ffmpeg/libavcodec/mdct.c

245 lines
6.1 KiB
C
Raw Normal View History

/*
* MDCT/IMDCT transforms
* Copyright (c) 2002 Fabrice Bellard.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dsputil.h"
/**
* @file mdct.c
* MDCT/IMDCT transforms.
*/
// Generate a Kaiser-Bessel Derived Window.
#define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
void ff_kbd_window_init(float *window, float alpha, int n)
{
int i, j;
double sum = 0.0, bessel, tmp;
double local_window[n];
double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
for (i = 0; i < n; i++) {
tmp = i * (n - i) * alpha2;
bessel = 1.0;
for (j = BESSEL_I0_ITER; j > 0; j--)
bessel = bessel * tmp / (j * j) + 1;
sum += bessel;
local_window[i] = sum;
}
sum++;
for (i = 0; i < n; i++)
window[i] = sqrt(local_window[i] / sum);
}
// Generate a sine window.
void ff_sine_window_init(float *window, int n) {
int i;
for(i = 0; i < n; i++)
window[i] = sin((i + 0.5) / (2 * n) * M_PI);
}
/**
* init MDCT or IMDCT computation.
*/
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
{
int n, n4, i;
double alpha;
memset(s, 0, sizeof(*s));
n = 1 << nbits;
s->nbits = nbits;
s->n = n;
n4 = n >> 2;
s->tcos = av_malloc(n4 * sizeof(FFTSample));
if (!s->tcos)
goto fail;
s->tsin = av_malloc(n4 * sizeof(FFTSample));
if (!s->tsin)
goto fail;
for(i=0;i<n4;i++) {
alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
s->tcos[i] = -cos(alpha);
s->tsin[i] = -sin(alpha);
}
if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
goto fail;
return 0;
fail:
av_freep(&s->tcos);
av_freep(&s->tsin);
return -1;
}
/* complex multiplication: p = a * b */
#define CMUL(pre, pim, are, aim, bre, bim) \
{\
double _are = (are);\
double _aim = (aim);\
double _bre = (bre);\
double _bim = (bim);\
(pre) = _are * _bre - _aim * _bim;\
(pim) = _are * _bim + _aim * _bre;\
}
static void imdct_c(MDCTContext *s, const FFTSample *input, FFTSample *tmp)
{
int k, n4, n2, n, j;
const uint16_t *revtab = s->fft.revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
const FFTSample *in1, *in2;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n4 = n >> 2;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
for(k = 0; k < n4; k++) {
j=revtab[k];
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
in1 += 2;
in2 -= 2;
}
ff_fft_calc(&s->fft, z);
/* post rotation + reordering */
/* XXX: optimize */
for(k = 0; k < n4; k++) {
CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
}
}
/**
* Compute inverse MDCT of size N = 2^nbits
* @param output N samples
* @param input N/2 samples
* @param tmp N/2 samples
*/
void ff_imdct_calc(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp)
{
int k, n8, n2, n;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n8 = n >> 3;
imdct_c(s, input, tmp);
for(k = 0; k < n8; k++) {
output[2*k] = -z[n8 + k].im;
output[n2-1-2*k] = z[n8 + k].im;
output[2*k+1] = z[n8-1-k].re;
output[n2-1-2*k-1] = -z[n8-1-k].re;
output[n2 + 2*k]=-z[k+n8].re;
output[n-1- 2*k]=-z[k+n8].re;
output[n2 + 2*k+1]=z[n8-k-1].im;
output[n-2 - 2 * k] = z[n8-k-1].im;
}
}
/**
* Compute the middle half of the inverse MDCT of size N = 2^nbits,
* thus excluding the parts that can be derived by symmetry
* @param output N/2 samples
* @param input N/2 samples
* @param tmp N/2 samples
*/
void ff_imdct_half(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp)
{
int k, n8, n4, n;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n4 = n >> 2;
n8 = n >> 3;
imdct_c(s, input, tmp);
for(k = 0; k < n8; k++) {
output[n4-1-2*k] = z[n8+k].im;
output[n4-1-2*k-1] = -z[n8-k-1].re;
output[n4 + 2*k] = -z[n8+k].re;
output[n4 + 2*k+1] = z[n8-k-1].im;
}
}
/**
* Compute MDCT of size N = 2^nbits
* @param input N samples
* @param out N/2 samples
* @param tmp temporary storage of N/2 samples
*/
void ff_mdct_calc(MDCTContext *s, FFTSample *out,
const FFTSample *input, FFTSample *tmp)
{
int i, j, n, n8, n4, n2, n3;
FFTSample re, im, re1, im1;
const uint16_t *revtab = s->fft.revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
FFTComplex *x = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
n3 = 3 * n4;
/* pre rotation */
for(i=0;i<n8;i++) {
re = -input[2*i+3*n4] - input[n3-1-2*i];
im = -input[n4+2*i] + input[n4-1-2*i];
j = revtab[i];
CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
re = input[2*i] - input[n2-1-2*i];
im = -(input[n2+2*i] + input[n-1-2*i]);
j = revtab[n8 + i];
CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
}
ff_fft_calc(&s->fft, x);
/* post rotation */
for(i=0;i<n4;i++) {
re = x[i].re;
im = x[i].im;
CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
out[2*i] = im1;
out[n2-1-2*i] = re1;
}
}
void ff_mdct_end(MDCTContext *s)
{
av_freep(&s->tcos);
av_freep(&s->tsin);
ff_fft_end(&s->fft);
}