*stride1[k] + x1,
buf2[k] + (y2+i)*stride2[k] + x2, size);
}
return sse;
}
static int eval_motion_dist(RoqContext *enc, int x, int y, motion_vect vect,
int size)
{
int mx=vect.d[0];
int my=vect.d[1];
if (mx < -7 || mx > 7)
return INT_MAX;
if (my < -7 || my > 7)
return INT_MAX;
mx += x;
my += y;
if ((unsigned) mx > enc->width-size || (unsigned) my > enc->height-size)
return INT_MAX;
return block_sse(enc->frame_to_enc->data, enc->last_frame->data, x, y,
mx, my,
enc->frame_to_enc->linesize, enc->last_frame->linesize,
size);
}
/**
* @return distortion between two macroblocks
*/
static inline int squared_diff_macroblock(uint8_t a[], uint8_t b[], int size)
{
int cp, sdiff=0;
for(cp=0;cp<3;cp++) {
int bias = (cp ? CHROMA_BIAS : 4);
sdiff += bias*eval_sse(a, b, size*size);
a += size*size;
b += size*size;
}
return sdiff;
}
typedef struct
{
int eval_dist[4];
int best_bit_use;
int best_coding;
int subCels[4];
motion_vect motion;
int cbEntry;
} SubcelEvaluation;
typedef struct
{
int eval_dist[4];
int best_coding;
SubcelEvaluation subCels[4];
motion_vect motion;
int cbEntry;
int sourceX, sourceY;
} CelEvaluation;
typedef struct
{
int numCB4;
int numCB2;
int usedCB2[MAX_CBS_2x2];
int usedCB4[MAX_CBS_4x4];
uint8_t unpacked_cb2[MAX_CBS_2x2*2*2*3];
uint8_t unpacked_cb4[MAX_CBS_4x4*4*4*3];
uint8_t unpacked_cb4_enlarged[MAX_CBS_4x4*8*8*3];
} RoqCodebooks;
/**
* Temporary vars
*/
typedef struct RoqTempData
{
CelEvaluation *cel_evals;
int f2i4[MAX_CBS_4x4];
int i2f4[MAX_CBS_4x4];
int f2i2[MAX_CBS_2x2];
int i2f2[MAX_CBS_2x2];
int mainChunkSize;
int numCB4;
int numCB2;
RoqCodebooks codebooks;
int *closest_cb2;
int used_option[4];
} RoqTempdata;
/**
* Initialize cel evaluators and set their source coordinates
*/
static void create_cel_evals(RoqContext *enc, RoqTempdata *tempData)
{
int n=0, x, y, i;
tempData->cel_evals = av_malloc(enc->width*enc->height/64 * sizeof(CelEvaluation));
/* Map to the ROQ quadtree order */
for (y=0; y<enc->height; y+=16)
for (x=0; x<enc->width; x+=16)
for(i=0; i<4; i++) {
tempData->cel_evals[n ].sourceX = x + (i&1)*8;
tempData->cel_evals[n++].sourceY = y + (i&2)*4;
}
}
/**
* Get macroblocks from parts of the image
*/
static void get_frame_mb(const AVFrame *frame, int x, int y, uint8_t mb[], int dim)
{
int i, j, cp;
for (cp=0; cp<3; cp++) {
int stride = frame->linesize[cp];
for (i=0; i<dim; i++)
for (j=0; j<dim; j++)
*mb++ = frame->data[cp][(y+i)*stride + x + j];
}
}
/**
* Find the codebook with the lowest distortion from an image
*/
static int index_mb(uint8_t cluster[], uint8_t cb[], int numCB,
int *outIndex, int dim)
{
int i, lDiff = INT_MAX, pick=0;
/* Diff against the others */
for (i=0; i<numCB; i++) {
int diff = squared_diff_macroblock(cluster, cb + i*dim*dim*3, dim);
if (diff < lDiff) {
lDiff = diff;
pick = i;
}
}
*outIndex = pick;
return lDiff;
}
#define EVAL_MOTION(MOTION) \
do { \
diff = eval_motion_dist(enc, j, i, MOTION, blocksize); \
\
if (diff < lowestdiff) { \
lowestdiff = diff; \
bestpick = MOTION; \
} \
} while(0)
static void motion_search(RoqContext *enc, int blocksize)
{
static const motion_vect offsets[8] = {
{{ 0,-1}},
{{ 0, 1}},
{{-1, 0}},
{{ 1, 0}},
{{-1, 1}},
{{ 1,-1}},
{{-1,-1}},
{{ 1, 1}},
};
int diff, lowestdiff, oldbest;
int off[3];
motion_vect bestpick = {{0,0}};
int i, j, k, offset;
motion_vect *last_motion;
motion_vect *this_motion;
motion_vect vect, vect2;
int max=(enc->width/blocksize)*enc->height/blocksize;
if (blocksize == 4) {
last_motion = enc->last_motion4;
this_motion = enc->this_motion4;
} else {
last_motion = enc->last_motion8;
this_motion = enc->this_motion8;
}
for (i=0; i<enc->height; i+=blocksize)
for (j=0; j<enc->width; j+=blocksize) {
lowestdiff = eval_motion_dist(enc, j, i, (motion_vect) {{0,0}},
blocksize);
bestpick.d[0] = 0;
bestpick.d[1] = 0;
if (blocksize == 4)
EVAL_MOTION(enc->this_motion8[(i/8)*(enc->width/8) + j/8]);
offset = (i/blocksize)*enc->width/blocksize + j/blocksize;
if (offset < max && offset >= 0)
EVAL_MOTION(last_motion[offset]);
offset++;
if (offset < max && offset >= 0)
EVAL_MOTION(last_motion[offset]);
offset = (i/blocksize + 1)*enc->width/blocksize + j/blocksize;
if (offset < max && offset >= 0)
EVAL_MOTION(last_motion[offset]);
off[0]= (i/blocksize)*enc->width/blocksize + j/blocksize - 1;
off[1]= off[0] - enc->width/blocksize + 1;
off[2]= off[1] + 1;
if (i) {
for(k=0; k<2; k++)
vect.d[k]= mid_pred(this_motion[off[0]].d[k],
this_motion[off[1]].d[k],
this_motion[off[2]].d[k]);
EVAL_MOTION(vect);
for(k=0; k<3; k++)
EVAL_MOTION(this_motion[off[k]]);
} else if(j)
EVAL_MOTION(this_motion[off[0]]);
vect = bestpick;
oldbest = -1;
while (oldbest != lowestdiff) {
oldbest = lowestdiff;
for (k=0; k<8; k++) {
vect2 = vect;
vect2.d[0] += offsets[k].d[0];
vect2.d[1] += offsets[k].d[1];
EVAL_MOTION(vect2);
}
vect = bestpick;
}
offset = (i/blocksize)*enc->width/blocksize + j/blocksize;
this_motion[offset] = bestpick;
}
}
/**
* Get distortion for all options available to a subcel
*/
static void gather_data_for_subcel(SubcelEvaluation *subcel, int x,
int y, RoqContext *enc, RoqTempdata *tempData)
{
uint8_t mb4[4*4*3];
uint8_t mb2[2*2*3];
int cluster_index;
int i, best_dist;
static const int bitsUsed[4] = {2, 10, 10, 34};
if (enc->framesSinceKeyframe >= 1) {
subcel->motion = enc->this_motion4[y*enc->width/16 + x/4];
subcel->eval_dist[RoQ_ID_FCC] =
eval_motion_dist(enc, x, y,
enc->this_motion4[y*enc->width/16 + x/4], 4);
} else
subcel->eval_dist[RoQ_ID_FCC] = INT_MAX;
if (enc->framesSinceKeyframe >= 2)
subcel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data,
enc->current_frame->data, x,
y, x, y,
enc->frame_to_enc->linesize,
enc->current_frame->linesize,
4);
else
subcel->eval_dist[RoQ_ID_MOT] = INT_MAX;
cluster_index = y*enc->width/16 + x/4;
get_frame_mb(enc->frame_to_enc, x, y, mb4, 4);
subcel->eval_dist[RoQ_ID_SLD] = index_mb(mb4,
tempData->codebooks.unpacked_cb4,
tempData->codebooks.numCB4,
&subcel->cbEntry, 4);
subcel->eval_dist[RoQ_ID_CCC] = 0;
for(i=0;i<4;i++) {
subcel->subCels[i] = tempData->closest_cb2[cluster_index*4+i];
get_frame_mb(enc->frame_to_enc, x+2*(i&1),
y+(i&2), mb2, 2);
subcel->eval_dist[RoQ_ID_CCC] +=
squared_diff_macroblock(tempData->codebooks.unpacked_cb2 + subcel->subCels[i]*2*2*3, mb2, 2);
}
best_dist = INT_MAX;
for (i=0; i<4; i++)
if (ROQ_LAMBDA_SCALE*subcel->eval_dist[i] + enc->lambda*bitsUsed[i] <
best_dist) {
subcel->best_coding = i;
subcel->best_bit_use = bitsUsed[i];
best_dist = ROQ_LAMBDA_SCALE*subcel->eval_dist[i] +
enc->lambda*bitsUsed[i];
}
}
/**
* Get distortion for all options available to a cel
*/
static void gather_data_for_cel(CelEvaluation *cel, RoqContext *enc,
RoqTempdata *tempData)
{
uint8_t mb8[8*8*3];
int index = cel->sourceY*enc->width/64 + cel->sourceX/8;
int i, j, best_dist, divide_bit_use;
int bitsUsed[4] = {2, 10, 10, 0};
if (enc->framesSinceKeyframe >= 1) {
cel->motion = enc->this_motion8[index];
cel->eval_dist[RoQ_ID_FCC] =
eval_motion_dist(enc, cel->sourceX, cel->sourceY,
enc->this_motion8[index], 8);
} else
cel->eval_dist[RoQ_ID_FCC] = INT_MAX;
if (enc->framesSinceKeyframe >= 2)
cel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data,
enc->current_frame->data,
cel->sourceX, cel->sourceY,
cel->sourceX, cel->sourceY,
enc->frame_to_enc->linesize,
enc->current_frame->linesize,8);
else
cel->eval_dist[RoQ_ID_MOT] = INT_MAX;
get_frame_mb(enc->frame_to_enc, cel->sourceX, cel->sourceY, mb8, 8);
cel->eval_dist[RoQ_ID_SLD] =
index_mb(mb8, tempData->codebooks.unpacked_cb4_enlarged,
tempData->codebooks.numCB4, &cel->cbEntry, 8);
gather_data_for_subcel(cel->subCels + 0, cel->sourceX+0, cel->sourceY+0, enc, tempData);
gather_data_for_subcel(cel->subCels + 1, cel->sourceX+4, cel->sourceY+0, enc, tempData);
gather_data_for_subcel(cel->subCels + 2, cel->sourceX+0, cel->sourceY+4, enc, tempData);
gather_data_for_subcel(cel->subCels + 3, cel->sourceX+4, cel->sourceY+4, enc, tempData);
cel->eval_dist[RoQ_ID_CCC] = 0;
divide_bit_use = 0;
for (i=0; i<4; i++) {
cel->eval_dist[RoQ_ID_CCC] +=
cel->subCels[i].eval_dist[cel->subCels[i].best_coding];
divide_bit_use += cel->subCels[i].best_bit_use;
}
best_dist = INT_MAX;
bitsUsed[3] = 2 + divide_bit_use;
for (i=0; i<4; i++)
if (ROQ_LAMBDA_SCALE*cel->eval_dist[i] + enc->lambda*bitsUsed[i] <
best_dist) {
cel->best_coding = i;
best_dist = ROQ_LAMBDA_SCALE*cel->eval_dist[i] +
enc->lambda*bitsUsed[i];
}
tempData->used_option[cel->best_coding]++;
tempData->mainChunkSize += bitsUsed[cel->best_coding];
if (cel->best_coding == RoQ_ID_SLD)
tempData->codebooks.usedCB4[cel->cbEntry]++;
if (cel->best_coding == RoQ_ID_CCC)
for (i=0; i<4; i++) {
if (cel->subCels[i].best_coding == RoQ_ID_SLD)
tempData->codebooks.usedCB4[cel->subCels[i].cbEntry]++;
else if (cel->subCels[i].best_coding == RoQ_ID_CCC)
for (j=0; j<4; j++)
tempData->codebooks.usedCB2[cel->subCels[i].subCels[j]]++;
}
}
static void remap_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
int i, j, idx=0;
/* Make remaps for the final codebook usage */
for (i=0; i<MAX_CBS_4x4; i++) {
if (tempData->codebooks.usedCB4[i]) {
tempData->i2f4[i] = idx;
tempData->f2i4[idx] = i;
for (j=0; j<4; j++)
tempData->codebooks.usedCB2[enc->cb4x4[i].idx[j]]++;
idx++;
}
}
tempData->numCB4 = idx;
idx = 0;
for (i=0; i<MAX_CBS_2x2; i++) {
if (tempData->codebooks.usedCB2[i]) {
tempData->i2f2[i] = idx;
tempData->f2i2[idx] = i;
idx++;
}
}
tempData->numCB2 = idx;
}
/**
* Write codebook chunk
*/
static void write_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
int i, j;
uint8_t **outp= &enc->out_buf;
if (tempData->numCB2) {
bytestream_put_le16(outp, RoQ_QUAD_CODEBOOK);
bytestream_put_le32(outp, tempData->numCB2*6 + tempData->numCB4*4);
bytestream_put_byte(outp, tempData->numCB4);
bytestream_put_byte(outp, tempData->numCB2);
for (i=0; i<tempData->numCB2; i++) {
bytestream_put_buffer(outp, enc->cb2x2[tempData->f2i2[i]].y, 4);
bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].u);
bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].v);
}
for (i=0; i<tempData->numCB4; i++)
for (j=0; j<4; j++)
bytestream_put_byte(outp, tempData->i2f2[enc->cb4x4[tempData->f2i4[i]].idx[j]]);
}
}
static inline uint8_t motion_arg(motion_vect mot)
{
uint8_t ax = 8 - ((uint8_t) mot.d[0]);
uint8_t ay = 8 - ((uint8_t) mot.d[1]);
return ((ax&15)<<4) | (ay&15);
}
typedef struct
{
int typeSpool;
int typeSpoolLength;
uint8_t argumentSpool[64];
uint8_t *args;
uint8_t **pout;
} CodingSpool;
/* NOTE: Typecodes must be spooled AFTER arguments!! */
static void write_typecode(CodingSpool *s, uint8_t type)
{
s->typeSpool |= (type & 3) << (14 - s->typeSpoolLength);
s->typeSpoolLength += 2;
if (s->typeSpoolLength == 16) {
bytestream_put_le16(s->pout, s->typeSpool);
bytestream_put_buffer(s->pout, s->argumentSpool,
s->args - s->argumentSpool);
s->typeSpoolLength = 0;
s->typeSpool = 0;
s->args = s->argumentSpool;
}
}
static void reconstruct_and_encode_image(RoqContext *enc, RoqTempdata *tempData, int w, int h, int numBlocks)
{
int i, j, k;
int x, y;
int subX, subY;
int dist=0;
roq_qcell *qcell;
CelEvaluation *eval;
CodingSpool spool;
spool.typeSpool=0;
spool.typeSpoolLength=0;
spool.args = spool.argumentSpool;
spool.pout = &enc->out_buf;
if (tempData->used_option[RoQ_ID_CCC]%2)
tempData->mainChunkSize+=8; //FIXME
/* Write the video chunk header */
bytestream_put_le16(&enc->out_buf, RoQ_QUAD_VQ);
bytestream_put_le32(&enc->out_buf, tempData->mainChunkSize/8);
bytestream_put_byte(&enc->out_buf, 0x0);
bytestream_put_byte(&enc->out_buf, 0x0);
for (i=0; i<numBlocks; i++) {
eval = tempData->cel_evals + i;
x = eval->sourceX;
y = eval->sourceY;
dist += eval->eval_dist[eval->best_coding];
switch (eval->best_coding) {
case RoQ_ID_MOT:
write_typecode(&spool, RoQ_ID_MOT);
break;
case RoQ_ID_FCC:
bytestream_put_byte(&spool.args, motion_arg(eval->motion));
write_typecode(&spool, RoQ_ID_FCC);
ff_apply_motion_8x8(enc, x, y,
eval->motion.d[0], eval->motion.d[1]);
break;
case RoQ_ID_SLD:
bytestream_put_byte(&spool.args, tempData->i2f4[eval->cbEntry]);
write_typecode(&spool, RoQ_ID_SLD);
qcell = enc->cb4x4 + eval->cbEntry;
ff_apply_vector_4x4(enc, x , y , enc->cb2x2 + qcell->idx[0]);
ff_apply_vector_4x4(enc, x+4, y , enc->cb2x2 + qcell->idx[1]);
ff_apply_vector_4x4(enc, x , y+4, enc->cb2x2 + qcell->idx[2]);
ff_apply_vector_4x4(enc, x+4, y+4, enc->cb2x2 + qcell->idx[3]);
break;
case RoQ_ID_CCC:
write_typecode(&spool, RoQ_ID_CCC);
for (j=0; j<4; j++) {
subX = x + 4*(j&1);
subY = y + 2*(j&2);
switch(eval->subCels[j].best_coding) {
case RoQ_ID_MOT:
break;
case RoQ_ID_FCC:
bytestream_put_byte(&spool.args,
motion_arg(eval->subCels[j].motion));
ff_apply_motion_4x4(enc, subX, subY,
eval->subCels[j].motion.d[0],
eval->subCels[j].motion.d[1]);
break;
case RoQ_ID_SLD:
bytestream_put_byte(&spool.args,
tempData->i2f4[eval->subCels[j].cbEntry]);
qcell = enc->cb4x4 + eval->subCels[j].cbEntry;
ff_apply_vector_2x2(enc, subX , subY ,
enc->cb2x2 + qcell->idx[0]);
ff_apply_vector_2x2(enc, subX+2, subY ,
enc->cb2x2 + qcell->idx[1]);
ff_apply_vector_2x2(enc, subX , subY+2,
enc->cb2x2 + qcell->idx[2]);
ff_apply_vector_2x2(enc, subX+2, subY+2,
enc->cb2x2 + qcell->idx[3]);
break;
case RoQ_ID_CCC:
for (k=0; k<4; k++) {
int cb_idx = eval->subCels[j].subCels[k];
bytestream_put_byte(&spool.args,
tempData->i2f2[cb_idx]);
ff_apply_vector_2x2(enc, subX + 2*(k&1), subY + (k&2),
enc->cb2x2 + cb_idx);
}
break;
}
write_typecode(&spool, eval->subCels[j].best_coding);
}
break;
}
}
/* Flush the remainder of the argument/type spool */
while (spool.typeSpoolLength)
write_typecode(&spool, 0x0);
#if 0
uint8_t *fdata[3] = {enc->frame_to_enc->data[0],
enc->frame_to_enc->data[1],
enc->frame_to_enc->data[2]};
uint8_t *cdata[3] = {enc->current_frame->data[0],
enc->current_frame->data[1],
enc->current_frame->data[2]};
av_log(enc->avctx, AV_LOG_ERROR, "Expected distortion: %i Actual: %i\n",
dist,
block_sse(fdata, cdata, 0, 0, 0, 0,
enc->frame_to_enc->linesize,
enc->current_frame->linesize,
enc->width)); //WARNING: Square dimensions implied...
#endif
}
/**
* Create a single YUV cell from a 2x2 section of the image
*/
static inline void frame_block_to_cell(uint8_t *block, uint8_t * const *data,
int top, int left, const int *stride)
{
int i, j, u=0, v=0;
for (i=0; i<2; i++)
for (j=0; j<2; j++) {
int x = (top+i)*stride[0] + left + j;
*block++ = data[0][x];
x = (top+i)*stride[1] + left + j;
u += data[1][x];
v += data[2][x];
}
*block++ = (u+2)/4;
*block++ = (v+2)/4;
}
/**
* Create YUV clusters for the entire image
*/
static void create_clusters(const AVFrame *frame, int w, int h, uint8_t *yuvClusters)
{
int i, j, k, l;
for (i=0; i<h; i+=4)
for (j=0; j<w; j+=4) {
for (k=0; k < 2; k++)
for (l=0; l < 2; l++)
frame_block_to_cell(yuvClusters + (l + 2*k)*6, frame->data,
i+2*k, j+2*l, frame->linesize);
yuvClusters += 24;
}
}
static void generate_codebook(RoqContext *enc, RoqTempdata *tempdata,
int *points, int inputCount, roq_cell *results,
int size, int cbsize)
{
int i, j, k;
int c_size = size*size/4;
int *buf;
int *codebook = av_malloc(6*c_size*cbsize*sizeof(int));
int *closest_cb;
if (size == 4)
closest_cb = av_malloc(6*c_size*inputCount*sizeof(int));
else
closest_cb = tempdata->closest_cb2;
ff_init_elbg(points, 6*c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx);
ff_do_elbg(points, 6*c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx);
if (size == 4)
av_free(closest_cb);
buf = codebook;
for (i=0; i<cbsize; i++)
for (k=0; k<c_size; k++) {
for(j=0; j<4; j++)
results->y[j] = *buf++;
results->u = (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS;
results->v = (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS;
results++;
}
av_free(codebook);
}
static void generate_new_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
int i,j;
RoqCodebooks *codebooks = &tempData->codebooks;
int max = enc->width*enc->height/16;
uint8_t mb2[3*4];
roq_cell *results4 = av_malloc(sizeof(roq_cell)*MAX_CBS_4x4*4);
uint8_t *yuvClusters=av_malloc(sizeof(int)*max*6*4);
int *points = av_malloc(max*6*4*sizeof(int));
int bias;
/* Subsample YUV data */
create_clusters(enc->frame_to_enc, enc->width, enc->height, yuvClusters);
/* Cast to integer and apply chroma bias */
for (i=0; i<max*24; i++) {
bias = ((i%6)<4) ? 1 : CHROMA_BIAS;
points[i] = bias*yuvClusters[i];
}
/* Create 4x4 codebooks */
generate_codebook(enc, tempData, points, max, results4, 4, MAX_CBS_4x4);
codebooks->numCB4 = MAX_CBS_4x4;
tempData->closest_cb2 = av_malloc(max*4*sizeof(int));
/* Create 2x2 codebooks */
generate_codebook(enc, tempData, points, max*4, enc->cb2x2, 2, MAX_CBS_2x2);
codebooks->numCB2 = MAX_CBS_2x2;
/* Unpack 2x2 codebook clusters */
for (i=0; i<codebooks->numCB2; i++)
unpack_roq_cell(enc->cb2x2 + i, codebooks->unpacked_cb2 + i*2*2*3);
/* Index all 4x4 entries to the 2x2 entries, unpack, and enlarge */
for (i=0; i<codebooks->numCB4; i++) {
for (j=0; j<4; j++) {
unpack_roq_cell(&results4[4*i + j], mb2);
index_mb(mb2, codebooks->unpacked_cb2, codebooks->numCB2,
&enc->cb4x4[i].idx[j], 2);
}
unpack_roq_qcell(codebooks->unpacked_cb2, enc->cb4x4 + i,
codebooks->unpacked_cb4 + i*4*4*3);
enlarge_roq_mb4(codebooks->unpacked_cb4 + i*4*4*3,
codebooks->unpacked_cb4_enlarged + i*8*8*3);
}
av_free(yuvClusters);
av_free(points);
av_free(results4);
}
static void roq_encode_video(RoqContext *enc)
{
RoqTempdata *tempData = enc->tmpData;
int i;
memset(tempData, 0, sizeof(*tempData));
create_cel_evals(enc, tempData);
generate_new_codebooks(enc, tempData);
if (enc->framesSinceKeyframe >= 1) {
motion_search(enc, 8);
motion_search(enc, 4);
}
retry_encode:
for (i=0; i<enc->width*enc->height/64; i++)
gather_data_for_cel(tempData->cel_evals + i, enc, tempData);
/* Quake 3 can't handle chunks bigger than 65535 bytes */
if (tempData->mainChunkSize/8 > 65535) {
av_log(enc->avctx, AV_LOG_ERROR,
"Warning, generated a frame too big (%d > 65535), "
"try using a smaller qscale value.\n",
tempData->mainChunkSize/8);
enc->lambda *= 1.5;
tempData->mainChunkSize = 0;
memset(tempData->used_option, 0, sizeof(tempData->used_option));
memset(tempData->codebooks.usedCB4, 0,
sizeof(tempData->codebooks.usedCB4));
memset(tempData->codebooks.usedCB2, 0,
sizeof(tempData->codebooks.usedCB2));
goto retry_encode;
}
remap_codebooks(enc, tempData);
write_codebooks(enc, tempData);
reconstruct_and_encode_image(enc, tempData, enc->width, enc->height,
enc->width*enc->height/64);
enc->avctx->coded_frame = enc->current_frame;
/* Rotate frame history */
FFSWAP(AVFrame *, enc->current_frame, enc->last_frame);
FFSWAP(motion_vect *, enc->last_motion4, enc->this_motion4);
FFSWAP(motion_vect *, enc->last_motion8, enc->this_motion8);
av_free(tempData->cel_evals);
av_free(tempData->closest_cb2);
enc->framesSinceKeyframe++;
}
static int roq_encode_init(AVCodecContext *avctx)
{
RoqContext *enc = avctx->priv_data;
av_lfg_init(&enc->randctx, 1);
enc->framesSinceKeyframe = 0;
if ((avctx->width & 0xf) || (avctx->height & 0xf)) {
av_log(avctx, AV_LOG_ERROR, "Dimensions must be divisible by 16\n");
return -1;
}
if (((avctx->width)&(avctx->width-1))||((avctx->height)&(avctx->height-1)))
av_log(avctx, AV_LOG_ERROR, "Warning: dimensions not power of two\n");
enc->width = avctx->width;
enc->height = avctx->height;
enc->framesSinceKeyframe = 0;
enc->first_frame = 1;
enc->last_frame = &enc->frames[0];
enc->current_frame = &enc->frames[1];
enc->tmpData = av_malloc(sizeof(RoqTempdata));
enc->this_motion4 =
av_mallocz((enc->width*enc->height/16)*sizeof(motion_vect));
enc->last_motion4 =
av_malloc ((enc->width*enc->height/16)*sizeof(motion_vect));
enc->this_motion8 =
av_mallocz((enc->width*enc->height/64)*sizeof(motion_vect));
enc->last_motion8 =
av_malloc ((enc->width*enc->height/64)*sizeof(motion_vect));
return 0;
}
static void roq_write_video_info_chunk(RoqContext *enc)
{
/* ROQ info chunk */
bytestream_put_le16(&enc->out_buf, RoQ_INFO);
/* Size: 8 bytes */
bytestream_put_le32(&enc->out_buf, 8);
/* Unused argument */
bytestream_put_byte(&enc->out_buf, 0x00);
bytestream_put_byte(&enc->out_buf, 0x00);
/* Width */
bytestream_put_le16(&enc->out_buf, enc->width);
/* Height */
bytestream_put_le16(&enc->out_buf, enc->height);
/* Unused in Quake 3, mimics the output of the real encoder */
bytestream_put_byte(&enc->out_buf, 0x08);
bytestream_put_byte(&enc->out_buf, 0x00);
bytestream_put_byte(&enc->out_buf, 0x04);
bytestream_put_byte(&enc->out_buf, 0x00);
}
2012-02-12 08:32:40 +00:00
static int roq_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
RoqContext *enc = avctx->priv_data;
2012-02-12 08:32:40 +00:00
int size, ret;
enc->avctx = avctx;
enc->frame_to_enc = frame;
if (frame->quality)
enc->lambda = frame->quality - 1;
else
enc->lambda = 2*ROQ_LAMBDA_SCALE;
/* 138 bits max per 8x8 block +
* 256 codebooks*(6 bytes 2x2 + 4 bytes 4x4) + 8 bytes frame header */
2012-02-12 08:32:40 +00:00
size = ((enc->width * enc->height / 64) * 138 + 7) / 8 + 256 * (6 + 4) + 8;
if ((ret = ff_alloc_packet2(avctx, pkt, size)) < 0)
2012-02-12 08:32:40 +00:00
return ret;
enc->out_buf = pkt->data;
/* Check for I frame */
if (enc->framesSinceKeyframe == avctx->gop_size)
enc->framesSinceKeyframe = 0;
if (enc->first_frame) {
/* Alloc memory for the reconstruction data (we must know the stride
for that) */
if (avctx->get_buffer(avctx, enc->current_frame) ||
avctx->get_buffer(avctx, enc->last_frame)) {
av_log(avctx, AV_LOG_ERROR, " RoQ: get_buffer() failed\n");
return -1;
}
/* Before the first video frame, write a "video info" chunk */
roq_write_video_info_chunk(enc);
enc->first_frame = 0;
}
/* Encode the actual frame */
roq_encode_video(enc);
2012-02-12 08:32:40 +00:00
pkt->size = enc->out_buf - pkt->data;
if (enc->framesSinceKeyframe == 1)
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
return 0;
}
static int roq_encode_end(AVCodecContext *avctx)
{
RoqContext *enc = avctx->priv_data;
avctx->release_buffer(avctx, enc->last_frame);
avctx->release_buffer(avctx, enc->current_frame);
av_free(enc->tmpData);
av_free(enc->this_motion4);
av_free(enc->last_motion4);
av_free(enc->this_motion8);
av_free(enc->last_motion8);
return 0;
}
AVCodec ff_roq_encoder = {
.name = "roqvideo",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_ROQ,
.priv_data_size = sizeof(RoqContext),
.init = roq_encode_init,
2012-02-12 08:32:40 +00:00
.encode2 = roq_encode_frame,
.close = roq_encode_end,
.supported_framerates = (const AVRational[]){ {30,1}, {0,0} },
.pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV444P,
PIX_FMT_NONE },
.long_name = NULL_IF_CONFIG_SMALL("id RoQ video"),
};