ffmpeg/libavutil/csp.c

637 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Kevin Wheatley <kevin.j.wheatley@gmail.com>
* Copyright (c) 2016 Ronald S. Bultje <rsbultje@gmail.com>
* Copyright (c) 2023 Leo Izen <leo.izen@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file Colorspace functions for libavutil
* @author Ronald S. Bultje <rsbultje@gmail.com>
* @author Leo Izen <leo.izen@gmail.com>
* @author Kevin Wheatley <kevin.j.wheatley@gmail.com>
*/
#include <stdlib.h>
#include <math.h>
#include "attributes.h"
#include "csp.h"
#include "pixfmt.h"
#include "rational.h"
#define AVR(d) { (int)(d * 100000 + 0.5), 100000 }
/*
* All constants explained in e.g. https://linuxtv.org/downloads/v4l-dvb-apis/ch02s06.html
* The older ones (bt470bg/m) are also explained in their respective ITU docs
* (e.g. https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-5-199802-S!!PDF-E.pdf)
* whereas the newer ones can typically be copied directly from wikipedia :)
*/
static const struct AVLumaCoefficients luma_coefficients[AVCOL_SPC_NB] = {
[AVCOL_SPC_FCC] = { AVR(0.30), AVR(0.59), AVR(0.11) },
[AVCOL_SPC_BT470BG] = { AVR(0.299), AVR(0.587), AVR(0.114) },
[AVCOL_SPC_SMPTE170M] = { AVR(0.299), AVR(0.587), AVR(0.114) },
[AVCOL_SPC_BT709] = { AVR(0.2126), AVR(0.7152), AVR(0.0722) },
[AVCOL_SPC_SMPTE240M] = { AVR(0.212), AVR(0.701), AVR(0.087) },
[AVCOL_SPC_YCOCG] = { AVR(0.25), AVR(0.5), AVR(0.25) },
[AVCOL_SPC_RGB] = { AVR(1), AVR(1), AVR(1) },
[AVCOL_SPC_BT2020_NCL] = { AVR(0.2627), AVR(0.6780), AVR(0.0593) },
[AVCOL_SPC_BT2020_CL] = { AVR(0.2627), AVR(0.6780), AVR(0.0593) },
};
const struct AVLumaCoefficients *av_csp_luma_coeffs_from_avcsp(enum AVColorSpace csp)
{
const AVLumaCoefficients *coeffs;
if (csp >= AVCOL_SPC_NB)
return NULL;
coeffs = &luma_coefficients[csp];
if (!coeffs->cr.num)
return NULL;
return coeffs;
}
#define WP_D65 { AVR(0.3127), AVR(0.3290) }
#define WP_C { AVR(0.3100), AVR(0.3160) }
#define WP_DCI { AVR(0.3140), AVR(0.3510) }
#define WP_E { {1, 3}, {1, 3} }
static const AVColorPrimariesDesc color_primaries[AVCOL_PRI_NB] = {
[AVCOL_PRI_BT709] = { WP_D65, { { AVR(0.640), AVR(0.330) }, { AVR(0.300), AVR(0.600) }, { AVR(0.150), AVR(0.060) } } },
[AVCOL_PRI_BT470M] = { WP_C, { { AVR(0.670), AVR(0.330) }, { AVR(0.210), AVR(0.710) }, { AVR(0.140), AVR(0.080) } } },
[AVCOL_PRI_BT470BG] = { WP_D65, { { AVR(0.640), AVR(0.330) }, { AVR(0.290), AVR(0.600) }, { AVR(0.150), AVR(0.060) } } },
[AVCOL_PRI_SMPTE170M] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.310), AVR(0.595) }, { AVR(0.155), AVR(0.070) } } },
[AVCOL_PRI_SMPTE240M] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.310), AVR(0.595) }, { AVR(0.155), AVR(0.070) } } },
[AVCOL_PRI_SMPTE428] = { WP_E, { { AVR(0.735), AVR(0.265) }, { AVR(0.274), AVR(0.718) }, { AVR(0.167), AVR(0.009) } } },
[AVCOL_PRI_SMPTE431] = { WP_DCI, { { AVR(0.680), AVR(0.320) }, { AVR(0.265), AVR(0.690) }, { AVR(0.150), AVR(0.060) } } },
[AVCOL_PRI_SMPTE432] = { WP_D65, { { AVR(0.680), AVR(0.320) }, { AVR(0.265), AVR(0.690) }, { AVR(0.150), AVR(0.060) } } },
[AVCOL_PRI_FILM] = { WP_C, { { AVR(0.681), AVR(0.319) }, { AVR(0.243), AVR(0.692) }, { AVR(0.145), AVR(0.049) } } },
[AVCOL_PRI_BT2020] = { WP_D65, { { AVR(0.708), AVR(0.292) }, { AVR(0.170), AVR(0.797) }, { AVR(0.131), AVR(0.046) } } },
[AVCOL_PRI_JEDEC_P22] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.295), AVR(0.605) }, { AVR(0.155), AVR(0.077) } } },
};
const AVColorPrimariesDesc *av_csp_primaries_desc_from_id(enum AVColorPrimaries prm)
{
const AVColorPrimariesDesc *p;
if (prm >= AVCOL_PRI_NB)
return NULL;
p = &color_primaries[prm];
if (!p->prim.r.x.num)
return NULL;
return p;
}
static av_always_inline AVRational abs_sub_q(AVRational r1, AVRational r2)
{
AVRational diff = av_sub_q(r1, r2);
/* denominator assumed to be positive */
return av_make_q(abs(diff.num), diff.den);
}
enum AVColorPrimaries av_csp_primaries_id_from_desc(const AVColorPrimariesDesc *prm)
{
AVRational delta;
for (enum AVColorPrimaries p = 0; p < AVCOL_PRI_NB; p++) {
const AVColorPrimariesDesc *ref = &color_primaries[p];
if (!ref->prim.r.x.num)
continue;
delta = abs_sub_q(prm->prim.r.x, ref->prim.r.x);
delta = av_add_q(delta, abs_sub_q(prm->prim.r.y, ref->prim.r.y));
delta = av_add_q(delta, abs_sub_q(prm->prim.g.x, ref->prim.g.x));
delta = av_add_q(delta, abs_sub_q(prm->prim.g.y, ref->prim.g.y));
delta = av_add_q(delta, abs_sub_q(prm->prim.b.x, ref->prim.b.x));
delta = av_add_q(delta, abs_sub_q(prm->prim.b.y, ref->prim.b.y));
delta = av_add_q(delta, abs_sub_q(prm->wp.x, ref->wp.x));
delta = av_add_q(delta, abs_sub_q(prm->wp.y, ref->wp.y));
if (av_cmp_q(delta, av_make_q(1, 1000)) < 0)
return p;
}
return AVCOL_PRI_UNSPECIFIED;
}
static const double approximate_gamma[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = 1.961,
[AVCOL_TRC_SMPTE170M] = 1.961,
[AVCOL_TRC_SMPTE240M] = 1.961,
[AVCOL_TRC_BT1361_ECG] = 1.961,
[AVCOL_TRC_BT2020_10] = 1.961,
[AVCOL_TRC_BT2020_12] = 1.961,
[AVCOL_TRC_GAMMA22] = 2.2,
[AVCOL_TRC_IEC61966_2_1] = 2.2,
[AVCOL_TRC_GAMMA28] = 2.8,
[AVCOL_TRC_LINEAR] = 1.0,
[AVCOL_TRC_SMPTE428] = 2.6,
};
double av_csp_approximate_trc_gamma(enum AVColorTransferCharacteristic trc)
{
double gamma;
if (trc >= AVCOL_TRC_NB)
return 0.0;
gamma = approximate_gamma[trc];
if (gamma > 0)
return gamma;
return 0.0;
}
#define BT709_alpha 1.099296826809442
#define BT709_beta 0.018053968510807
static double trc_bt709(double Lc)
{
const double a = BT709_alpha;
const double b = BT709_beta;
return (0.0 > Lc) ? 0.0
: ( b > Lc) ? 4.500 * Lc
: a * pow(Lc, 0.45) - (a - 1.0);
}
static double trc_bt709_inv(double E)
{
const double a = BT709_alpha;
const double b = 4.500 * BT709_beta;
return (0.0 > E) ? 0.0
: ( b > E) ? E / 4.500
: pow((E + (a - 1.0)) / a, 1.0 / 0.45);
}
static double trc_gamma22(double Lc)
{
return (0.0 > Lc) ? 0.0 : pow(Lc, 1.0/ 2.2);
}
static double trc_gamma22_inv(double E)
{
return (0.0 > E) ? 0.0 : pow(E, 2.2);
}
static double trc_gamma28(double Lc)
{
return (0.0 > Lc) ? 0.0 : pow(Lc, 1.0/ 2.8);
}
static double trc_gamma28_inv(double E)
{
return (0.0 > E) ? 0.0 : pow(E, 2.8);
}
static double trc_smpte240M(double Lc)
{
const double a = 1.1115;
const double b = 0.0228;
return (0.0 > Lc) ? 0.0
: ( b > Lc) ? 4.000 * Lc
: a * pow(Lc, 0.45) - (a - 1.0);
}
static double trc_smpte240M_inv(double E)
{
const double a = 1.1115;
const double b = 4.000 * 0.0228;
return (0.0 > E) ? 0.0
: ( b > E) ? E / 4.000
: pow((E + (a - 1.0)) / a, 1.0 / 0.45);
}
static double trc_linear(double Lc)
{
return Lc;
}
static double trc_log(double Lc)
{
return (0.01 > Lc) ? 0.0 : 1.0 + log10(Lc) / 2.0;
}
static double trc_log_inv(double E)
{
return (0.0 > E) ? 0.01 : pow(10.0, 2.0 * (E - 1.0));
}
static double trc_log_sqrt(double Lc)
{
// sqrt(10) / 1000
return (0.00316227766 > Lc) ? 0.0 : 1.0 + log10(Lc) / 2.5;
}
static double trc_log_sqrt_inv(double E)
{
return (0.0 > E) ? 0.00316227766 : pow(10.0, 2.5 * (E - 1.0));
}
static double trc_iec61966_2_4(double Lc)
{
const double a = BT709_alpha;
const double b = BT709_beta;
return (-b >= Lc) ? -a * pow(-Lc, 0.45) + (a - 1.0)
: ( b > Lc) ? 4.500 * Lc
: a * pow( Lc, 0.45) - (a - 1.0);
}
static double trc_iec61966_2_4_inv(double E)
{
const double a = BT709_alpha;
const double b = 4.500 * BT709_beta;
return (-b >= E) ? -pow((-E + (a - 1.0)) / a, 1.0 / 0.45)
: ( b > E) ? E / 4.500
: pow(( E + (a - 1.0)) / a, 1.0 / 0.45);
}
static double trc_bt1361(double Lc)
{
const double a = BT709_alpha;
const double b = BT709_beta;
return (-0.0045 >= Lc) ? -(a * pow(-4.0 * Lc, 0.45) + (a - 1.0)) / 4.0
: ( b > Lc) ? 4.500 * Lc
: a * pow( Lc, 0.45) - (a - 1.0);
}
static double trc_bt1361_inv(double E)
{
const double a = BT709_alpha;
const double b = 4.500 * BT709_beta;
return (-0.02025 >= E) ? -pow((-4.0 * E - (a - 1.0)) / a, 1.0 / 0.45) / 4.0
: ( b > E) ? E / 4.500
: pow(( E + (a - 1.0)) / a, 1.0 / 0.45);
}
static double trc_iec61966_2_1(double Lc)
{
const double a = 1.055;
const double b = 0.0031308;
return (0.0 > Lc) ? 0.0
: ( b > Lc) ? 12.92 * Lc
: a * pow(Lc, 1.0 / 2.4) - (a - 1.0);
}
static double trc_iec61966_2_1_inv(double E)
{
const double a = 1.055;
const double b = 12.92 * 0.0031308;
return (0.0 > E) ? 0.0
: ( b > E) ? E / 12.92
: pow((E + (a - 1.0)) / a, 2.4);
return E;
}
#define PQ_c1 ( 3424.0 / 4096.0) /* c3-c2 + 1 */
#define PQ_c2 ( 32.0 * 2413.0 / 4096.0)
#define PQ_c3 ( 32.0 * 2392.0 / 4096.0)
#define PQ_m (128.0 * 2523.0 / 4096.0)
#define PQ_n ( 0.25 * 2610.0 / 4096.0)
static double trc_smpte_st2084(double Lc)
{
const double c1 = PQ_c1;
const double c2 = PQ_c2;
const double c3 = PQ_c3;
const double m = PQ_m;
const double n = PQ_n;
const double L = Lc / 10000.0;
const double Ln = pow(L, n);
return (0.0 > Lc) ? 0.0
: pow((c1 + c2 * Ln) / (1.0 + c3 * Ln), m);
}
static double trc_smpte_st2084_inv(double E)
{
const double c1 = PQ_c1;
const double c2 = PQ_c2;
const double c3 = PQ_c3;
const double m = PQ_m;
const double n = PQ_n;
const double Em = pow(E, 1.0 / m);
return (c1 > Em) ? 0.0
: 10000.0 * pow((Em - c1) / (c2 - c3 * Em), 1.0 / n);
}
#define DCI_L 48.00
#define DCI_P 52.37
static double trc_smpte_st428_1(double Lc)
{
return (0.0 > Lc) ? 0.0 : pow(DCI_L / DCI_P * Lc, 1.0 / 2.6);
}
static double trc_smpte_st428_1_inv(double E)
{
return (0.0 > E) ? 0.0 : DCI_P / DCI_L * pow(E, 2.6);
}
#define HLG_a 0.17883277
#define HLG_b 0.28466892
#define HLG_c 0.55991073
static double trc_arib_std_b67(double Lc) {
// The function uses the definition from HEVC, which assumes that the peak
// white is input level = 1. (this is equivalent to scaling E = Lc * 12 and
// using the definition from the ARIB STD-B67 spec)
const double a = HLG_a;
const double b = HLG_b;
const double c = HLG_c;
return (0.0 > Lc) ? 0.0 :
(Lc <= 1.0 / 12.0 ? sqrt(3.0 * Lc) : a * log(12.0 * Lc - b) + c);
}
static double trc_arib_std_b67_inv(double E)
{
const double a = HLG_a;
const double b = HLG_b;
const double c = HLG_c;
return (0.0 > E) ? 0.0 :
(E <= 0.5 ? E * E / 3.0 : (exp((E - c) / a) + b) / 12.0);
}
static const av_csp_trc_function trc_funcs[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = trc_bt709,
[AVCOL_TRC_GAMMA22] = trc_gamma22,
[AVCOL_TRC_GAMMA28] = trc_gamma28,
[AVCOL_TRC_SMPTE170M] = trc_bt709,
[AVCOL_TRC_SMPTE240M] = trc_smpte240M,
[AVCOL_TRC_LINEAR] = trc_linear,
[AVCOL_TRC_LOG] = trc_log,
[AVCOL_TRC_LOG_SQRT] = trc_log_sqrt,
[AVCOL_TRC_IEC61966_2_4] = trc_iec61966_2_4,
[AVCOL_TRC_BT1361_ECG] = trc_bt1361,
[AVCOL_TRC_IEC61966_2_1] = trc_iec61966_2_1,
[AVCOL_TRC_BT2020_10] = trc_bt709,
[AVCOL_TRC_BT2020_12] = trc_bt709,
[AVCOL_TRC_SMPTE2084] = trc_smpte_st2084,
[AVCOL_TRC_SMPTE428] = trc_smpte_st428_1,
[AVCOL_TRC_ARIB_STD_B67] = trc_arib_std_b67,
};
av_csp_trc_function av_csp_trc_func_from_id(enum AVColorTransferCharacteristic trc)
{
if (trc >= AVCOL_TRC_NB)
return NULL;
2024-11-25 12:07:35 +00:00
return trc_funcs[trc];
}
static const av_csp_trc_function trc_inv_funcs[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = trc_bt709_inv,
[AVCOL_TRC_GAMMA22] = trc_gamma22_inv,
[AVCOL_TRC_GAMMA28] = trc_gamma28_inv,
[AVCOL_TRC_SMPTE170M] = trc_bt709_inv,
[AVCOL_TRC_SMPTE240M] = trc_smpte240M_inv,
[AVCOL_TRC_LINEAR] = trc_linear,
[AVCOL_TRC_LOG] = trc_log_inv,
[AVCOL_TRC_LOG_SQRT] = trc_log_sqrt_inv,
[AVCOL_TRC_IEC61966_2_4] = trc_iec61966_2_4_inv,
[AVCOL_TRC_BT1361_ECG] = trc_bt1361_inv,
[AVCOL_TRC_IEC61966_2_1] = trc_iec61966_2_1_inv,
[AVCOL_TRC_BT2020_10] = trc_bt709_inv,
[AVCOL_TRC_BT2020_12] = trc_bt709_inv,
[AVCOL_TRC_SMPTE2084] = trc_smpte_st2084_inv,
[AVCOL_TRC_SMPTE428] = trc_smpte_st428_1_inv,
[AVCOL_TRC_ARIB_STD_B67] = trc_arib_std_b67_inv,
};
av_csp_trc_function av_csp_trc_func_inv_from_id(enum AVColorTransferCharacteristic trc)
{
if (trc >= AVCOL_TRC_NB)
return NULL;
return trc_inv_funcs[trc];
}
static void eotf_linear(const double Lw, const double Lb, double E[3])
{
for (int i = 0; i < 3; i++)
E[i] = (Lw - Lb) * E[i] + Lb;
}
static void eotf_linear_inv(const double Lw, const double Lb, double L[3])
{
for (int i = 0; i < 3; i++)
L[i] = (L[i] - Lb) / (Lw - Lb);
}
#define WRAP_SDR_OETF(name) \
static void oetf_##name(double L[3]) \
{ \
for (int i = 0; i < 3; i++) \
L[i] = trc_##name(L[i]); \
} \
\
static void oetf_##name##_inv(double E[3]) \
{ \
for (int i = 0; i < 3; i++) \
E[i] = trc_##name##_inv(E[i]); \
}
WRAP_SDR_OETF(gamma22)
WRAP_SDR_OETF(gamma28)
WRAP_SDR_OETF(iec61966_2_1)
#define WRAP_SDR_EOTF(name) \
static void eotf_##name(double Lw, double Lb, double E[3]) \
{ \
oetf_##name##_inv(E); \
eotf_linear(Lw, Lb, E); \
} \
\
static void eotf_##name##_inv(double Lw, double Lb, double L[3]) \
{ \
eotf_linear_inv(Lw, Lb, L); \
oetf_##name(L); \
}
WRAP_SDR_EOTF(gamma22)
WRAP_SDR_EOTF(gamma28)
WRAP_SDR_EOTF(iec61966_2_1)
static void eotf_bt1886(const double Lw, const double Lb, double E[3])
{
const double Lw_inv = pow(Lw, 1.0 / 2.4);
const double Lb_inv = pow(Lb, 1.0 / 2.4);
const double a = pow(Lw_inv - Lb_inv, 2.4);
const double b = Lb_inv / (Lw_inv - Lb_inv);
for (int i = 0; i < 3; i++)
E[i] = (-b > E[i]) ? 0.0 : a * pow(E[i] + b, 2.4);
}
static void eotf_bt1886_inv(const double Lw, const double Lb, double L[3])
{
const double Lw_inv = pow(Lw, 1.0 / 2.4);
const double Lb_inv = pow(Lb, 1.0 / 2.4);
const double a = pow(Lw_inv - Lb_inv, 2.4);
const double b = Lb_inv / (Lw_inv - Lb_inv);
for (int i = 0; i < 3; i++)
L[i] = (0.0 > L[i]) ? 0.0 : pow(L[i] / a, 1.0 / 2.4) - b;
}
static void eotf_smpte_st2084(const double Lw, const double Lb, double E[3])
{
for (int i = 0; i < 3; i++)
E[i] = trc_smpte_st2084_inv(E[i]);
}
static void eotf_smpte_st2084_inv(const double Lw, const double Lb, double L[3])
{
for (int i = 0; i < 3; i++)
L[i] = trc_smpte_st2084(L[i]);
}
/* This implementation assumes an SMPTE RP 431-2 reference projector (DCI) */
#define DCI_L 48.00
#define DCI_P 52.37
#define DCI_X (42.94 / DCI_L)
#define DCI_Z (45.82 / DCI_L)
static void eotf_smpte_st428_1(const double Lw_Y, const double Lb_Y, double E[3])
{
const double Lw[3] = { DCI_X * Lw_Y, Lw_Y, DCI_Z * Lw_Y };
const double Lb[3] = { DCI_X * Lb_Y, Lb_Y, DCI_Z * Lb_Y };
for (int i = 0; i < 3; i++) {
E[i] = (0.0 > E[i]) ? 0.0 : pow(E[i], 2.6) * DCI_P / DCI_L;
E[i] = E[i] * (Lw[i] - Lb[i]) + Lb[i];
}
}
static void eotf_smpte_st428_1_inv(const double Lw_Y, const double Lb_Y, double L[3])
{
const double Lw[3] = { DCI_X * Lw_Y, Lw_Y, DCI_Z * Lw_Y };
const double Lb[3] = { DCI_X * Lb_Y, Lb_Y, DCI_Z * Lb_Y };
for (int i = 0; i < 3; i++) {
L[i] = (L[i] - Lb[i]) / (Lw[i] - Lb[i]);
L[i] = (0.0 > L[i]) ? 0.0 : pow(L[i] * DCI_L / DCI_P, 1.0 / 2.6);
}
}
static void eotf_arib_std_b67(const double Lw, const double Lb, double E[3])
{
const double gamma = fmax(1.2 + 0.42 * log10(Lw / 1000.0), 1.0);
/**
* Note: This equation is technically only accurate if the contrast ratio
* Lw:Lb is greater than 12:1; otherwise we would need to use a different,
* significantly more complicated solution. Ignore this as a highly
* degenerate case, since any real world reference display will have a
* static contrast ratio multiple orders of magnitude higher.
*/
const double beta = sqrt(3 * pow(Lb / Lw, 1.0 / gamma));
double luma;
for (int i = 0; i < 3; i++)
E[i] = trc_arib_std_b67_inv((1 - beta) * E[i] + beta);
luma = 0.2627 * E[0] + 0.6780 * E[1] + 0.0593 * E[2];
luma = pow(fmax(luma, 0.0), gamma - 1.0);
for (int i = 0; i < 3; i++)
E[i] *= Lw * luma;
}
static void eotf_arib_std_b67_inv(const double Lw, const double Lb, double L[3])
{
const double gamma = fmax(1.2 + 0.42 * log10(Lw / 1000.0), 1.0);
const double beta = sqrt(3 * pow(Lb / Lw, 1 / gamma));
double luma = 0.2627 * L[0] + 0.6780 * L[1] + 0.0593 * L[2];
if (luma > 0.0) {
luma = pow(luma / Lw, (1 - gamma) / gamma);
for (int i = 0; i < 3; i++)
L[i] *= luma / Lw;
} else {
L[0] = L[1] = L[2] = 0.0;
}
for (int i = 0; i < 3; i++)
L[i] = (trc_arib_std_b67(L[i]) - beta) / (1 - beta);
}
static const av_csp_eotf_function eotf_funcs[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = eotf_bt1886,
[AVCOL_TRC_GAMMA22] = eotf_gamma22,
[AVCOL_TRC_GAMMA28] = eotf_gamma28,
[AVCOL_TRC_SMPTE170M] = eotf_bt1886,
[AVCOL_TRC_SMPTE240M] = eotf_bt1886,
[AVCOL_TRC_LINEAR] = eotf_linear,
/* There is no EOTF associated with these logarithmic encodings, since they
* are defined purely for transmission of scene referred data. */
[AVCOL_TRC_LOG] = NULL,
[AVCOL_TRC_LOG_SQRT] = NULL,
/* BT.1886 is already defined for values below 0.0, as far as physically
* meaningful, so we can directly use it for extended range encodings */
[AVCOL_TRC_IEC61966_2_4] = eotf_bt1886,
[AVCOL_TRC_BT1361_ECG] = eotf_bt1886,
[AVCOL_TRC_IEC61966_2_1] = eotf_iec61966_2_1,
[AVCOL_TRC_BT2020_10] = eotf_bt1886,
[AVCOL_TRC_BT2020_12] = eotf_bt1886,
[AVCOL_TRC_SMPTE2084] = eotf_smpte_st2084,
[AVCOL_TRC_SMPTE428] = eotf_smpte_st428_1,
[AVCOL_TRC_ARIB_STD_B67] = eotf_arib_std_b67,
};
av_csp_eotf_function av_csp_itu_eotf(enum AVColorTransferCharacteristic trc)
{
if (trc < 0 || trc >= AVCOL_TRC_NB)
return NULL;
return eotf_funcs[trc];
}
static const av_csp_eotf_function eotf_inv_funcs[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = eotf_bt1886_inv,
[AVCOL_TRC_GAMMA22] = eotf_gamma22_inv,
[AVCOL_TRC_GAMMA28] = eotf_gamma28_inv,
[AVCOL_TRC_SMPTE170M] = eotf_bt1886_inv,
[AVCOL_TRC_SMPTE240M] = eotf_bt1886_inv,
[AVCOL_TRC_LINEAR] = eotf_linear_inv,
[AVCOL_TRC_LOG] = NULL,
[AVCOL_TRC_LOG_SQRT] = NULL,
[AVCOL_TRC_IEC61966_2_4] = eotf_bt1886_inv,
[AVCOL_TRC_BT1361_ECG] = eotf_bt1886_inv,
[AVCOL_TRC_IEC61966_2_1] = eotf_iec61966_2_1_inv,
[AVCOL_TRC_BT2020_10] = eotf_bt1886_inv,
[AVCOL_TRC_BT2020_12] = eotf_bt1886_inv,
[AVCOL_TRC_SMPTE2084] = eotf_smpte_st2084_inv,
[AVCOL_TRC_SMPTE428] = eotf_smpte_st428_1_inv,
[AVCOL_TRC_ARIB_STD_B67] = eotf_arib_std_b67_inv,
};
av_csp_eotf_function av_csp_itu_eotf_inv(enum AVColorTransferCharacteristic trc)
{
if (trc < 0 || trc >= AVCOL_TRC_NB)
return NULL;
return eotf_inv_funcs[trc];
}