ffmpeg/tests/checkasm/sw_scale.c

245 lines
9.4 KiB
C
Raw Normal View History

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
// This reference function is the same approximate algorithm employed by the
// SIMD functions
static void ref_function(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset)
{
int i, d;
d = ((filterSize - 1) * 8 + dither[0]) >> 4;
for ( i = 0; i < dstW; i++) {
int16_t val = d;
int j;
union {
int val;
int16_t v[2];
} t;
for (j = 0; j < filterSize; j++){
t.val = (int)src[j][i + offset] * (int)filter[j];
val += t.v[1];
}
dest[i]= av_clip_uint8(val>>3);
}
}
static void check_yuv2yuvX(void)
{
struct SwsContext *ctx;
int fsi, osi, isi, i, j;
int dstW;
#define LARGEST_FILTER 16
#define FILTER_SIZES 4
static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16};
#define LARGEST_INPUT_SIZE 512
#define INPUT_SIZES 6
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
int filterSize, const int16_t **src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
const int16_t **src;
LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]);
LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]);
union VFilterData{
const int16_t *src;
uint16_t coeff[8];
} *vFilterData;
uint8_t d_val = rnd();
memset(dither, d_val, LARGEST_INPUT_SIZE);
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t));
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for(isi = 0; isi < INPUT_SIZES; ++isi){
dstW = input_sizes[isi];
for(osi = 0; osi < 64; osi += 16){
for(fsi = 0; fsi < FILTER_SIZES; ++fsi){
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
for(i = 0; i < filter_sizes[fsi]; ++i){
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
vFilterData[i].src = src[i];
for(j = 0; j < 4; ++j)
vFilterData[i].coeff[j + 4] = filter_coeff[i];
}
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d", filter_sizes[fsi], osi, dstW)){
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
// The reference function is not the scalar function selected when mmx
// is deactivated as the SIMD functions do not give the same result as
// the scalar ones due to rounding. The SIMD functions are activated by
// the flag SWS_ACCURATE_RND
ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
// There's no point in calling new for the reference function
if(ctx->use_mmx_vfilter){
call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])))
fail();
if(dstW == LARGEST_INPUT_SIZE)
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
}
}
av_freep(&src);
av_freep(&vFilterData);
}
}
}
sws_freeContext(ctx);
#undef FILTER_SIZES
}
#undef SRC_PIXELS
#define SRC_PIXELS 512
static void check_hscale(void)
{
#define MAX_FILTER_WIDTH 40
#define FILTER_SIZES 6
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 };
#define HSCALE_PAIRS 2
static const int hscale_pairs[HSCALE_PAIRS][2] = {
{ 8, 14 },
{ 8, 18 },
};
int i, j, fsi, hpi, width;
struct SwsContext *ctx;
// padded
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
// padded
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]);
// The dst parameter here is either int16_t or int32_t but we use void* to
// just cover both cases.
declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
int cpu_flags = av_get_cpu_flags();
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
width = filter_sizes[fsi];
ctx->srcBpc = hscale_pairs[hpi][0];
ctx->dstBpc = hscale_pairs[hpi][1];
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
ctx->dstW = ctx->chrDstW = SRC_PIXELS;
for (i = 0; i < SRC_PIXELS; i++) {
filterPos[i] = i;
filterPosAvx[i] = i;
// These filter cofficients are chosen to try break two corner
// cases, namely:
//
// - Negative filter coefficients. The filters output signed
// values, and it should be possible to end up with negative
// output values.
//
// - Positive clipping. The hscale filter function has clipping
// at (1<<15) - 1
//
// The coefficients sum to the 1.0 point for the hscale
// functions (1 << 14).
for (j = 0; j < width; j++) {
filter[i * width + j] = -((1 << 14) / (width - 1));
}
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
}
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
// These values should be unused in SIMD implementations but
// may still be read, random coefficients here should help show
// issues where they are used in error.
filter[SRC_PIXELS * width + i] = rnd();
}
ff_sws_init_scale(ctx);
memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH));
if ((cpu_flags & AV_CPU_FLAG_AVX2) && !(cpu_flags & AV_CPU_FLAG_SLOW_GATHER))
ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, SRC_PIXELS);
if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
call_new(NULL, dst1, SRC_PIXELS, src, filterAvx2, filterPosAvx, width);
if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
fail();
bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPosAvx, width);
}
}
}
sws_freeContext(ctx);
}
void checkasm_check_sw_scale(void)
{
check_hscale();
report("hscale");
check_yuv2yuvX();
report("yuv2yuvX");
}