ffmpeg/libavutil/encryption_info.c

340 lines
11 KiB
C
Raw Normal View History

/**
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "encryption_info.h"
#include "mem.h"
#include "intreadwrite.h"
#define FF_ENCRYPTION_INFO_EXTRA 24
// The format of the AVEncryptionInfo side data:
// u32be scheme
// u32be crypt_byte_block
// u32be skip_byte_block
// u32be key_id_size
// u32be iv_size
// u32be subsample_count
// u8[key_id_size] key_id
// u8[iv_size] iv
// {
// u32be bytes_of_clear_data
// u32be bytes_of_protected_data
// }[subsample_count]
AVEncryptionInfo *av_encryption_info_alloc(uint32_t subsample_count, uint32_t key_id_size, uint32_t iv_size)
{
AVEncryptionInfo *info;
info = av_mallocz(sizeof(*info));
if (!info)
return NULL;
info->key_id = av_mallocz(key_id_size);
info->key_id_size = key_id_size;
info->iv = av_mallocz(iv_size);
info->iv_size = iv_size;
info->subsamples = av_mallocz_array(subsample_count, sizeof(*info->subsamples));
info->subsample_count = subsample_count;
// Allow info->subsamples to be NULL if there are no subsamples.
if (!info->key_id || !info->iv || (!info->subsamples && subsample_count)) {
av_encryption_info_free(info);
return NULL;
}
return info;
}
AVEncryptionInfo *av_encryption_info_clone(const AVEncryptionInfo *info)
{
AVEncryptionInfo *ret;
ret = av_encryption_info_alloc(info->subsample_count, info->key_id_size, info->iv_size);
if (!ret)
return NULL;
ret->scheme = info->scheme;
ret->crypt_byte_block = info->crypt_byte_block;
ret->skip_byte_block = info->skip_byte_block;
memcpy(ret->iv, info->iv, info->iv_size);
memcpy(ret->key_id, info->key_id, info->key_id_size);
memcpy(ret->subsamples, info->subsamples, sizeof(*info->subsamples) * info->subsample_count);
return ret;
}
void av_encryption_info_free(AVEncryptionInfo *info)
{
if (info) {
av_free(info->key_id);
av_free(info->iv);
av_free(info->subsamples);
av_free(info);
}
}
AVEncryptionInfo *av_encryption_info_get_side_data(const uint8_t* buffer, size_t size)
{
AVEncryptionInfo *info;
uint64_t key_id_size, iv_size, subsample_count, i;
if (!buffer || size < FF_ENCRYPTION_INFO_EXTRA)
return NULL;
key_id_size = AV_RB32(buffer + 12);
iv_size = AV_RB32(buffer + 16);
subsample_count = AV_RB32(buffer + 20);
if (size < FF_ENCRYPTION_INFO_EXTRA + key_id_size + iv_size + subsample_count * 8)
return NULL;
info = av_encryption_info_alloc(subsample_count, key_id_size, iv_size);
if (!info)
return NULL;
info->scheme = AV_RB32(buffer);
info->crypt_byte_block = AV_RB32(buffer + 4);
info->skip_byte_block = AV_RB32(buffer + 8);
memcpy(info->key_id, buffer + 24, key_id_size);
memcpy(info->iv, buffer + key_id_size + 24, iv_size);
buffer += key_id_size + iv_size + 24;
for (i = 0; i < subsample_count; i++) {
info->subsamples[i].bytes_of_clear_data = AV_RB32(buffer);
info->subsamples[i].bytes_of_protected_data = AV_RB32(buffer + 4);
buffer += 8;
}
return info;
}
uint8_t *av_encryption_info_add_side_data(const AVEncryptionInfo *info, size_t *size)
{
uint8_t *buffer, *cur_buffer;
uint32_t i;
if (UINT32_MAX - FF_ENCRYPTION_INFO_EXTRA < info->key_id_size ||
UINT32_MAX - FF_ENCRYPTION_INFO_EXTRA - info->key_id_size < info->iv_size ||
(UINT32_MAX - FF_ENCRYPTION_INFO_EXTRA - info->key_id_size - info->iv_size) / 8 < info->subsample_count) {
return NULL;
}
*size = FF_ENCRYPTION_INFO_EXTRA + info->key_id_size + info->iv_size +
(info->subsample_count * 8);
cur_buffer = buffer = av_malloc(*size);
if (!buffer)
return NULL;
AV_WB32(cur_buffer, info->scheme);
AV_WB32(cur_buffer + 4, info->crypt_byte_block);
AV_WB32(cur_buffer + 8, info->skip_byte_block);
AV_WB32(cur_buffer + 12, info->key_id_size);
AV_WB32(cur_buffer + 16, info->iv_size);
AV_WB32(cur_buffer + 20, info->subsample_count);
cur_buffer += 24;
memcpy(cur_buffer, info->key_id, info->key_id_size);
cur_buffer += info->key_id_size;
memcpy(cur_buffer, info->iv, info->iv_size);
cur_buffer += info->iv_size;
for (i = 0; i < info->subsample_count; i++) {
AV_WB32(cur_buffer, info->subsamples[i].bytes_of_clear_data);
AV_WB32(cur_buffer + 4, info->subsamples[i].bytes_of_protected_data);
cur_buffer += 8;
}
return buffer;
}
// The format of the AVEncryptionInitInfo side data:
// u32be init_info_count
// {
// u32be system_id_size
// u32be num_key_ids
// u32be key_id_size
// u32be data_size
// u8[system_id_size] system_id
// u8[key_id_size][num_key_id] key_ids
// u8[data_size] data
// }[init_info_count]
#define FF_ENCRYPTION_INIT_INFO_EXTRA 16
AVEncryptionInitInfo *av_encryption_init_info_alloc(
uint32_t system_id_size, uint32_t num_key_ids, uint32_t key_id_size, uint32_t data_size)
{
AVEncryptionInitInfo *info;
uint32_t i;
info = av_mallocz(sizeof(*info));
if (!info)
return NULL;
info->system_id = av_mallocz(system_id_size);
info->system_id_size = system_id_size;
info->key_ids = key_id_size ? av_mallocz_array(num_key_ids, sizeof(*info->key_ids)) : NULL;
info->num_key_ids = num_key_ids;
info->key_id_size = key_id_size;
info->data = av_mallocz(data_size);
info->data_size = data_size;
// Allow pointers to be NULL if the size is 0.
if ((!info->system_id && system_id_size) || (!info->data && data_size) ||
(!info->key_ids && num_key_ids && key_id_size)) {
av_encryption_init_info_free(info);
return NULL;
}
if (key_id_size) {
for (i = 0; i < num_key_ids; i++) {
info->key_ids[i] = av_mallocz(key_id_size);
if (!info->key_ids[i]) {
av_encryption_init_info_free(info);
return NULL;
}
}
}
return info;
}
void av_encryption_init_info_free(AVEncryptionInitInfo *info)
{
uint32_t i;
if (info) {
for (i = 0; i < info->num_key_ids; i++) {
av_free(info->key_ids[i]);
}
av_encryption_init_info_free(info->next);
av_free(info->system_id);
av_free(info->key_ids);
av_free(info->data);
av_free(info);
}
}
AVEncryptionInitInfo *av_encryption_init_info_get_side_data(
const uint8_t *side_data, size_t side_data_size)
{
// |ret| tracks the front of the list, |info| tracks the back.
AVEncryptionInitInfo *ret = NULL, *info, *temp_info;
uint64_t system_id_size, num_key_ids, key_id_size, data_size, i, j;
uint64_t init_info_count;
if (!side_data || side_data_size < 4)
return NULL;
init_info_count = AV_RB32(side_data);
side_data += 4;
side_data_size -= 4;
for (i = 0; i < init_info_count; i++) {
if (side_data_size < FF_ENCRYPTION_INIT_INFO_EXTRA) {
av_encryption_init_info_free(ret);
return NULL;
}
system_id_size = AV_RB32(side_data);
num_key_ids = AV_RB32(side_data + 4);
key_id_size = AV_RB32(side_data + 8);
data_size = AV_RB32(side_data + 12);
// UINT32_MAX + UINT32_MAX + UINT32_MAX * UINT32_MAX == UINT64_MAX
if (side_data_size - FF_ENCRYPTION_INIT_INFO_EXTRA < system_id_size + data_size + num_key_ids * key_id_size) {
av_encryption_init_info_free(ret);
return NULL;
}
side_data += FF_ENCRYPTION_INIT_INFO_EXTRA;
side_data_size -= FF_ENCRYPTION_INIT_INFO_EXTRA;
temp_info = av_encryption_init_info_alloc(system_id_size, num_key_ids, key_id_size, data_size);
if (!temp_info) {
av_encryption_init_info_free(ret);
return NULL;
}
if (i == 0) {
info = ret = temp_info;
} else {
info->next = temp_info;
info = temp_info;
}
memcpy(info->system_id, side_data, system_id_size);
side_data += system_id_size;
side_data_size -= system_id_size;
for (j = 0; j < num_key_ids; j++) {
memcpy(info->key_ids[j], side_data, key_id_size);
side_data += key_id_size;
side_data_size -= key_id_size;
}
memcpy(info->data, side_data, data_size);
side_data += data_size;
side_data_size -= data_size;
}
return ret;
}
uint8_t *av_encryption_init_info_add_side_data(const AVEncryptionInitInfo *info, size_t *side_data_size)
{
const AVEncryptionInitInfo *cur_info;
uint8_t *buffer, *cur_buffer;
uint32_t i, init_info_count;
uint64_t temp_side_data_size;
temp_side_data_size = 4;
init_info_count = 0;
for (cur_info = info; cur_info; cur_info = cur_info->next) {
temp_side_data_size += (uint64_t)FF_ENCRYPTION_INIT_INFO_EXTRA + info->system_id_size + info->data_size;
if (init_info_count == UINT32_MAX || temp_side_data_size > UINT32_MAX) {
return NULL;
}
init_info_count++;
if (info->num_key_ids) {
temp_side_data_size += (uint64_t)info->num_key_ids * info->key_id_size;
if (temp_side_data_size > UINT32_MAX) {
return NULL;
}
}
}
*side_data_size = temp_side_data_size;
cur_buffer = buffer = av_malloc(*side_data_size);
if (!buffer)
return NULL;
AV_WB32(cur_buffer, init_info_count);
cur_buffer += 4;
for (cur_info = info; cur_info; cur_info = cur_info->next) {
AV_WB32(cur_buffer, cur_info->system_id_size);
AV_WB32(cur_buffer + 4, cur_info->num_key_ids);
AV_WB32(cur_buffer + 8, cur_info->key_id_size);
AV_WB32(cur_buffer + 12, cur_info->data_size);
cur_buffer += 16;
memcpy(cur_buffer, cur_info->system_id, cur_info->system_id_size);
cur_buffer += cur_info->system_id_size;
for (i = 0; i < cur_info->num_key_ids; i++) {
memcpy(cur_buffer, cur_info->key_ids[i], cur_info->key_id_size);
cur_buffer += cur_info->key_id_size;
}
memcpy(cur_buffer, cur_info->data, cur_info->data_size);
cur_buffer += cur_info->data_size;
}
return buffer;
}