crash/ia64.c
2014-01-28 16:46:11 -05:00

4451 lines
126 KiB
C

/* ia64.c - core analysis suite
*
* Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
* Copyright (C) 2002-2013 David Anderson
* Copyright (C) 2002-2013 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifdef IA64
#include "defs.h"
#include "xen_hyper_defs.h"
#include <sys/prctl.h>
static int ia64_verify_symbol(const char *, ulong, char);
static int ia64_eframe_search(struct bt_info *);
static void ia64_back_trace_cmd(struct bt_info *);
static void ia64_old_unwind(struct bt_info *);
static void ia64_old_unwind_init(void);
static void try_old_unwind(struct bt_info *);
static void ia64_dump_irq(int);
static ulong ia64_processor_speed(void);
static int ia64_vtop_4l(ulong, physaddr_t *paddr, ulong *pgd, int, int);
static int ia64_vtop(ulong, physaddr_t *paddr, ulong *pgd, int, int);
static int ia64_uvtop(struct task_context *, ulong, physaddr_t *, int);
static int ia64_kvtop(struct task_context *, ulong, physaddr_t *, int);
static ulong ia64_get_task_pgd(ulong);
static ulong ia64_get_pc(struct bt_info *);
static ulong ia64_get_sp(struct bt_info *);
static ulong ia64_get_thread_ksp(ulong);
static void ia64_get_stack_frame(struct bt_info *, ulong *, ulong *);
static int ia64_translate_pte(ulong, void *, ulonglong);
static ulong ia64_vmalloc_start(void);
static int ia64_is_task_addr(ulong);
static int ia64_dis_filter(ulong, char *, unsigned int);
static void ia64_dump_switch_stack(ulong, ulong);
static void ia64_cmd_mach(void);
static int ia64_get_smp_cpus(void);
static void ia64_display_machine_stats(void);
static void ia64_display_cpu_data(unsigned int);
static void ia64_display_memmap(void);
static void ia64_create_memmap(void);
static ulong check_mem_limit(void);
static int ia64_verify_paddr(uint64_t);
static int ia64_available_memory(struct efi_memory_desc_t *);
static void ia64_post_init(void);
static ulong ia64_in_per_cpu_mca_stack(void);
static struct line_number_hook ia64_line_number_hooks[];
static ulong ia64_get_stackbase(ulong);
static ulong ia64_get_stacktop(ulong);
static void parse_cmdline_args(void);
static void ia64_calc_phys_start(void);
static int ia64_get_kvaddr_ranges(struct vaddr_range *);
struct unw_frame_info;
static void dump_unw_frame_info(struct unw_frame_info *);
static int old_unw_unwind(struct unw_frame_info *);
static void unw_init_from_blocked_task(struct unw_frame_info *, ulong);
static ulong ia64_rse_slot_num(ulong *);
static ulong *ia64_rse_skip_regs(ulong *, long);
static ulong *ia64_rse_rnat_addr(ulong *);
static ulong rse_read_reg(struct unw_frame_info *, int, int *);
static void rse_function_params(struct unw_frame_info *, char *);
static int ia64_vtop_4l_xen_wpt(ulong, physaddr_t *paddr, ulong *pgd, int, int);
static int ia64_vtop_xen_wpt(ulong, physaddr_t *paddr, ulong *pgd, int, int);
static int ia64_xen_kdump_p2m_create(struct xen_kdump_data *);
static int ia64_xendump_p2m_create(struct xendump_data *);
static void ia64_debug_dump_page(FILE *, char *, char *);
static char *ia64_xendump_load_page(ulong, struct xendump_data *);
static int ia64_xendump_page_index(ulong, struct xendump_data *);
static ulong ia64_xendump_panic_task(struct xendump_data *);
static void ia64_get_xendump_regs(struct xendump_data *, struct bt_info *, ulong *, ulong *);
static void ia64_init_hyper(int);
struct machine_specific ia64_machine_specific = { 0 };
void
ia64_init(int when)
{
struct syment *sp, *spn;
if (XEN_HYPER_MODE()) {
ia64_init_hyper(when);
return;
}
switch (when)
{
case SETUP_ENV:
#if defined(PR_SET_FPEMU) && defined(PR_FPEMU_NOPRINT)
prctl(PR_SET_FPEMU, PR_FPEMU_NOPRINT, 0, 0, 0);
#endif
#if defined(PR_SET_UNALIGN) && defined(PR_UNALIGN_NOPRINT)
prctl(PR_SET_UNALIGN, PR_UNALIGN_NOPRINT, 0, 0, 0);
#endif
break;
case PRE_SYMTAB:
machdep->verify_symbol = ia64_verify_symbol;
machdep->machspec = &ia64_machine_specific;
if (pc->flags & KERNEL_DEBUG_QUERY)
return;
machdep->pagesize = memory_page_size();
machdep->pageshift = ffs(machdep->pagesize) - 1;
machdep->pageoffset = machdep->pagesize - 1;
machdep->pagemask = ~(machdep->pageoffset);
switch (machdep->pagesize)
{
case 4096:
machdep->stacksize = (power(2, 3) * PAGESIZE());
break;
case 8192:
machdep->stacksize = (power(2, 2) * PAGESIZE());
break;
case 16384:
machdep->stacksize = (power(2, 1) * PAGESIZE());
break;
case 65536:
machdep->stacksize = (power(2, 0) * PAGESIZE());
break;
default:
machdep->stacksize = 32*1024;
break;
}
if ((machdep->pgd = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pgd space.");
if ((machdep->pud = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pud space.");
if ((machdep->pmd = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pmd space.");
if ((machdep->ptbl = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc ptbl space.");
machdep->last_pgd_read = 0;
machdep->last_pud_read = 0;
machdep->last_pmd_read = 0;
machdep->last_ptbl_read = 0;
machdep->verify_paddr = ia64_verify_paddr;
machdep->get_kvaddr_ranges = ia64_get_kvaddr_ranges;
machdep->ptrs_per_pgd = PTRS_PER_PGD;
machdep->machspec->phys_start = UNKNOWN_PHYS_START;
if (machdep->cmdline_args[0])
parse_cmdline_args();
if (ACTIVE())
machdep->flags |= DEVMEMRD;
break;
case PRE_GDB:
if (pc->flags & KERNEL_DEBUG_QUERY)
return;
/*
* Until the kernel core dump and va_server library code
* do the right thing with respect to the configured page size,
* try to recognize a fatal inequity between the compiled-in
* page size and the page size used by the kernel.
*/
if ((sp = symbol_search("empty_zero_page")) &&
(spn = next_symbol(NULL, sp)) &&
((spn->value - sp->value) != PAGESIZE()))
error(FATAL,
"compiled-in page size: %d (apparent) kernel page size: %ld\n",
PAGESIZE(), spn->value - sp->value);
machdep->kvbase = KERNEL_VMALLOC_BASE;
machdep->identity_map_base = KERNEL_CACHED_BASE;
machdep->is_kvaddr = generic_is_kvaddr;
machdep->is_uvaddr = generic_is_uvaddr;
machdep->eframe_search = ia64_eframe_search;
machdep->back_trace = ia64_back_trace_cmd;
machdep->processor_speed = ia64_processor_speed;
machdep->uvtop = ia64_uvtop;
machdep->kvtop = ia64_kvtop;
machdep->get_task_pgd = ia64_get_task_pgd;
machdep->dump_irq = ia64_dump_irq;
machdep->get_stack_frame = ia64_get_stack_frame;
machdep->get_stackbase = ia64_get_stackbase;
machdep->get_stacktop = ia64_get_stacktop;
machdep->translate_pte = ia64_translate_pte;
machdep->memory_size = generic_memory_size;
machdep->vmalloc_start = ia64_vmalloc_start;
machdep->is_task_addr = ia64_is_task_addr;
machdep->dis_filter = ia64_dis_filter;
machdep->cmd_mach = ia64_cmd_mach;
machdep->get_smp_cpus = ia64_get_smp_cpus;
machdep->line_number_hooks = ia64_line_number_hooks;
machdep->value_to_symbol = generic_machdep_value_to_symbol;
machdep->init_kernel_pgd = NULL;
machdep->get_irq_affinity = generic_get_irq_affinity;
machdep->show_interrupts = generic_show_interrupts;
if ((sp = symbol_search("_stext"))) {
machdep->machspec->kernel_region =
VADDR_REGION(sp->value);
machdep->machspec->kernel_start = sp->value;
} else {
machdep->machspec->kernel_region = KERNEL_CACHED_REGION;
machdep->machspec->kernel_start = KERNEL_CACHED_BASE;
}
if (machdep->machspec->kernel_region == KERNEL_VMALLOC_REGION) {
machdep->machspec->vmalloc_start =
machdep->machspec->kernel_start +
GIGABYTES((ulong)(4));
if (machdep->machspec->phys_start == UNKNOWN_PHYS_START)
ia64_calc_phys_start();
} else
machdep->machspec->vmalloc_start = KERNEL_VMALLOC_BASE;
machdep->xen_kdump_p2m_create = ia64_xen_kdump_p2m_create;
machdep->xendump_p2m_create = ia64_xendump_p2m_create;
machdep->xendump_panic_task = ia64_xendump_panic_task;
machdep->get_xendump_regs = ia64_get_xendump_regs;
break;
case POST_GDB:
STRUCT_SIZE_INIT(cpuinfo_ia64, "cpuinfo_ia64");
STRUCT_SIZE_INIT(switch_stack, "switch_stack");
MEMBER_OFFSET_INIT(thread_struct_fph, "thread_struct", "fph");
MEMBER_OFFSET_INIT(switch_stack_b0, "switch_stack", "b0");
MEMBER_OFFSET_INIT(switch_stack_ar_bspstore,
"switch_stack", "ar_bspstore");
MEMBER_OFFSET_INIT(switch_stack_ar_pfs,
"switch_stack", "ar_pfs");
MEMBER_OFFSET_INIT(switch_stack_ar_rnat,
"switch_stack", "ar_rnat");
MEMBER_OFFSET_INIT(switch_stack_pr,
"switch_stack", "pr");
MEMBER_OFFSET_INIT(cpuinfo_ia64_proc_freq,
"cpuinfo_ia64", "proc_freq");
MEMBER_OFFSET_INIT(cpuinfo_ia64_unimpl_va_mask,
"cpuinfo_ia64", "unimpl_va_mask");
MEMBER_OFFSET_INIT(cpuinfo_ia64_unimpl_pa_mask,
"cpuinfo_ia64", "unimpl_pa_mask");
if (kernel_symbol_exists("nr_irqs"))
get_symbol_data("nr_irqs", sizeof(unsigned int),
&machdep->nr_irqs);
else if (symbol_exists("irq_desc"))
ARRAY_LENGTH_INIT(machdep->nr_irqs, irq_desc,
"irq_desc", NULL, 0);
else if (symbol_exists("_irq_desc"))
ARRAY_LENGTH_INIT(machdep->nr_irqs, irq_desc,
"_irq_desc", NULL, 0);
if (!machdep->hz)
machdep->hz = 1024;
machdep->section_size_bits = _SECTION_SIZE_BITS;
machdep->max_physmem_bits = _MAX_PHYSMEM_BITS;
ia64_create_memmap();
break;
case POST_INIT:
ia64_post_init();
break;
case LOG_ONLY:
machdep->machspec = &ia64_machine_specific;
machdep->machspec->kernel_start = kt->vmcoreinfo._stext_SYMBOL;
machdep->machspec->kernel_region =
VADDR_REGION(kt->vmcoreinfo._stext_SYMBOL);
if (machdep->machspec->kernel_region == KERNEL_VMALLOC_REGION) {
machdep->machspec->vmalloc_start =
machdep->machspec->kernel_start +
GIGABYTES((ulong)(4));
ia64_calc_phys_start();
}
break;
}
}
/*
* --machdep <addr> defaults to the physical start location.
*
* Otherwise, it's got to be a "item=value" string, separated
* by commas if more than one is passed in.
*/
void
parse_cmdline_args(void)
{
int index, i, c, errflag;
char *p;
char buf[BUFSIZE];
char *arglist[MAXARGS];
ulong value;
struct machine_specific *ms;
int vm_flag;
ms = &ia64_machine_specific;
vm_flag = 0;
for (index = 0; index < MAX_MACHDEP_ARGS; index++) {
if (!machdep->cmdline_args[index])
break;
if (!strstr(machdep->cmdline_args[index], "=")) {
errflag = 0;
value = htol(machdep->cmdline_args[index],
RETURN_ON_ERROR|QUIET, &errflag);
if (!errflag) {
ms->phys_start = value;
error(NOTE, "setting phys_start to: 0x%lx\n",
ms->phys_start);
} else
error(WARNING, "ignoring --machdep option: %s\n\n",
machdep->cmdline_args[index]);
continue;
}
strcpy(buf, machdep->cmdline_args[index]);
for (p = buf; *p; p++) {
if (*p == ',')
*p = ' ';
}
c = parse_line(buf, arglist);
for (i = 0; i < c; i++) {
errflag = 0;
if (STRNEQ(arglist[i], "phys_start=")) {
p = arglist[i] + strlen("phys_start=");
if (strlen(p)) {
value = htol(p, RETURN_ON_ERROR|QUIET,
&errflag);
if (!errflag) {
ms->phys_start = value;
error(NOTE,
"setting phys_start to: 0x%lx\n",
ms->phys_start);
continue;
}
}
} else if (STRNEQ(arglist[i], "init_stack_size=")) {
p = arglist[i] + strlen("init_stack_size=");
if (strlen(p)) {
value = stol(p, RETURN_ON_ERROR|QUIET,
&errflag);
if (!errflag) {
ms->ia64_init_stack_size = (int)value;
error(NOTE,
"setting init_stack_size to: 0x%x (%d)\n",
ms->ia64_init_stack_size,
ms->ia64_init_stack_size);
continue;
}
}
} else if (STRNEQ(arglist[i], "vm=")) {
vm_flag++;
p = arglist[i] + strlen("vm=");
if (strlen(p)) {
if (STREQ(p, "4l")) {
machdep->flags |= VM_4_LEVEL;
continue;
}
}
}
error(WARNING, "ignoring --machdep option: %s\n", arglist[i]);
}
if (vm_flag) {
switch (machdep->flags & (VM_4_LEVEL))
{
case VM_4_LEVEL:
error(NOTE, "using 4-level pagetable\n");
c++;
break;
default:
error(WARNING, "invalid vm= option\n");
c++;
machdep->flags &= ~(VM_4_LEVEL);
break;
}
}
if (c)
fprintf(fp, "\n");
}
}
int
ia64_in_init_stack(ulong addr)
{
ulong init_stack_addr;
if (!symbol_exists("ia64_init_stack"))
return FALSE;
/*
* ia64_init_stack could be aliased to region 5
*/
init_stack_addr = ia64_VTOP(symbol_value("ia64_init_stack"));
addr = ia64_VTOP(addr);
if ((addr < init_stack_addr) ||
(addr >= (init_stack_addr+machdep->machspec->ia64_init_stack_size)))
return FALSE;
return TRUE;
}
static ulong
ia64_in_per_cpu_mca_stack(void)
{
int plen, i;
ulong flag;
ulong vaddr, paddr, stackbase, stacktop;
ulong *__per_cpu_mca;
struct task_context *tc;
tc = CURRENT_CONTEXT();
if (STRNEQ(CURRENT_COMM(), "INIT"))
flag = INIT;
else if (STRNEQ(CURRENT_COMM(), "MCA"))
flag = MCA;
else
return 0;
if (!symbol_exists("__per_cpu_mca") ||
!(plen = get_array_length("__per_cpu_mca", NULL, 0)) ||
(plen < kt->cpus))
return 0;
vaddr = SWITCH_STACK_ADDR(CURRENT_TASK());
if (VADDR_REGION(vaddr) != KERNEL_CACHED_REGION)
return 0;
paddr = ia64_VTOP(vaddr);
__per_cpu_mca = (ulong *)GETBUF(sizeof(ulong) * kt->cpus);
if (!readmem(symbol_value("__per_cpu_mca"), KVADDR, __per_cpu_mca,
sizeof(ulong) * kt->cpus, "__per_cpu_mca", RETURN_ON_ERROR|QUIET))
return 0;
if (CRASHDEBUG(1)) {
for (i = 0; i < kt->cpus; i++) {
fprintf(fp, "__per_cpu_mca[%d]: %lx\n",
i, __per_cpu_mca[i]);
}
}
stackbase = __per_cpu_mca[tc->processor];
stacktop = stackbase + (STACKSIZE() * 2);
FREEBUF(__per_cpu_mca);
if ((paddr >= stackbase) && (paddr < stacktop))
return flag;
else
return 0;
}
void
ia64_dump_machdep_table(ulong arg)
{
int i, others, verbose;
struct machine_specific *ms;
verbose = FALSE;
ms = &ia64_machine_specific;
if (arg) {
switch (arg)
{
default:
case 1:
verbose = TRUE;
break;
case 2:
if (machdep->flags & NEW_UNWIND) {
machdep->flags &=
~(NEW_UNWIND|NEW_UNW_V1|NEW_UNW_V2|NEW_UNW_V3);
machdep->flags |= OLD_UNWIND;
ms->unwind_init = ia64_old_unwind_init;
ms->unwind = ia64_old_unwind;
ms->dump_unwind_stats = NULL;
ms->unwind_debug = NULL;
} else {
machdep->flags &= ~OLD_UNWIND;
machdep->flags |= NEW_UNWIND;
if (MEMBER_EXISTS("unw_frame_info", "pt")) {
if (MEMBER_EXISTS("pt_regs", "ar_csd")) {
machdep->flags |= NEW_UNW_V3;
ms->unwind_init = unwind_init_v3;
ms->unwind = unwind_v3;
ms->unwind_debug = unwind_debug_v3;
ms->dump_unwind_stats =
dump_unwind_stats_v3;
} else {
machdep->flags |= NEW_UNW_V2;
ms->unwind_init = unwind_init_v2;
ms->unwind = unwind_v2;
ms->unwind_debug = unwind_debug_v2;
ms->dump_unwind_stats =
dump_unwind_stats_v2;
}
} else {
machdep->flags |= NEW_UNW_V1;
ms->unwind_init = unwind_init_v1;
ms->unwind = unwind_v1;
ms->unwind_debug = unwind_debug_v1;
ms->dump_unwind_stats =
dump_unwind_stats_v1;
}
}
ms->unwind_init();
return;
case 3:
if (machdep->flags & NEW_UNWIND)
ms->unwind_debug(arg);
return;
}
}
others = 0;
fprintf(fp, " flags: %lx (", machdep->flags);
/* future flags tests here */
if (machdep->flags & NEW_UNWIND)
fprintf(fp, "%sNEW_UNWIND", others++ ? "|" : "");
if (machdep->flags & NEW_UNW_V1)
fprintf(fp, "%sNEW_UNW_V1", others++ ? "|" : "");
if (machdep->flags & NEW_UNW_V2)
fprintf(fp, "%sNEW_UNW_V2", others++ ? "|" : "");
if (machdep->flags & NEW_UNW_V3)
fprintf(fp, "%sNEW_UNW_V3", others++ ? "|" : "");
if (machdep->flags & OLD_UNWIND)
fprintf(fp, "%sOLD_UNWIND", others++ ? "|" : "");
if (machdep->flags & UNW_OUT_OF_SYNC)
fprintf(fp, "%sUNW_OUT_OF_SYNC", others++ ? "|" : "");
if (machdep->flags & UNW_READ)
fprintf(fp, "%sUNW_READ", others++ ? "|" : "");
if (machdep->flags & UNW_PTREGS)
fprintf(fp, "%sUNW_PTREGS", others++ ? "|" : "");
if (machdep->flags & UNW_R0)
fprintf(fp, "%sUNW_R0", others++ ? "|" : "");
if (machdep->flags & MEM_LIMIT)
fprintf(fp, "%sMEM_LIMIT", others++ ? "|" : "");
if (machdep->flags & DEVMEMRD)
fprintf(fp, "%sDEVMEMRD", others++ ? "|" : "");
if (machdep->flags & INIT)
fprintf(fp, "%sINIT", others++ ? "|" : "");
if (machdep->flags & MCA)
fprintf(fp, "%sMCA", others++ ? "|" : "");
if (machdep->flags & VM_4_LEVEL)
fprintf(fp, "%sVM_4_LEVEL", others++ ? "|" : "");
fprintf(fp, ")\n");
fprintf(fp, " kvbase: %lx\n", machdep->kvbase);
fprintf(fp, " identity_map_base: %lx\n", machdep->identity_map_base);
fprintf(fp, " pagesize: %d\n", machdep->pagesize);
fprintf(fp, " pageshift: %d\n", machdep->pageshift);
fprintf(fp, " pagemask: %llx\n", machdep->pagemask);
fprintf(fp, " pageoffset: %lx\n", machdep->pageoffset);
fprintf(fp, " stacksize: %ld\n", machdep->stacksize);
fprintf(fp, " hz: %d\n", machdep->hz);
fprintf(fp, " mhz: %d\n", machdep->hz);
fprintf(fp, " memsize: %ld (0x%lx)\n",
machdep->memsize, machdep->memsize);
fprintf(fp, " bits: %d\n", machdep->bits);
fprintf(fp, " nr_irqs: %d\n", machdep->nr_irqs);
fprintf(fp, " eframe_search: ia64_eframe_search()\n");
fprintf(fp, " back_trace: ia64_back_trace_cmd()\n");
fprintf(fp, "get_processor_speed: ia64_processor_speed()\n");
fprintf(fp, " uvtop: ia64_uvtop()\n");
fprintf(fp, " kvtop: ia64_kvtop()\n");
fprintf(fp, " get_task_pgd: ia64_get_task_pgd()\n");
fprintf(fp, " dump_irq: ia64_dump_irq()\n");
fprintf(fp, " get_stack_frame: ia64_get_stack_frame()\n");
fprintf(fp, " get_stackbase: ia64_get_stackbase()\n");
fprintf(fp, " get_stacktop: ia64_get_stacktop()\n");
fprintf(fp, " translate_pte: ia64_translate_pte()\n");
fprintf(fp, " memory_size: generic_memory_size()\n");
fprintf(fp, " vmalloc_start: ia64_vmalloc_start()\n");
fprintf(fp, " is_task_addr: ia64_is_task_addr()\n");
fprintf(fp, " verify_symbol: ia64_verify_symbol()\n");
fprintf(fp, " dis_filter: ia64_dis_filter()\n");
fprintf(fp, " cmd_mach: ia64_cmd_mach()\n");
fprintf(fp, " get_smp_cpus: ia64_get_smp_cpus()\n");
fprintf(fp, " get_kvaddr_ranges: ia64_get_kvaddr_ranges()\n");
fprintf(fp, " is_kvaddr: generic_is_kvaddr()\n");
fprintf(fp, " is_uvaddr: generic_is_uvaddr()\n");
fprintf(fp, " verify_paddr: %s()\n",
(machdep->verify_paddr == ia64_verify_paddr) ?
"ia64_verify_paddr" : "generic_verify_paddr");
fprintf(fp, " get_irq_affinity: generic_get_irq_affinity()\n");
fprintf(fp, " show_interrupts: generic_show_interrupts()\n");
fprintf(fp, " init_kernel_pgd: NULL\n");
fprintf(fp, "xen_kdump_p2m_create: ia64_xen_kdump_p2m_create()\n");
fprintf(fp, " xendump_p2m_create: ia64_xendump_p2m_create()\n");
fprintf(fp, " xendump_panic_task: ia64_xendump_panic_task()\n");
fprintf(fp, " get_xendump_regs: ia64_get_xendump_regs()\n");
fprintf(fp, " value_to_symbol: generic_machdep_value_to_symbol()\n");
fprintf(fp, " line_number_hooks: ia64_line_number_hooks\n");
fprintf(fp, " last_pgd_read: %lx\n", machdep->last_pgd_read);
fprintf(fp, " last_pud_read: %lx\n", machdep->last_pud_read);
fprintf(fp, " last_pmd_read: %lx\n", machdep->last_pmd_read);
fprintf(fp, " last_ptbl_read: %lx\n", machdep->last_ptbl_read);
fprintf(fp, " pgd: %lx\n", (ulong)machdep->pgd);
fprintf(fp, " pud: %lx\n", (ulong)machdep->pud);
fprintf(fp, " pmd: %lx\n", (ulong)machdep->pmd);
fprintf(fp, " ptbl: %lx\n", (ulong)machdep->ptbl);
fprintf(fp, " ptrs_per_pgd: %d\n", machdep->ptrs_per_pgd);
for (i = 0; i < MAX_MACHDEP_ARGS; i++) {
fprintf(fp, " cmdline_args[%d]: %s\n",
i, machdep->cmdline_args[i] ?
machdep->cmdline_args[i] : "(unused)");
}
fprintf(fp, " section_size_bits: %ld\n", machdep->section_size_bits);
fprintf(fp, " max_physmem_bits: %ld\n", machdep->max_physmem_bits);
fprintf(fp, " sections_per_root: %ld\n", machdep->sections_per_root);
fprintf(fp, " machspec: ia64_machine_specific\n");
fprintf(fp, " cpu_data_address: %lx\n",
machdep->machspec->cpu_data_address);
fprintf(fp, " unimpl_va_mask: %lx\n",
machdep->machspec->unimpl_va_mask);
fprintf(fp, " unimpl_pa_mask: %lx\n",
machdep->machspec->unimpl_pa_mask);
fprintf(fp, " unw: %lx\n",
(ulong)machdep->machspec->unw);
fprintf(fp, " unw_tables_offset: %ld\n",
machdep->machspec->unw_tables_offset);
fprintf(fp, " unw_kernel_table_offset: %ld %s\n",
machdep->machspec->unw_kernel_table_offset,
machdep->machspec->unw_kernel_table_offset ? "" : "(unused)");
fprintf(fp, " unw_pt_regs_offsets: %ld %s\n",
machdep->machspec->unw_pt_regs_offsets,
machdep->machspec->unw_pt_regs_offsets ? "" : "(unused)");
fprintf(fp, " script_index: %d\n",
machdep->machspec->script_index);
fprintf(fp, " script_cache: %lx%s",
(ulong)machdep->machspec->script_cache,
machdep->flags & OLD_UNWIND ? "\n" : " ");
if (machdep->flags & NEW_UNWIND)
ms->dump_unwind_stats();
if (!(machdep->flags & (NEW_UNWIND|OLD_UNWIND)))
fprintf(fp, "\n");
fprintf(fp, " mem_limit: %lx\n",
machdep->machspec->mem_limit);
fprintf(fp, " kernel_region: %ld\n",
machdep->machspec->kernel_region);
fprintf(fp, " kernel_start: %lx\n",
machdep->machspec->kernel_start);
fprintf(fp, " phys_start: %lx (%lx)\n",
machdep->machspec->phys_start,
machdep->machspec->phys_start & KERNEL_TR_PAGE_MASK);
fprintf(fp, " vmalloc_start: %lx\n",
machdep->machspec->vmalloc_start);
fprintf(fp, " ia64_memmap: %lx\n",
(ulong)machdep->machspec->ia64_memmap);
fprintf(fp, " efi_memmap_size: %ld\n",
(ulong)machdep->machspec->efi_memmap_size);
fprintf(fp, " efi_memdesc_size: %ld\n",
(ulong)machdep->machspec->efi_memdesc_size);
fprintf(fp, " unwind_init: ");
if (ms->unwind_init == unwind_init_v1)
fprintf(fp, "unwind_init_v1()\n");
else if (ms->unwind_init == unwind_init_v2)
fprintf(fp, "unwind_init_v2()\n");
else if (ms->unwind_init == unwind_init_v3)
fprintf(fp, "unwind_init_v3()\n");
else if (ms->unwind_init == ia64_old_unwind_init)
fprintf(fp, "ia64_old_unwind_init()\n");
else
fprintf(fp, "%lx\n", (ulong)ms->unwind_init);
fprintf(fp, " unwind: ");
if (ms->unwind == unwind_v1)
fprintf(fp, "unwind_v1()\n");
else if (ms->unwind == unwind_v2)
fprintf(fp, "unwind_v2()\n");
else if (ms->unwind == unwind_v3)
fprintf(fp, "unwind_v3()\n");
else if (ms->unwind == ia64_old_unwind)
fprintf(fp, "ia64_old_unwind()\n");
else
fprintf(fp, "%lx\n", (ulong)ms->unwind);
fprintf(fp, " dump_unwind_stats: ");
if (ms->dump_unwind_stats == dump_unwind_stats_v1)
fprintf(fp, "dump_unwind_stats_v1()\n");
else if (ms->dump_unwind_stats == dump_unwind_stats_v2)
fprintf(fp, "dump_unwind_stats_v2()\n");
else if (ms->dump_unwind_stats == dump_unwind_stats_v3)
fprintf(fp, "dump_unwind_stats_v3()\n");
else
fprintf(fp, "%lx\n", (ulong)ms->dump_unwind_stats);
fprintf(fp, " unwind_debug: ");
if (ms->unwind_debug == unwind_debug_v1)
fprintf(fp, "unwind_debug_v1()\n");
else if (ms->unwind_debug == unwind_debug_v2)
fprintf(fp, "unwind_debug_v2()\n");
else if (ms->unwind_debug == unwind_debug_v3)
fprintf(fp, "unwind_debug_v3()\n");
else
fprintf(fp, "%lx\n", (ulong)ms->unwind_debug);
fprintf(fp, " ia64_init_stack_size: %d\n",
ms->ia64_init_stack_size);
if (verbose)
ia64_display_memmap();
}
/*
* Keep or reject a symbol from the namelist.
*/
static int
ia64_verify_symbol(const char *name, ulong value, char type)
{
ulong region;
if (!name || !strlen(name))
return FALSE;
if (XEN_HYPER_MODE() && STREQ(name, "__per_cpu_shift"))
return TRUE;
if (CRASHDEBUG(8))
fprintf(fp, "%016lx %s\n", value, name);
// if (STREQ(name, "phys_start") && type == 'A')
// if (machdep->machspec->phys_start == UNKNOWN_PHYS_START)
// machdep->machspec->phys_start = value;
region = VADDR_REGION(value);
return (((region == KERNEL_CACHED_REGION) ||
(region == KERNEL_VMALLOC_REGION)));
}
/*
* Look for likely exception frames in a stack.
*/
static int
ia64_eframe_search(struct bt_info *bt)
{
return(error(FATAL,
"ia64_eframe_search: not available for this architecture\n"));
}
/*
* Unroll a kernel stack.
*/
#define BT_SWITCH_STACK BT_SYMBOLIC_ARGS
static void
ia64_back_trace_cmd(struct bt_info *bt)
{
struct machine_specific *ms = &ia64_machine_specific;
if (bt->flags & BT_SWITCH_STACK)
ia64_dump_switch_stack(bt->task, 0);
if (machdep->flags & UNW_OUT_OF_SYNC)
error(FATAL,
"kernel and %s unwind data structures are out of sync\n",
pc->program_name);
ms->unwind(bt);
if (bt->flags & BT_UNWIND_ERROR)
try_old_unwind(bt);
}
/*
* Dump the IRQ table.
*/
static void
ia64_dump_irq(int irq)
{
if (symbol_exists("irq_desc") || symbol_exists("_irq_desc") ||
kernel_symbol_exists("irq_desc_ptrs")) {
machdep->dump_irq = generic_dump_irq;
return(generic_dump_irq(irq));
}
error(FATAL,
"ia64_dump_irq: neither irq_desc or _irq_desc exist\n");
}
/*
* Calculate and return the speed of the processor.
*/
static ulong
ia64_processor_speed(void)
{
ulong mhz, proc_freq;
int bootstrap_processor;
if (machdep->mhz)
return(machdep->mhz);
mhz = 0;
bootstrap_processor = 0;
if (!machdep->machspec->cpu_data_address ||
!VALID_STRUCT(cpuinfo_ia64) ||
!VALID_MEMBER(cpuinfo_ia64_proc_freq))
return (machdep->mhz = mhz);
if (symbol_exists("bootstrap_processor"))
get_symbol_data("bootstrap_processor", sizeof(int),
&bootstrap_processor);
if (bootstrap_processor == -1)
bootstrap_processor = 0;
readmem(machdep->machspec->cpu_data_address +
OFFSET(cpuinfo_ia64_proc_freq),
KVADDR, &proc_freq, sizeof(ulong),
"cpuinfo_ia64 proc_freq", FAULT_ON_ERROR);
mhz = proc_freq/1000000;
return (machdep->mhz = mhz);
}
/* Generic abstraction to translate user or kernel virtual
* addresses to physical using a 4 level page table.
*/
static int
ia64_vtop_4l(ulong vaddr, physaddr_t *paddr, ulong *pgd, int verbose, int usr)
{
ulong *page_dir;
ulong *page_upper;
ulong *page_middle;
ulong *page_table;
ulong pgd_pte;
ulong pud_pte;
ulong pmd_pte;
ulong pte;
ulong region, offset;
if (usr) {
region = VADDR_REGION(vaddr);
offset = (vaddr >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
offset |= (region << (PAGESHIFT() - 6));
page_dir = pgd + offset;
} else {
if (!(pgd = (ulong *)vt->kernel_pgd[0]))
error(FATAL, "cannot determine kernel pgd pointer\n");
page_dir = pgd + ((vaddr >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1));
}
if (verbose)
fprintf(fp, "PAGE DIRECTORY: %lx\n", (ulong)pgd);
FILL_PGD(PAGEBASE(pgd), KVADDR, PAGESIZE());
pgd_pte = ULONG(machdep->pgd + PAGEOFFSET(page_dir));
if (verbose)
fprintf(fp, " PGD: %lx => %lx\n", (ulong)page_dir, pgd_pte);
if (!(pgd_pte))
return FALSE;
offset = (vaddr >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
page_upper = (ulong *)(PTOV(pgd_pte & _PFN_MASK)) + offset;
FILL_PUD(PAGEBASE(page_upper), KVADDR, PAGESIZE());
pud_pte = ULONG(machdep->pud + PAGEOFFSET(page_upper));
if (verbose)
fprintf(fp, " PUD: %lx => %lx\n", (ulong)page_upper, pud_pte);
if (!(pud_pte))
return FALSE;
offset = (vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
page_middle = (ulong *)(PTOV(pud_pte & _PFN_MASK)) + offset;
FILL_PMD(PAGEBASE(page_middle), KVADDR, PAGESIZE());
pmd_pte = ULONG(machdep->pmd + PAGEOFFSET(page_middle));
if (verbose)
fprintf(fp, " PMD: %lx => %lx\n", (ulong)page_middle, pmd_pte);
if (!(pmd_pte))
return FALSE;
offset = (vaddr >> PAGESHIFT()) & (PTRS_PER_PTE - 1);
page_table = (ulong *)(PTOV(pmd_pte & _PFN_MASK)) + offset;
FILL_PTBL(PAGEBASE(page_table), KVADDR, PAGESIZE());
pte = ULONG(machdep->ptbl + PAGEOFFSET(page_table));
if (verbose)
fprintf(fp, " PTE: %lx => %lx\n", (ulong)page_table, pte);
if (!(pte & (_PAGE_P | _PAGE_PROTNONE))) {
if (usr)
*paddr = pte;
if (pte && verbose) {
fprintf(fp, "\n");
ia64_translate_pte(pte, 0, 0);
}
return FALSE;
}
*paddr = (pte & _PFN_MASK) + PAGEOFFSET(vaddr);
if (verbose) {
fprintf(fp, " PAGE: %lx\n\n", PAGEBASE(*paddr));
ia64_translate_pte(pte, 0, 0);
}
return TRUE;
}
/* Generic abstraction to translate user or kernel virtual
* addresses to physical using a 3 level page table.
*/
static int
ia64_vtop(ulong vaddr, physaddr_t *paddr, ulong *pgd, int verbose, int usr)
{
ulong *page_dir;
ulong *page_middle;
ulong *page_table;
ulong pgd_pte;
ulong pmd_pte;
ulong pte;
ulong region, offset;
if (usr) {
region = VADDR_REGION(vaddr);
offset = (vaddr >> PGDIR_SHIFT_3L) & ((PTRS_PER_PGD >> 3) - 1);
offset |= (region << (PAGESHIFT() - 6));
page_dir = pgd + offset;
} else {
if (!(pgd = (ulong *)vt->kernel_pgd[0]))
error(FATAL, "cannot determine kernel pgd pointer\n");
page_dir = pgd + ((vaddr >> PGDIR_SHIFT_3L) & (PTRS_PER_PGD - 1));
}
if (verbose)
fprintf(fp, "PAGE DIRECTORY: %lx\n", (ulong)pgd);
FILL_PGD(PAGEBASE(pgd), KVADDR, PAGESIZE());
pgd_pte = ULONG(machdep->pgd + PAGEOFFSET(page_dir));
if (verbose)
fprintf(fp, " PGD: %lx => %lx\n", (ulong)page_dir, pgd_pte);
if (!(pgd_pte))
return FALSE;
offset = (vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
page_middle = (ulong *)(PTOV(pgd_pte & _PFN_MASK)) + offset;
FILL_PMD(PAGEBASE(page_middle), KVADDR, PAGESIZE());
pmd_pte = ULONG(machdep->pmd + PAGEOFFSET(page_middle));
if (verbose)
fprintf(fp, " PMD: %lx => %lx\n", (ulong)page_middle, pmd_pte);
if (!(pmd_pte))
return FALSE;
offset = (vaddr >> PAGESHIFT()) & (PTRS_PER_PTE - 1);
page_table = (ulong *)(PTOV(pmd_pte & _PFN_MASK)) + offset;
FILL_PTBL(PAGEBASE(page_table), KVADDR, PAGESIZE());
pte = ULONG(machdep->ptbl + PAGEOFFSET(page_table));
if (verbose)
fprintf(fp, " PTE: %lx => %lx\n", (ulong)page_table, pte);
if (!(pte & (_PAGE_P | _PAGE_PROTNONE))) {
if (usr)
*paddr = pte;
if (pte && verbose) {
fprintf(fp, "\n");
ia64_translate_pte(pte, 0, 0);
}
return FALSE;
}
*paddr = (pte & _PFN_MASK) + PAGEOFFSET(vaddr);
if (verbose) {
fprintf(fp, " PAGE: %lx\n\n", PAGEBASE(*paddr));
ia64_translate_pte(pte, 0, 0);
}
return TRUE;
}
/*
* Translates a user virtual address to its physical address. cmd_vtop()
* sets the verbose flag so that the pte translation gets displayed; all
* other callers quietly accept the translation.
*
* This routine can also take mapped kernel virtual addresses if the -u flag
* was passed to cmd_vtop(). If so, it makes the translation using the
* swapper_pg_dir, making it irrelevant in this processor's case.
*/
static int
ia64_uvtop(struct task_context *tc, ulong uvaddr, physaddr_t *paddr, int verbose)
{
ulong mm;
ulong *pgd;
if (!tc)
error(FATAL, "current context invalid\n");
*paddr = 0;
if (IS_KVADDR(uvaddr))
return ia64_kvtop(tc, uvaddr, paddr, verbose);
if ((mm = task_mm(tc->task, TRUE)))
pgd = ULONG_PTR(tt->mm_struct + OFFSET(mm_struct_pgd));
else
readmem(tc->mm_struct + OFFSET(mm_struct_pgd), KVADDR, &pgd,
sizeof(long), "mm_struct pgd", FAULT_ON_ERROR);
if (XEN() && (kt->xen_flags & WRITABLE_PAGE_TABLES)) {
if (machdep->flags & VM_4_LEVEL)
return ia64_vtop_4l_xen_wpt(uvaddr, paddr, pgd, verbose, 1);
else
return ia64_vtop_xen_wpt(uvaddr, paddr, pgd, verbose, 1);
} else {
if (machdep->flags & VM_4_LEVEL)
return ia64_vtop_4l(uvaddr, paddr, pgd, verbose, 1);
else
return ia64_vtop(uvaddr, paddr, pgd, verbose, 1);
}
}
/*
* Translates a kernel virtual address to its physical address. cmd_vtop()
* sets the verbose flag so that the pte translation gets displayed; all
* other callers quietly accept the translation.
*/
static int
ia64_kvtop(struct task_context *tc, ulong kvaddr, physaddr_t *paddr, int verbose)
{
ulong *pgd;
if (!IS_KVADDR(kvaddr))
return FALSE;
if (!vt->vmalloc_start) {
*paddr = ia64_VTOP(kvaddr);
return TRUE;
}
switch (VADDR_REGION(kvaddr))
{
case KERNEL_UNCACHED_REGION:
*paddr = kvaddr - KERNEL_UNCACHED_BASE;
if (verbose)
fprintf(fp, "[UNCACHED MEMORY]\n");
return TRUE;
case KERNEL_CACHED_REGION:
*paddr = ia64_VTOP(kvaddr);
if (verbose)
fprintf(fp, "[MAPPED IN TRANSLATION REGISTER]\n");
return TRUE;
case KERNEL_VMALLOC_REGION:
if (ia64_IS_VMALLOC_ADDR(kvaddr))
break;
if ((kvaddr < machdep->machspec->kernel_start) &&
(machdep->machspec->kernel_region ==
KERNEL_VMALLOC_REGION)) {
*paddr = PADDR_NOT_AVAILABLE;
return FALSE;
}
*paddr = ia64_VTOP(kvaddr);
if (verbose)
fprintf(fp, "[MAPPED IN TRANSLATION REGISTER]\n");
return TRUE;
}
if (!(pgd = (ulong *)vt->kernel_pgd[0]))
error(FATAL, "cannot determine kernel pgd pointer\n");
if (XEN() && (kt->xen_flags & WRITABLE_PAGE_TABLES)) {
if (machdep->flags & VM_4_LEVEL)
return ia64_vtop_4l_xen_wpt(kvaddr, paddr, pgd, verbose, 0);
else
return ia64_vtop_xen_wpt(kvaddr, paddr, pgd, verbose, 0);
} else {
if (machdep->flags & VM_4_LEVEL)
return ia64_vtop_4l(kvaddr, paddr, pgd, verbose, 0);
else
return ia64_vtop(kvaddr, paddr, pgd, verbose, 0);
}
}
/*
* Even though thread_info structs are used in 2.6, they
* are not the stack base. (until further notice...)
*/
static ulong
ia64_get_stackbase(ulong task)
{
return (task);
}
static ulong
ia64_get_stacktop(ulong task)
{
return (ia64_get_stackbase(task) + STACKSIZE());
}
/*
* Get the relevant page directory pointer from a task structure.
*/
static ulong
ia64_get_task_pgd(ulong task)
{
return (error(FATAL, "ia64_get_task_pgd: N/A\n"));
}
static void
ia64_get_stack_frame(struct bt_info *bt, ulong *pcp, ulong *spp)
{
if (pcp)
*pcp = ia64_get_pc(bt);
if (spp)
*spp = ia64_get_sp(bt);
}
/*
* Return the kernel switch_stack b0 value.
*/
static ulong
ia64_get_pc(struct bt_info *bt)
{
ulong b0;
readmem(SWITCH_STACK_ADDR(bt->task) + OFFSET(switch_stack_b0), KVADDR,
&b0, sizeof(void *), "switch_stack b0", FAULT_ON_ERROR);
return b0;
}
/*
* Return the kernel switch_stack ar_bspstore value.
* If it's "bt -t" request, calculate the register backing store offset.
*/
static ulong
ia64_get_sp(struct bt_info *bt)
{
ulong bspstore;
readmem(SWITCH_STACK_ADDR(bt->task) + OFFSET(switch_stack_ar_bspstore),
KVADDR, &bspstore, sizeof(void *), "switch_stack ar_bspstore",
FAULT_ON_ERROR);
if (bt->flags &
(BT_TEXT_SYMBOLS|BT_TEXT_SYMBOLS_PRINT|BT_TEXT_SYMBOLS_NOPRINT)) {
bspstore = bt->task + SIZE(task_struct);
if (tt->flags & THREAD_INFO)
bspstore += SIZE(thread_info);
bspstore = roundup(bspstore, sizeof(ulong));
}
return bspstore;
}
/*
* Get the ksp out of the task's thread_struct
*/
static ulong
ia64_get_thread_ksp(ulong task)
{
ulong ksp;
if (XEN_HYPER_MODE()) {
readmem(task + XEN_HYPER_OFFSET(vcpu_thread_ksp), KVADDR,
&ksp, sizeof(void *),
"vcpu thread ksp", FAULT_ON_ERROR);
} else {
readmem(task + OFFSET(task_struct_thread_ksp), KVADDR,
&ksp, sizeof(void *),
"thread_struct ksp", FAULT_ON_ERROR);
}
return ksp;
}
/*
* Return the switch_stack structure address of a task.
*/
ulong
ia64_get_switch_stack(ulong task)
{
ulong sw;
if (LKCD_DUMPFILE() && (sw = get_lkcd_switch_stack(task)))
return sw;
/*
* debug only: get panic switch_stack from the ELF header.
*/
if (CRASHDEBUG(3) && NETDUMP_DUMPFILE() &&
(sw = get_netdump_switch_stack(task)))
return sw;
if (DISKDUMP_DUMPFILE() && (sw = get_diskdump_switch_stack(task)))
return sw;
return (ia64_get_thread_ksp((ulong)(task)) + 16);
}
/*
* Translate a PTE, returning TRUE if the page is _PAGE_P.
* If a physaddr pointer is passed in, don't print anything.
*/
static int
ia64_translate_pte(ulong pte, void *physaddr, ulonglong unused)
{
int c, len1, len2, len3, others, page_present;
char buf[BUFSIZE];
char buf2[BUFSIZE];
char buf3[BUFSIZE];
char ptebuf[BUFSIZE];
char physbuf[BUFSIZE];
char *arglist[MAXARGS];
char *ptr;
ulong paddr;
paddr = pte & _PFN_MASK;
page_present = !!(pte & (_PAGE_P | _PAGE_PROTNONE));
if (physaddr) {
*((ulong *)physaddr) = paddr;
return page_present;
}
sprintf(ptebuf, "%lx", pte);
len1 = MAX(strlen(ptebuf), strlen("PTE"));
fprintf(fp, "%s ", mkstring(buf, len1, CENTER|LJUST, "PTE"));
if (!page_present && pte) {
swap_location(pte, buf);
if ((c = parse_line(buf, arglist)) != 3)
error(FATAL, "cannot determine swap location\n");
len2 = MAX(strlen(arglist[0]), strlen("SWAP"));
len3 = MAX(strlen(arglist[2]), strlen("OFFSET"));
fprintf(fp, "%s %s\n",
mkstring(buf2, len2, CENTER|LJUST, "SWAP"),
mkstring(buf3, len3, CENTER|LJUST, "OFFSET"));
strcpy(buf2, arglist[0]);
strcpy(buf3, arglist[2]);
fprintf(fp, "%s %s %s\n",
mkstring(ptebuf, len1, CENTER|RJUST, NULL),
mkstring(buf2, len2, CENTER|RJUST, NULL),
mkstring(buf3, len3, CENTER|RJUST, NULL));
return page_present;
}
sprintf(physbuf, "%lx", paddr);
len2 = MAX(strlen(physbuf), strlen("PHYSICAL"));
fprintf(fp, "%s ", mkstring(buf, len2, CENTER|LJUST, "PHYSICAL"));
fprintf(fp, "FLAGS\n");
fprintf(fp, "%s %s ",
mkstring(ptebuf, len1, CENTER|RJUST, NULL),
mkstring(physbuf, len2, CENTER|RJUST, NULL));
fprintf(fp, "(");
others = 0;
if (pte) {
if (pte & _PAGE_P)
fprintf(fp, "%sP", others++ ? "|" : "");
switch (pte & _PAGE_MA_MASK)
{
case _PAGE_MA_WB:
ptr = "MA_WB";
break;
case _PAGE_MA_UC:
ptr = "MA_UC";
break;
case _PAGE_MA_UCE:
ptr = "MA_UCE";
break;
case _PAGE_MA_WC:
ptr = "MA_WC";
break;
case _PAGE_MA_NAT:
ptr = "MA_NAT";
break;
case (0x1 << 2):
ptr = "MA_UC";
break;
default:
ptr = "MA_RSV";
break;
}
fprintf(fp, "%s%s", others++ ? "|" : "", ptr);
switch (pte & _PAGE_PL_MASK)
{
case _PAGE_PL_0:
ptr = "PL_0";
break;
case _PAGE_PL_1:
ptr = "PL_1";
break;
case _PAGE_PL_2:
ptr = "PL_2";
break;
case _PAGE_PL_3:
ptr = "PL_3";
break;
}
fprintf(fp, "%s%s", others++ ? "|" : "", ptr);
switch (pte & _PAGE_AR_MASK)
{
case _PAGE_AR_R:
ptr = "AR_R";
break;
case _PAGE_AR_RX:
ptr = "AT_RX";
break;
case _PAGE_AR_RW:
ptr = "AR_RW";
break;
case _PAGE_AR_RWX:
ptr = "AR_RWX";
break;
case _PAGE_AR_R_RW:
ptr = "AR_R_RW";
break;
case _PAGE_AR_RX_RWX:
ptr = "AR_RX_RWX";
break;
case _PAGE_AR_RWX_RW:
ptr = "AR_RWX_RW";
break;
case _PAGE_AR_X_RX:
ptr = "AR_X_RX";
break;
}
fprintf(fp, "%s%s", others++ ? "|" : "", ptr);
if (pte & _PAGE_A)
fprintf(fp, "%sA", others++ ? "|" : "");
if (pte & _PAGE_D)
fprintf(fp, "%sD", others++ ? "|" : "");
if (pte & _PAGE_ED)
fprintf(fp, "%sED", others++ ? "|" : "");
if (pte & _PAGE_PROTNONE)
fprintf(fp, "%sPROTNONE", others++ ? "|" : "");
} else {
fprintf(fp, "no mapping");
}
fprintf(fp, ")\n");
return page_present;
}
/*
* Determine where vmalloc'd memory starts.
*/
static ulong
ia64_vmalloc_start(void)
{
return machdep->machspec->vmalloc_start;
}
/*
* Verify that an address is a task_struct address.
*/
static int
ia64_is_task_addr(ulong task)
{
int i;
if (IS_KVADDR(task) && (ALIGNED_STACK_OFFSET(task) == 0))
return TRUE;
for (i = 0; i < kt->cpus; i++)
if (task == tt->idle_threads[i])
return TRUE;
return FALSE;
}
/*
* Filter disassembly output if the output radix is not gdb's default 10
*/
static int
ia64_dis_filter(ulong vaddr, char *inbuf, unsigned int output_radix)
{
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char *colon, *p1, *p2;
int argc;
int revise_bracket, stop_bit;
char *argv[MAXARGS];
ulong value;
if (!inbuf)
return TRUE;
/*
* For some reason gdb can go off into the weeds translating text addresses,
* (on alpha -- not necessarily seen on ia64) so this routine both fixes the
* references as well as imposing the current output radix on the translations.
*/
console("IN: %s", inbuf);
colon = strstr(inbuf, ":");
if (colon) {
sprintf(buf1, "0x%lx <%s>", vaddr,
value_to_symstr(vaddr, buf2, output_radix));
sprintf(buf2, "%s%s", buf1, colon);
strcpy(inbuf, buf2);
}
strcpy(buf1, inbuf);
argc = parse_line(buf1, argv);
revise_bracket = stop_bit = 0;
if ((FIRSTCHAR(argv[argc-1]) == '<') &&
(LASTCHAR(argv[argc-1]) == '>')) {
revise_bracket = TRUE;
stop_bit = FALSE;
} else if ((FIRSTCHAR(argv[argc-1]) == '<') &&
strstr(argv[argc-1], ">;;")) {
revise_bracket = TRUE;
stop_bit = TRUE;
}
if (revise_bracket) {
p1 = rindex(inbuf, '<');
while ((p1 > inbuf) && !STRNEQ(p1, "0x"))
p1--;
if (!STRNEQ(p1, "0x"))
return FALSE;
if (!extract_hex(p1, &value, NULLCHAR, TRUE))
return FALSE;
sprintf(buf1, "0x%lx <%s>%s\n", value,
value_to_symstr(value, buf2, output_radix),
stop_bit ? ";;" : "");
sprintf(p1, "%s", buf1);
} else if (STRNEQ(argv[argc-2], "br.call.") &&
STRNEQ(argv[argc-1], "b0=0x")) {
/*
* Update module function calls of these formats:
*
* br.call.sptk.many b0=0xa0000000003d5e40;;
* br.call.sptk.many b0=0xa00000000001dfc0
*
* to show a bracketed function name if the destination
* address is a known symbol with no offset.
*/
if ((p1 = strstr(argv[argc-1], ";;")) &&
(p2 = strstr(inbuf, ";;\n"))) {
*p1 = NULLCHAR;
p1 = &argv[argc-1][3];
if (extract_hex(p1, &value, NULLCHAR, TRUE)) {
sprintf(buf1, " <%s>;;\n",
value_to_symstr(value, buf2,
output_radix));
if (IS_MODULE_VADDR(value) &&
!strstr(buf2, "+"))
sprintf(p2, "%s", buf1);
}
} else {
p1 = &argv[argc-1][3];
p2 = &LASTCHAR(inbuf);
if (extract_hex(p1, &value, '\n', TRUE)) {
sprintf(buf1, " <%s>\n",
value_to_symstr(value, buf2,
output_radix));
if (IS_MODULE_VADDR(value) &&
!strstr(buf2, "+"))
sprintf(p2, "%s", buf1);
}
}
}
console(" %s", inbuf);
return TRUE;
}
/*
* Format the pt_regs structure.
*/
enum pt_reg_names {
P_cr_ipsr, P_cr_iip, P_cr_ifs,
P_ar_unat, P_ar_pfs, P_ar_rsc, P_ar_rnat, P_ar_bspstore,
P_ar_ccv, P_ar_fpsr,
P_pr, P_loadrs,
P_b0, P_b6, P_b7,
P_r1, P_r2, P_r3, P_r8, P_r9, P_r10, P_r11, P_r12, P_r13,
P_r14, P_r15, P_r16, P_r17, P_r18, P_r19, P_r20, P_r21,
P_r22, P_r23, P_r24, P_r25, P_r26, P_r27, P_r28, P_r29,
P_r30, P_r31,
P_f6_lo, P_f6_hi,
P_f7_lo, P_f7_hi,
P_f8_lo, P_f8_hi,
P_f9_lo, P_f9_hi,
P_f10_lo, P_f10_hi,
P_f11_lo, P_f11_hi,
NUM_PT_REGS};
void
ia64_exception_frame(ulong addr, struct bt_info *bt)
{
char buf[BUFSIZE], *p, *p1;
int fval;
ulong value1, value2;
ulong eframe[NUM_PT_REGS];
console("ia64_exception_frame: pt_regs: %lx\n", addr);
if (bt->debug)
CRASHDEBUG_RESTORE();
CRASHDEBUG_SUSPEND(0);
BZERO(&eframe, sizeof(ulong) * NUM_PT_REGS);
open_tmpfile();
if (XEN_HYPER_MODE())
dump_struct("cpu_user_regs", addr, RADIX(16));
else
dump_struct("pt_regs", addr, RADIX(16));
rewind(pc->tmpfile);
fval = 0;
while (fgets(buf, BUFSIZE, pc->tmpfile)) {
if (strstr(buf, "f6 = ")) {
fval = 6;
continue;
}
if (strstr(buf, "f7 = ")) {
fval = 7;
continue;
}
if (strstr(buf, "f8 = ")) {
fval = 8;
continue;
}
if (strstr(buf, "f9 = ")) {
fval = 9;
continue;
}
if (strstr(buf, "f10 = ")) {
fval = 10;
continue;
}
if (strstr(buf, "f11 = ")) {
fval = 11;
continue;
}
if (!strstr(buf, "0x"))
continue;
if (fval) {
p = strstr(buf, "0x");
if ((p1 = strstr(p, "}")))
*p1 = NULLCHAR;
extract_hex(p, &value1, ',', TRUE);
p = strstr(buf, ",");
extract_hex(p, &value2, NULLCHAR, FALSE);
switch (fval)
{
case 6:
eframe[P_f6_lo] = value1;
eframe[P_f6_hi] = value2;
break;
case 7:
eframe[P_f7_lo] = value1;
eframe[P_f7_hi] = value2;
break;
case 8:
eframe[P_f8_lo] = value1;
eframe[P_f8_hi] = value2;
break;
case 9:
eframe[P_f9_lo] = value1;
eframe[P_f9_hi] = value2;
break;
case 10:
eframe[P_f10_lo] = value1;
eframe[P_f10_hi] = value2;
break;
case 11:
eframe[P_f11_lo] = value1;
eframe[P_f11_hi] = value2;
break;
}
fval = 0;
continue;
}
strip_comma(clean_line(buf));
p = strstr(buf, " = ");
extract_hex(p, &value1, NULLCHAR, FALSE);
if (strstr(buf, "cr_ipsr = ")) {
eframe[P_cr_ipsr] = value1;
}
if (strstr(buf, "cr_iip = ")) {
eframe[P_cr_iip] = value1;
}
if (strstr(buf, "cr_ifs = ")) {
eframe[P_cr_ifs] = value1;
}
if (strstr(buf, "ar_unat = ")) {
eframe[P_ar_unat] = value1;
}
if (strstr(buf, "ar_pfs = ")) {
eframe[P_ar_pfs] = value1;
}
if (strstr(buf, "ar_rsc = ")) {
eframe[P_ar_rsc] = value1;
}
if (strstr(buf, "ar_rnat = ")) {
eframe[P_ar_rnat] = value1;
}
if (strstr(buf, "ar_bspstore = ")) {
eframe[P_ar_bspstore] = value1;
}
if (strstr(buf, "ar_ccv = ")) {
eframe[P_ar_ccv] = value1;
}
if (strstr(buf, "ar_fpsr = ")) {
eframe[P_ar_fpsr] = value1;
}
if (strstr(buf, "pr = ")) {
eframe[P_pr] = value1;
}
if (strstr(buf, "loadrs = ")) {
eframe[P_loadrs] = value1;
}
if (strstr(buf, "b0 = ")) {
eframe[P_b0] = value1;
}
if (strstr(buf, "b6 = ")) {
eframe[P_b6] = value1;
}
if (strstr(buf, "b7 = ")) {
eframe[P_b7] = value1;
}
if (strstr(buf, "r1 = ")) {
eframe[P_r1] = value1;
}
if (strstr(buf, "r2 = ")) {
eframe[P_r2] = value1;
}
if (strstr(buf, "r3 = ")) {
eframe[P_r3] = value1;
}
if (strstr(buf, "r8 = ")) {
eframe[P_r8] = value1;
}
if (strstr(buf, "r9 = ")) {
eframe[P_r9] = value1;
}
if (strstr(buf, "r10 = ")) {
eframe[P_r10] = value1;
}
if (strstr(buf, "r11 = ")) {
eframe[P_r11] = value1;
}
if (strstr(buf, "r12 = ")) {
eframe[P_r12] = value1;
}
if (strstr(buf, "r13 = ")) {
eframe[P_r13] = value1;
}
if (strstr(buf, "r14 = ")) {
eframe[P_r14] = value1;
}
if (strstr(buf, "r15 = ")) {
eframe[P_r15] = value1;
}
if (strstr(buf, "r16 = ")) {
eframe[P_r16] = value1;
}
if (strstr(buf, "r17 = ")) {
eframe[P_r17] = value1;
}
if (strstr(buf, "r18 = ")) {
eframe[P_r18] = value1;
}
if (strstr(buf, "r19 = ")) {
eframe[P_r19] = value1;
}
if (strstr(buf, "r20 = ")) {
eframe[P_r20] = value1;
}
if (strstr(buf, "r21 = ")) {
eframe[P_r21] = value1;
}
if (strstr(buf, "r22 = ")) {
eframe[P_r22] = value1;
}
if (strstr(buf, "r23 = ")) {
eframe[P_r23] = value1;
}
if (strstr(buf, "r24 = ")) {
eframe[P_r24] = value1;
}
if (strstr(buf, "r25 = ")) {
eframe[P_r25] = value1;
}
if (strstr(buf, "r26 = ")) {
eframe[P_r26] = value1;
}
if (strstr(buf, "r27 = ")) {
eframe[P_r27] = value1;
}
if (strstr(buf, "r28 = ")) {
eframe[P_r28] = value1;
}
if (strstr(buf, "r29 = ")) {
eframe[P_r29] = value1;
}
if (strstr(buf, "r30 = ")) {
eframe[P_r30] = value1;
}
if (strstr(buf, "r31 = ")) {
eframe[P_r31] = value1;
}
}
close_tmpfile();
fprintf(fp, " EFRAME: %lx\n", addr);
if (bt->flags & BT_INCOMPLETE_USER_EFRAME) {
fprintf(fp,
" [exception frame incomplete -- check salinfo for complete context]\n");
bt->flags &= ~BT_INCOMPLETE_USER_EFRAME;
}
fprintf(fp, " B0: %016lx CR_IIP: %016lx\n",
eframe[P_b0], eframe[P_cr_iip]);
/**
if (is_kernel_text(eframe[P_cr_iip]))
fprintf(fp, "<%s>",
value_to_symstr(eframe[P_cr_iip], buf, 0));
fprintf(fp, "\n");
**/
fprintf(fp, " CR_IPSR: %016lx CR_IFS: %016lx\n",
eframe[P_cr_ipsr], eframe[P_cr_ifs]);
fprintf(fp, " AR_PFS: %016lx AR_RSC: %016lx\n",
eframe[P_ar_pfs], eframe[P_ar_rsc]);
fprintf(fp, " AR_UNAT: %016lx AR_RNAT: %016lx\n",
eframe[P_ar_unat], eframe[P_ar_rnat]);
fprintf(fp, " AR_CCV: %016lx AR_FPSR: %016lx\n",
eframe[P_ar_ccv], eframe[P_ar_fpsr]);
fprintf(fp, " LOADRS: %016lx AR_BSPSTORE: %016lx\n",
eframe[P_loadrs], eframe[P_ar_bspstore]);
fprintf(fp, " B6: %016lx B7: %016lx\n",
eframe[P_b6], eframe[P_b7]);
fprintf(fp, " PR: %016lx R1: %016lx\n",
eframe[P_pr], eframe[P_r1]);
fprintf(fp, " R2: %016lx R3: %016lx\n",
eframe[P_r2], eframe[P_r3]);
fprintf(fp, " R8: %016lx R9: %016lx\n",
eframe[P_r8], eframe[P_r9]);
fprintf(fp, " R10: %016lx R11: %016lx\n",
eframe[P_r10], eframe[P_r11]);
fprintf(fp, " R12: %016lx R13: %016lx\n",
eframe[P_r12], eframe[P_r13]);
fprintf(fp, " R14: %016lx R15: %016lx\n",
eframe[P_r14], eframe[P_r15]);
fprintf(fp, " R16: %016lx R17: %016lx\n",
eframe[P_r16], eframe[P_r17]);
fprintf(fp, " R18: %016lx R19: %016lx\n",
eframe[P_r18], eframe[P_r19]);
fprintf(fp, " R20: %016lx R21: %016lx\n",
eframe[P_r20], eframe[P_r21]);
fprintf(fp, " R22: %016lx R23: %016lx\n",
eframe[P_r22], eframe[P_r23]);
fprintf(fp, " R24: %016lx R25: %016lx\n",
eframe[P_r24], eframe[P_r25]);
fprintf(fp, " R26: %016lx R27: %016lx\n",
eframe[P_r26], eframe[P_r27]);
fprintf(fp, " R28: %016lx R29: %016lx\n",
eframe[P_r28], eframe[P_r29]);
fprintf(fp, " R30: %016lx R31: %016lx\n",
eframe[P_r30], eframe[P_r31]);
fprintf(fp, " F6: %05lx%016lx ",
eframe[P_f6_hi], eframe[P_f6_lo]);
fprintf(fp, " F7: %05lx%016lx\n",
eframe[P_f7_hi], eframe[P_f7_lo]);
fprintf(fp, " F8: %05lx%016lx ",
eframe[P_f8_hi], eframe[P_f8_lo]);
fprintf(fp, " F9: %05lx%016lx\n",
eframe[P_f9_hi], eframe[P_f9_lo]);
if (machdep->flags & NEW_UNW_V3) {
fprintf(fp, " F10: %05lx%016lx ",
eframe[P_f10_hi], eframe[P_f10_lo]);
fprintf(fp, " F11: %05lx%016lx\n",
eframe[P_f11_hi], eframe[P_f11_lo]);
}
CRASHDEBUG_RESTORE();
if (bt->debug)
CRASHDEBUG_SUSPEND(bt->debug);
}
enum ss_reg_names {
S_caller_unat, S_ar_fpsr,
S_f2_lo, S_f2_hi,
S_f3_lo, S_f3_hi,
S_f4_lo, S_f4_hi,
S_f5_lo, S_f5_hi,
S_f10_lo, S_f10_hi,
S_f11_lo, S_f11_hi,
S_f12_lo, S_f12_hi,
S_f13_lo, S_f13_hi,
S_f14_lo, S_f14_hi,
S_f15_lo, S_f15_hi,
S_f16_lo, S_f16_hi,
S_f17_lo, S_f17_hi,
S_f18_lo, S_f18_hi,
S_f19_lo, S_f19_hi,
S_f20_lo, S_f20_hi,
S_f21_lo, S_f21_hi,
S_f22_lo, S_f22_hi,
S_f23_lo, S_f23_hi,
S_f24_lo, S_f24_hi,
S_f25_lo, S_f25_hi,
S_f26_lo, S_f26_hi,
S_f27_lo, S_f27_hi,
S_f28_lo, S_f28_hi,
S_f29_lo, S_f29_hi,
S_f30_lo, S_f30_hi,
S_f31_lo, S_f31_hi,
S_r4, S_r5, S_r6, S_r7,
S_b0, S_b1, S_b2, S_b3, S_b4, S_b5,
S_ar_pfs, S_ar_lc, S_ar_unat, S_ar_rnat, S_ar_bspstore, S_pr,
NUM_SS_REGS };
/*
* Format the switch_stack structure.
*/
static void
ia64_dump_switch_stack(ulong task, ulong flag)
{
ulong addr;
char buf[BUFSIZE], *p;
int fval;
ulong value1, value2;
ulong ss[NUM_SS_REGS];
addr = SWITCH_STACK_ADDR(task);
BZERO(&ss, sizeof(ulong) * NUM_SS_REGS);
open_tmpfile();
dump_struct("switch_stack", addr, RADIX(16));
rewind(pc->tmpfile);
fval = 0;
while (fgets(buf, BUFSIZE, pc->tmpfile)) {
if (strstr(buf, "f2 = ")) {
fval = 2;
continue;
}
if (strstr(buf, "f3 = ")) {
fval = 3;
continue;
}
if (strstr(buf, "f4 = ")) {
fval = 4;
continue;
}
if (strstr(buf, "f5 = ")) {
fval = 5;
continue;
}
if (strstr(buf, "f10 = ")) {
fval = 10;
continue;
}
if (strstr(buf, "f11 = ")) {
fval = 11;
continue;
}
if (strstr(buf, "f12 = ")) {
fval = 12;
continue;
}
if (strstr(buf, "f13 = ")) {
fval = 13;
continue;
}
if (strstr(buf, "f14 = ")) {
fval = 14;
continue;
}
if (strstr(buf, "f15 = ")) {
fval = 15;
continue;
}
if (strstr(buf, "f16 = ")) {
fval = 16;
continue;
}
if (strstr(buf, "f17 = ")) {
fval = 17;
continue;
}
if (strstr(buf, "f18 = ")) {
fval = 18;
continue;
}
if (strstr(buf, "f19 = ")) {
fval = 19;
continue;
}
if (strstr(buf, "f20 = ")) {
fval = 20;
continue;
}
if (strstr(buf, "f21 = ")) {
fval = 21;
continue;
}
if (strstr(buf, "f22 = ")) {
fval = 22;
continue;
}
if (strstr(buf, "f23 = ")) {
fval = 23;
continue;
}
if (strstr(buf, "f24 = ")) {
fval = 24;
continue;
}
if (strstr(buf, "f25 = ")) {
fval = 25;
continue;
}
if (strstr(buf, "f26 = ")) {
fval = 26;
continue;
}
if (strstr(buf, "f27 = ")) {
fval = 27;
continue;
}
if (strstr(buf, "f28 = ")) {
fval = 28;
continue;
}
if (strstr(buf, "f29 = ")) {
fval = 29;
continue;
}
if (strstr(buf, "f30 = ")) {
fval = 30;
continue;
}
if (strstr(buf, "f31 = ")) {
fval = 31;
continue;
}
if (!strstr(buf, "0x"))
continue;
if (fval) {
p = strstr(buf, "0x");
extract_hex(p, &value1, ',', TRUE);
p = strstr(buf, ",");
extract_hex(p, &value2, '}', FALSE);
switch (fval)
{
case 2:
ss[S_f2_lo] = value1;
ss[S_f2_hi] = value2;
break;
case 3:
ss[S_f3_lo] = value1;
ss[S_f3_hi] = value2;
break;
case 4:
ss[S_f4_lo] = value1;
ss[S_f4_hi] = value2;
break;
case 5:
ss[S_f5_lo] = value1;
ss[S_f5_hi] = value2;
break;
case 10:
ss[S_f10_lo] = value1;
ss[S_f10_hi] = value2;
break;
case 11:
ss[S_f11_lo] = value1;
ss[S_f11_hi] = value2;
break;
case 12:
ss[S_f12_lo] = value1;
ss[S_f12_hi] = value2;
break;
case 13:
ss[S_f13_lo] = value1;
ss[S_f13_hi] = value2;
break;
case 14:
ss[S_f14_lo] = value1;
ss[S_f14_hi] = value2;
break;
case 15:
ss[S_f15_lo] = value1;
ss[S_f15_hi] = value2;
break;
case 16:
ss[S_f16_lo] = value1;
ss[S_f16_hi] = value2;
break;
case 17:
ss[S_f17_lo] = value1;
ss[S_f17_hi] = value2;
break;
case 18:
ss[S_f18_lo] = value1;
ss[S_f18_hi] = value2;
break;
case 19:
ss[S_f19_lo] = value1;
ss[S_f19_hi] = value2;
break;
case 20:
ss[S_f20_lo] = value1;
ss[S_f20_hi] = value2;
break;
case 21:
ss[S_f21_lo] = value1;
ss[S_f21_hi] = value2;
break;
case 22:
ss[S_f22_lo] = value1;
ss[S_f22_hi] = value2;
break;
case 23:
ss[S_f23_lo] = value1;
ss[S_f23_hi] = value2;
break;
case 24:
ss[S_f24_lo] = value1;
ss[S_f24_hi] = value2;
break;
case 25:
ss[S_f25_lo] = value1;
ss[S_f25_hi] = value2;
break;
case 26:
ss[S_f26_lo] = value1;
ss[S_f26_hi] = value2;
break;
case 27:
ss[S_f27_lo] = value1;
ss[S_f27_hi] = value2;
break;
case 28:
ss[S_f28_lo] = value1;
ss[S_f28_hi] = value2;
break;
case 29:
ss[S_f29_lo] = value1;
ss[S_f29_hi] = value2;
break;
case 30:
ss[S_f30_lo] = value1;
ss[S_f30_hi] = value2;
break;
case 31:
ss[S_f31_lo] = value1;
ss[S_f31_hi] = value2;
break;
}
fval = 0;
continue;
}
strip_comma(clean_line(buf));
p = strstr(buf, " = ");
extract_hex(p, &value1, NULLCHAR, FALSE);
if (strstr(buf, "caller_unat = ")) {
ss[S_caller_unat] = value1;
}
if (strstr(buf, "ar_fpsr = ")) {
ss[S_ar_fpsr] = value1;
}
if (strstr(buf, "r4 = ")) {
ss[S_r4] = value1;
}
if (strstr(buf, "r5 = ")) {
ss[S_r5] = value1;
}
if (strstr(buf, "r6 = ")) {
ss[S_r6] = value1;
}
if (strstr(buf, "r7 = ")) {
ss[S_r7] = value1;
}
if (strstr(buf, "b0 = ")) {
ss[S_b0] = value1;
}
if (strstr(buf, "b1 = ")) {
ss[S_b1] = value1;
}
if (strstr(buf, "b2 = ")) {
ss[S_b2] = value1;
}
if (strstr(buf, "b3 = ")) {
ss[S_b3] = value1;
}
if (strstr(buf, "b4 = ")) {
ss[S_b4] = value1;
}
if (strstr(buf, "b5 = ")) {
ss[S_b5] = value1;
}
if (strstr(buf, "ar_pfs = ")) {
ss[S_ar_pfs] = value1;
}
if (strstr(buf, "ar_lc = ")) {
ss[S_ar_lc] = value1;
}
if (strstr(buf, "ar_unat = ")) {
ss[S_ar_unat] = value1;
}
if (strstr(buf, "ar_rnat = ")) {
ss[S_ar_rnat] = value1;
}
if (strstr(buf, "ar_bspstore = ")) {
ss[S_ar_bspstore] = value1;
}
if (strstr(buf, "pr = ")) {
ss[S_pr] = value1;
}
}
close_tmpfile();
fprintf(fp, "SWITCH_STACK: %lx\n", addr);
fprintf(fp, " B0: %016lx B1: %016lx\n",
ss[S_b0], ss[S_b1]);
fprintf(fp, " B2: %016lx B3: %016lx\n",
ss[S_b2], ss[S_b3]);
fprintf(fp, " B4: %016lx B5: %016lx\n",
ss[S_b4], ss[S_b5]);
fprintf(fp, " AR_PFS: %016lx AR_LC: %016lx\n",
ss[S_ar_pfs], ss[S_ar_lc]);
fprintf(fp, " AR_UNAT: %016lx AR_RNAT: %016lx\n",
ss[S_ar_unat], ss[S_ar_rnat]);
fprintf(fp, " PR: %016lx AR_BSPSTORE: %016lx\n",
ss[S_pr], ss[S_ar_bspstore]);
fprintf(fp, " AR_FPSR: %016lx CALLER_UNAT: %016lx\n",
ss[S_ar_fpsr], ss[S_caller_unat]);
fprintf(fp, " R4: %016lx R5: %016lx\n",
ss[S_r4], ss[S_r5]);
fprintf(fp, " R6: %016lx R7: %016lx\n",
ss[S_r6], ss[S_r7]);
fprintf(fp, " F2: %05lx%016lx ", ss[S_f2_hi], ss[S_f2_lo]);
fprintf(fp, " F3: %05lx%016lx\n", ss[S_f3_hi], ss[S_f3_lo]);
fprintf(fp, " F4: %05lx%016lx ", ss[S_f4_hi], ss[S_f4_lo]);
fprintf(fp, " F5: %05lx%016lx\n", ss[S_f5_hi], ss[S_f5_lo]);
fprintf(fp, " F10: %05lx%016lx ", ss[S_f10_hi], ss[S_f10_lo]);
fprintf(fp, " F11: %05lx%016lx\n", ss[S_f11_hi], ss[S_f11_lo]);
fprintf(fp, " F12: %05lx%016lx ", ss[S_f12_hi], ss[S_f12_lo]);
fprintf(fp, " F13: %05lx%016lx\n", ss[S_f13_hi], ss[S_f13_lo]);
fprintf(fp, " F14: %05lx%016lx ", ss[S_f14_hi], ss[S_f14_lo]);
fprintf(fp, " F15: %05lx%016lx\n", ss[S_f15_hi], ss[S_f15_lo]);
fprintf(fp, " F16: %05lx%016lx ", ss[S_f16_hi], ss[S_f16_lo]);
fprintf(fp, " F17: %05lx%016lx\n", ss[S_f17_hi], ss[S_f17_lo]);
fprintf(fp, " F18: %05lx%016lx ", ss[S_f18_hi], ss[S_f18_lo]);
fprintf(fp, " F19: %05lx%016lx\n", ss[S_f19_hi], ss[S_f19_lo]);
fprintf(fp, " F20: %05lx%016lx ", ss[S_f20_hi], ss[S_f20_lo]);
fprintf(fp, " F21: %05lx%016lx\n", ss[S_f21_hi], ss[S_f21_lo]);
fprintf(fp, " F22: %05lx%016lx ", ss[S_f22_hi], ss[S_f22_lo]);
fprintf(fp, " F23: %05lx%016lx\n", ss[S_f23_hi], ss[S_f23_lo]);
fprintf(fp, " F24: %05lx%016lx ", ss[S_f24_hi], ss[S_f24_lo]);
fprintf(fp, " F25: %05lx%016lx\n", ss[S_f25_hi], ss[S_f25_lo]);
fprintf(fp, " F26: %05lx%016lx ", ss[S_f26_hi], ss[S_f26_lo]);
fprintf(fp, " F27: %05lx%016lx\n", ss[S_f27_hi], ss[S_f27_lo]);
fprintf(fp, " F28: %05lx%016lx ", ss[S_f28_hi], ss[S_f28_lo]);
fprintf(fp, " F29: %05lx%016lx\n", ss[S_f29_hi], ss[S_f29_lo]);
fprintf(fp, " F30: %05lx%016lx ", ss[S_f30_hi], ss[S_f30_lo]);
fprintf(fp, " F31: %05lx%016lx\n", ss[S_f31_hi], ss[S_f31_lo]);
}
/*
* Override smp_num_cpus if possible and necessary.
*/
int
ia64_get_smp_cpus(void)
{
int cpus;
if ((cpus = get_cpus_online()))
return MAX(cpus, get_highest_cpu_online()+1);
else
return kt->cpus;
}
/*
* Machine dependent command.
*/
void
ia64_cmd_mach(void)
{
int c, cflag, mflag;
unsigned int radix;
cflag = mflag = radix = 0;
while ((c = getopt(argcnt, args, "cmxd")) != EOF) {
switch(c)
{
case 'c':
cflag++;
break;
case 'm':
mflag++;
ia64_display_memmap();
break;
case 'x':
if (radix == 10)
error(FATAL,
"-d and -x are mutually exclusive\n");
radix = 16;
break;
case 'd':
if (radix == 16)
error(FATAL,
"-d and -x are mutually exclusive\n");
radix = 10;
break;
default:
argerrs++;
break;
}
}
if (argerrs)
cmd_usage(pc->curcmd, SYNOPSIS);
if (cflag)
ia64_display_cpu_data(radix);
if (!cflag && !mflag)
ia64_display_machine_stats();
}
/*
* "mach" command output.
*/
static void
ia64_display_machine_stats(void)
{
struct new_utsname *uts;
char buf[BUFSIZE];
ulong mhz;
uts = &kt->utsname;
fprintf(fp, " MACHINE TYPE: %s\n", uts->machine);
fprintf(fp, " MEMORY SIZE: %s\n", get_memory_size(buf));
fprintf(fp, " CPUS: %d\n", kt->cpus);
if (!STREQ(kt->hypervisor, "(undetermined)") &&
!STREQ(kt->hypervisor, "bare hardware"))
fprintf(fp, " HYPERVISOR: %s\n", kt->hypervisor);
fprintf(fp, " PROCESSOR SPEED: ");
if ((mhz = machdep->processor_speed()))
fprintf(fp, "%ld Mhz\n", mhz);
else
fprintf(fp, "(unknown)\n");
fprintf(fp, " HZ: %d\n", machdep->hz);
fprintf(fp, " PAGE SIZE: %d\n", PAGESIZE());
// fprintf(fp, " L1 CACHE SIZE: %d\n", l1_cache_size());
fprintf(fp, " KERNEL STACK SIZE: %ld\n", STACKSIZE());
fprintf(fp, " KERNEL CACHED REGION: %lx\n",
(ulong)KERNEL_CACHED_REGION << REGION_SHIFT);
fprintf(fp, " KERNEL UNCACHED REGION: %lx\n",
(ulong)KERNEL_UNCACHED_REGION << REGION_SHIFT);
fprintf(fp, " KERNEL VMALLOC REGION: %lx\n",
(ulong)KERNEL_VMALLOC_REGION << REGION_SHIFT);
fprintf(fp, " USER DATA/STACK REGION: %lx\n",
(ulong)USER_STACK_REGION << REGION_SHIFT);
fprintf(fp, " USER DATA/STACK REGION: %lx\n",
(ulong)USER_DATA_REGION << REGION_SHIFT);
fprintf(fp, " USER TEXT REGION: %lx\n",
(ulong)USER_TEXT_REGION << REGION_SHIFT);
fprintf(fp, " USER SHARED MEMORY REGION: %lx\n",
(ulong)USER_SHMEM_REGION << REGION_SHIFT);
fprintf(fp, "USER IA32 EMULATION REGION: %016lx\n",
(ulong)USER_IA32_EMUL_REGION << REGION_SHIFT);
}
static void
ia64_display_cpu_data(unsigned int radix)
{
int cpu;
ulong cpu_data;
int array_location_known;
struct syment *sp;
if (!(cpu_data = machdep->machspec->cpu_data_address)) {
error(FATAL, "cannot find cpuinfo_ia64 location\n");
return;
}
array_location_known = per_cpu_symbol_search("per_cpu__cpu_info") ||
symbol_exists("cpu_data") || symbol_exists("_cpu_data");
for (cpu = 0; cpu < kt->cpus; cpu++) {
fprintf(fp, "%sCPU %d: %s\n", cpu ? "\n" : "", cpu,
array_location_known ? "" : "(boot)");
dump_struct("cpuinfo_ia64", cpu_data, radix);
if (!array_location_known)
break;
if ((sp = per_cpu_symbol_search("per_cpu__cpu_info"))) {
if ((kt->flags & SMP) && (kt->flags & PER_CPU_OFF))
cpu_data = sp->value +
kt->__per_cpu_offset[cpu+1];
else
break; /* we've already done cpu 0 */
} else
cpu_data += SIZE(cpuinfo_ia64);
}
}
/*
* Dump the EFI memory map.
*/
static void
ia64_display_memmap(void)
{
int i, others;
struct efi_memory_desc_t *desc;
struct machine_specific *ms;
char *map;
ms = &ia64_machine_specific;
map = ms->ia64_memmap;
if (!map) {
check_mem_limit();
error(FATAL, "efi_mmap not accessible\n");
}
fprintf(fp,
" PHYSICAL ADDRESS RANGE TYPE / ATTRIBUTE / [ACCESS]\n");
for (i = 0; i < ms->efi_memmap_size/ms->efi_memdesc_size; i++) {
desc = (struct efi_memory_desc_t *)map;
fprintf(fp, "%016lx - %016lx ",
desc->phys_addr, desc->phys_addr +
(desc->num_pages * (1 << EFI_PAGE_SHIFT)));
switch (desc->type)
{
case EFI_RESERVED_TYPE:
fprintf(fp, "%s", "RESERVED_TYPE"); break;
case EFI_LOADER_CODE:
fprintf(fp, "%s", "LOADER_CODE"); break;
case EFI_LOADER_DATA:
fprintf(fp, "%s", "LOADER_DATA"); break;
case EFI_BOOT_SERVICES_CODE:
fprintf(fp, "%s", "BOOT_SERVICES_CODE"); break;
case EFI_BOOT_SERVICES_DATA:
fprintf(fp, "%s", "BOOT_SERVICES_DATA"); break;
case EFI_RUNTIME_SERVICES_CODE:
fprintf(fp, "%s", "RUNTIME_SERVICES_CODE"); break;
case EFI_RUNTIME_SERVICES_DATA:
fprintf(fp, "%s", "RUNTIME_SERVICES_DATA"); break;
case EFI_CONVENTIONAL_MEMORY:
fprintf(fp, "%s", "CONVENTIONAL_MEMORY"); break;
case EFI_UNUSABLE_MEMORY:
fprintf(fp, "%s", "UNUSABLE_MEMORY"); break;
case EFI_ACPI_RECLAIM_MEMORY:
fprintf(fp, "%s", "ACPI_RECLAIM_MEMORY"); break;
case EFI_ACPI_MEMORY_NVS:
fprintf(fp, "%s", "ACPI_MEMORY_NVS"); break;
case EFI_MEMORY_MAPPED_IO:
fprintf(fp, "%s", "MEMORY_MAPPED_IO"); break;
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
fprintf(fp, "%s", "MEMORY_MAPPED_IO_PORT_SPACE");
break;
case EFI_PAL_CODE:
fprintf(fp, "%s", "PAL_CODE"); break;
default:
fprintf(fp, "%s", "(unknown type)"); break;
}
fprintf(fp, " ");
others = 0;
if (desc->attribute & EFI_MEMORY_UC)
fprintf(fp, "%sUC", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WC)
fprintf(fp, "%sWC", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WT)
fprintf(fp, "%sWT", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WB)
fprintf(fp, "%sWB", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WP)
fprintf(fp, "%sWP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_RP)
fprintf(fp, "%sRP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_XP)
fprintf(fp, "%sXP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_RUNTIME)
fprintf(fp, "%sRUNTIME", others++ ? "|" : "");
fprintf(fp, " %s", ia64_available_memory(desc) ?
"[available]" : "");
switch (VADDR_REGION(desc->virt_addr))
{
case KERNEL_UNCACHED_REGION:
fprintf(fp, "[R6]\n");
break;
case KERNEL_CACHED_REGION:
fprintf(fp, "[R7]\n");
break;
default:
fprintf(fp, "\n");
}
if (!CRASHDEBUG(1))
goto next_desc;
fprintf(fp,
"physical: %016lx %dk pages: %ld virtual: %016lx\n",
desc->phys_addr, (1 << EFI_PAGE_SHIFT)/1024,
desc->num_pages, desc->virt_addr);
fprintf(fp, "type: ");
switch (desc->type)
{
case EFI_RESERVED_TYPE:
fprintf(fp, "%-27s", "RESERVED_TYPE"); break;
case EFI_LOADER_CODE:
fprintf(fp, "%-27s", "LOADER_CODE"); break;
case EFI_LOADER_DATA:
fprintf(fp, "%-27s", "LOADER_DATA"); break;
case EFI_BOOT_SERVICES_CODE:
fprintf(fp, "%-27s", "BOOT_SERVICES_CODE"); break;
case EFI_BOOT_SERVICES_DATA:
fprintf(fp, "%-27s", "BOOT_SERVICES_DATA"); break;
case EFI_RUNTIME_SERVICES_CODE:
fprintf(fp, "%-27s", "RUNTIME_SERVICES_CODE"); break;
case EFI_RUNTIME_SERVICES_DATA:
fprintf(fp, "%-27s", "RUNTIME_SERVICES_DATA"); break;
case EFI_CONVENTIONAL_MEMORY:
fprintf(fp, "%-27s", "CONVENTIONAL_MEMORY"); break;
case EFI_UNUSABLE_MEMORY:
fprintf(fp, "%-27s", "UNUSABLE_MEMORY"); break;
case EFI_ACPI_RECLAIM_MEMORY:
fprintf(fp, "%-27s", "ACPI_RECLAIM_MEMORY"); break;
case EFI_ACPI_MEMORY_NVS:
fprintf(fp, "%-27s", "ACPI_MEMORY_NVS"); break;
case EFI_MEMORY_MAPPED_IO:
fprintf(fp, "%-27s", "MEMORY_MAPPED_IO"); break;
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
fprintf(fp, "%-27s", "MEMORY_MAPPED_IO_PORT_SPACE");
break;
case EFI_PAL_CODE:
fprintf(fp, "%-27s", "PAL_CODE"); break;
default:
fprintf(fp, "%-27s", "(unknown type)"); break;
}
fprintf(fp, " attribute: (");
others = 0;
if (desc->attribute & EFI_MEMORY_UC)
fprintf(fp, "%sUC", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WC)
fprintf(fp, "%sWC", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WT)
fprintf(fp, "%sWT", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WB)
fprintf(fp, "%sWB", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_WP)
fprintf(fp, "%sWP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_RP)
fprintf(fp, "%sRP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_XP)
fprintf(fp, "%sXP", others++ ? "|" : "");
if (desc->attribute & EFI_MEMORY_RUNTIME)
fprintf(fp, "%sRUNTIME", others++ ? "|" : "");
fprintf(fp, ") %s\n", ia64_available_memory(desc) ?
"[available]" : "");
next_desc:
map += ms->efi_memdesc_size;
}
}
static int
ia64_available_memory(struct efi_memory_desc_t *desc)
{
if (desc->attribute & EFI_MEMORY_WB) {
switch (desc->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return TRUE;
}
}
return FALSE;
}
/*
* Make a copy of the memmap descriptor array.
*/
static void
ia64_create_memmap(void)
{
struct machine_specific *ms;
uint64_t ia64_boot_param, efi_memmap;
ulong num_physpages;
char *memmap;
ms = &ia64_machine_specific;
ms->ia64_memmap = NULL;
if (symbol_exists("num_physpages")) {
get_symbol_data("num_physpages", sizeof(ulong), &num_physpages);
machdep->memsize = num_physpages * PAGESIZE();
}
if (!symbol_exists("ia64_boot_param"))
return;
if ((ms->mem_limit = check_mem_limit()))
machdep->flags |= MEM_LIMIT;
get_symbol_data("ia64_boot_param", sizeof(void *), &ia64_boot_param);
if ((ms->mem_limit && (ia64_VTOP(ia64_boot_param) >= ms->mem_limit)) ||
!readmem(ia64_boot_param+
MEMBER_OFFSET("ia64_boot_param", "efi_memmap"),
KVADDR, &efi_memmap, sizeof(uint64_t), "efi_memmap",
QUIET|RETURN_ON_ERROR)) {
if (!XEN() || CRASHDEBUG(1))
error(WARNING, "cannot read ia64_boot_param: "
"memory verification will not be performed\n\n");
return;
}
readmem(ia64_boot_param+MEMBER_OFFSET("ia64_boot_param",
"efi_memmap_size"), KVADDR, &ms->efi_memmap_size,
sizeof(uint64_t), "efi_memmap_size", FAULT_ON_ERROR);
readmem(ia64_boot_param+MEMBER_OFFSET("ia64_boot_param",
"efi_memdesc_size"), KVADDR, &ms->efi_memdesc_size,
sizeof(uint64_t), "efi_memdesc_size", FAULT_ON_ERROR);
if (!(memmap = (char *) malloc(ms->efi_memmap_size))) {
error(WARNING, "cannot malloc ia64_memmap\n");
return;
}
if ((ms->mem_limit && (efi_memmap >= ms->mem_limit)) ||
!readmem(PTOV(efi_memmap), KVADDR, memmap,
ms->efi_memmap_size, "efi_mmap contents",
QUIET|RETURN_ON_ERROR)) {
if (!XEN() || (XEN() && CRASHDEBUG(1)))
error(WARNING, "cannot read efi_mmap: "
"EFI memory verification will not be performed\n\n");
free(memmap);
return;
}
ms->ia64_memmap = memmap;
}
/*
* Kernel pages may cross EFI memmap boundaries, so the system page is
* broken into EFI pages, and then each of them is verified.
*/
static int
ia64_verify_paddr(uint64_t paddr)
{
int i, j, cnt, found, desc_count, desc_size;
struct efi_memory_desc_t *desc;
struct machine_specific *ms;
uint64_t phys_end;
char *map;
int efi_pages;
ulong efi_pagesize;
/*
* When kernel text and data are mapped in region 5,
* and we're using the crash memory device driver,
* then the driver will gracefully fail the read attempt
* if the address is bogus.
*/
if ((VADDR_REGION(paddr) == KERNEL_VMALLOC_REGION) &&
(pc->flags & MEMMOD))
return TRUE;
ms = &ia64_machine_specific;
if (ms->ia64_memmap == NULL)
return TRUE;
desc_count = ms->efi_memmap_size/ms->efi_memdesc_size;
desc_size = ms->efi_memdesc_size;
efi_pagesize = (1 << EFI_PAGE_SHIFT);
efi_pages = PAGESIZE() / efi_pagesize;
paddr = PAGEBASE(paddr);
for (i = cnt = 0; i < efi_pages; i++, paddr += efi_pagesize) {
map = ms->ia64_memmap;
for (j = found = 0; j < desc_count; j++) {
desc = (struct efi_memory_desc_t *)map;
if (ia64_available_memory(desc)) {
phys_end = desc->phys_addr +
(desc->num_pages * efi_pagesize);
if ((paddr >= desc->phys_addr) &&
((paddr + efi_pagesize) <= phys_end)) {
cnt++;
found = TRUE;
}
}
if (found)
break;
map += desc_size;
}
}
return (cnt == efi_pages);
}
/*
* Check whether a "mem=X" argument was entered on the boot command line.
* Note that the default setting of the kernel mem_limit is ~0UL.
*/
static ulong
check_mem_limit(void)
{
ulong mem_limit;
char *saved_command_line, *p1, *p2;
int len;
if (!symbol_exists("mem_limit"))
return 0;
get_symbol_data("mem_limit", sizeof(ulong), &mem_limit);
if (mem_limit == ~0UL)
return 0;
mem_limit += 1;
if (!symbol_exists("saved_command_line"))
goto no_command_line;
len = get_array_length("saved_command_line", 0, sizeof(char));
if (!len)
goto no_command_line;
saved_command_line = GETBUF(len+1);
if (!readmem(symbol_value("saved_command_line"), KVADDR,
saved_command_line, len, "saved_command_line", RETURN_ON_ERROR))
goto no_command_line;
if (!(p1 = strstr(saved_command_line, "mem=")))
goto no_command_line;
p2 = p1;
while (*p2 && !whitespace(*p2))
p2++;
*p2 = NULLCHAR;
error(pc->flags & RUNTIME ? INFO : WARNING,
"boot command line argument: %s\n", p1);
return mem_limit;
no_command_line:
error(pc->flags & RUNTIME ? INFO : WARNING,
"boot command line memory limit: %lx\n", mem_limit);
return mem_limit;
}
#ifndef _ASM_IA64_UNWIND_H
#define _ASM_IA64_UNWIND_H
/*
* Copyright (C) 1999-2000 Hewlett-Packard Co
* Copyright (C) 1999-2000 David Mosberger-Tang <davidm@hpl.hp.com>
*
* A simple API for unwinding kernel stacks. This is used for
* debugging and error reporting purposes. The kernel doesn't need
* full-blown stack unwinding with all the bells and whitles, so there
* is not much point in implementing the full IA-64 unwind API (though
* it would of course be possible to implement the kernel API on top
* of it).
*/
struct task_struct; /* forward declaration */
struct switch_stack; /* forward declaration */
enum unw_application_register {
UNW_AR_BSP,
UNW_AR_BSPSTORE,
UNW_AR_PFS,
UNW_AR_RNAT,
UNW_AR_UNAT,
UNW_AR_LC,
UNW_AR_EC,
UNW_AR_FPSR,
UNW_AR_RSC,
UNW_AR_CCV
};
/*
* The following declarations are private to the unwind
* implementation:
*/
struct unw_stack {
unsigned long limit;
unsigned long top;
};
#define UNW_FLAG_INTERRUPT_FRAME (1UL << 0)
/*
* No user of this module should every access this structure directly
* as it is subject to change. It is declared here solely so we can
* use automatic variables.
*/
struct unw_frame_info {
struct unw_stack regstk;
struct unw_stack memstk;
unsigned int flags;
short hint;
short prev_script;
unsigned long bsp;
unsigned long sp; /* stack pointer */
unsigned long psp; /* previous sp */
unsigned long ip; /* instruction pointer */
unsigned long pr_val; /* current predicates */
unsigned long *cfm;
struct task_struct *task;
struct switch_stack *sw;
/* preserved state: */
unsigned long *pbsp; /* previous bsp */
unsigned long *bspstore;
unsigned long *pfs;
unsigned long *rnat;
unsigned long *rp;
unsigned long *pri_unat;
unsigned long *unat;
unsigned long *pr;
unsigned long *lc;
unsigned long *fpsr;
struct unw_ireg {
unsigned long *loc;
struct unw_ireg_nat {
int type : 3; /* enum unw_nat_type */
signed int off; /* NaT word is at loc+nat.off */
} nat;
} r4, r5, r6, r7;
unsigned long *b1, *b2, *b3, *b4, *b5;
struct ia64_fpreg *f2, *f3, *f4, *f5, *fr[16];
};
#endif /* _ASM_UNWIND_H */
/*
* Perform any leftover pre-prompt machine-specific initialization tasks here.
*/
static void
ia64_post_init(void)
{
struct machine_specific *ms;
struct gnu_request req;
struct syment *sp;
ulong flag;
ms = &ia64_machine_specific;
if (symbol_exists("unw_init_frame_info")) {
machdep->flags |= NEW_UNWIND;
if (MEMBER_EXISTS("unw_frame_info", "pt")) {
if (MEMBER_EXISTS("pt_regs", "ar_csd")) {
machdep->flags |= NEW_UNW_V3;
ms->unwind_init = unwind_init_v3;
ms->unwind = unwind_v3;
ms->unwind_debug = unwind_debug_v3;
ms->dump_unwind_stats = dump_unwind_stats_v3;
} else {
machdep->flags |= NEW_UNW_V2;
ms->unwind_init = unwind_init_v2;
ms->unwind = unwind_v2;
ms->unwind_debug = unwind_debug_v2;
ms->dump_unwind_stats = dump_unwind_stats_v2;
}
} else {
machdep->flags |= NEW_UNW_V1;
ms->unwind_init = unwind_init_v1;
ms->unwind = unwind_v1;
ms->unwind_debug = unwind_debug_v1;
ms->dump_unwind_stats = dump_unwind_stats_v1;
}
} else {
machdep->flags |= OLD_UNWIND;
ms->unwind_init = ia64_old_unwind_init;
ms->unwind = ia64_old_unwind;
}
ms->unwind_init();
if (!VALID_STRUCT(cpuinfo_ia64))
error(WARNING, "cpuinfo_ia64 structure does not exist\n");
else {
if (symbol_exists("_cpu_data"))
ms->cpu_data_address = symbol_value("_cpu_data");
else if (symbol_exists("boot_cpu_data"))
get_symbol_data("boot_cpu_data", sizeof(ulong),
&ms->cpu_data_address);
else if (symbol_exists("cpu_data"))
ms->cpu_data_address = symbol_value("cpu_data");
else if ((sp = per_cpu_symbol_search("per_cpu__cpu_info")) ||
(sp = per_cpu_symbol_search("per_cpu__ia64_cpu_info"))) {
if ((kt->flags & SMP) && (kt->flags & PER_CPU_OFF))
ms->cpu_data_address = sp->value +
kt->__per_cpu_offset[0];
else
ms->cpu_data_address = sp->value;
} else {
error(WARNING, "cannot find cpuinfo_ia64 location\n");
ms->cpu_data_address = 0;
}
if (ms->cpu_data_address) {
if (VALID_MEMBER(cpuinfo_ia64_unimpl_va_mask))
readmem(ms->cpu_data_address +
OFFSET(cpuinfo_ia64_unimpl_va_mask),
KVADDR, &ms->unimpl_va_mask,
sizeof(ulong),
"unimpl_va_mask", FAULT_ON_ERROR);
if (VALID_MEMBER(cpuinfo_ia64_unimpl_pa_mask))
readmem(ms->cpu_data_address +
OFFSET(cpuinfo_ia64_unimpl_pa_mask),
KVADDR, &ms->unimpl_pa_mask,
sizeof(ulong),
"unimpl_pa_mask", FAULT_ON_ERROR);
}
}
if (symbol_exists("ia64_init_stack") && !ms->ia64_init_stack_size) {
get_symbol_type("ia64_init_stack", NULL, &req);
ms->ia64_init_stack_size = req.length;
}
if (DUMPFILE() && ia64_in_init_stack(SWITCH_STACK_ADDR(CURRENT_TASK())))
machdep->flags |= INIT;
if (DUMPFILE() && (flag = ia64_in_per_cpu_mca_stack()))
machdep->flags |= flag;
}
/*
* Try using the old unwind scheme if the new one fails,
* that is as long as the unw_frame_info structs are the
* same size.
*/
static void
try_old_unwind(struct bt_info *bt)
{
if ((machdep->flags & NEW_UNWIND) &&
(STRUCT_SIZE("unw_frame_info") == sizeof(struct unw_frame_info))) {
error(INFO, "unwind: trying old unwind mechanism\n");
ia64_old_unwind(bt);
}
}
/*
* Unwind the stack using the basic method used when CONFIG_IA64_NEW_UNWIND
* is not configured into the kernel.
*
* NOTE: see kernel source: show_stack() and/or kdba_bt_stack()
*/
static void
ia64_old_unwind_init(void)
{
long len;
len = STRUCT_SIZE("unw_frame_info");
if (len < 0) {
error(WARNING, "cannot determine size of unw_frame_info\n");
machdep->flags |= UNW_OUT_OF_SYNC;
} else if (len != sizeof(struct unw_frame_info)) {
error(WARNING, "unw_frame_info size differs: %ld (local: %d)\n",
len, sizeof(struct unw_frame_info));
machdep->flags |= UNW_OUT_OF_SYNC;
}
}
static int unw_debug; /* debug fprintf indent */
static void
ia64_old_unwind(struct bt_info *bt)
{
struct unw_frame_info unw_frame_info, *info;
struct syment *sm;
int frame;
char *name;
if (bt->debug)
CRASHDEBUG_SUSPEND(bt->debug);
if (CRASHDEBUG(1))
unw_debug = 0;
info = &unw_frame_info;
unw_init_from_blocked_task(info, bt->task);
frame = 0;
do {
if (info->ip == 0)
break;
if (!IS_KVADDR(info->ip))
break;
if ((sm = value_search(info->ip, NULL)))
name = sm->name;
else
name = "(unknown)";
if (BT_REFERENCE_CHECK(bt)) {
switch (bt->ref->cmdflags &
(BT_REF_SYMBOL|BT_REF_HEXVAL))
{
case BT_REF_SYMBOL:
if (STREQ(name, bt->ref->str)) {
bt->ref->cmdflags |= BT_REF_FOUND;
goto unwind_return;
}
break;
case BT_REF_HEXVAL:
if (bt->ref->hexval == info->ip) {
bt->ref->cmdflags |= BT_REF_FOUND;
goto unwind_return;
}
break;
}
} else {
fprintf(fp, "%s#%d [BSP:%lx] %s at %lx\n",
frame >= 10 ? "" : " ", frame,
info->bsp, name, info->ip);
if (bt->flags & BT_FULL)
rse_function_params(info, name);
if (bt->flags & BT_LINE_NUMBERS)
ia64_dump_line_number(info->ip);
}
frame++;
if (CRASHDEBUG(1))
unw_debug = 0;
if (STREQ(name, "start_kernel"))
break;
} while (old_unw_unwind(info) >= 0);
unwind_return:
if (!BT_REFERENCE_CHECK(bt) && !is_kernel_thread(bt->task))
ia64_exception_frame(bt->stacktop - SIZE(pt_regs), bt);
if (bt->debug)
CRASHDEBUG_RESTORE();
}
static unsigned long
ia64_rse_slot_num (unsigned long *addr)
{
return (((unsigned long) addr) >> 3) & 0x3f;
}
/*
* Given a bsp address and a number of register locations, calculate a new
* bsp address, accounting for any intervening RNAT stores.
*/
static unsigned long *
ia64_rse_skip_regs (unsigned long *addr, long num_regs)
{
long delta = ia64_rse_slot_num(addr) + num_regs;
if (CRASHDEBUG(1)) {
fprintf(fp,
"%sia64_rse_skip_regs: ia64_rse_slot_num(%lx): %ld num_regs: %ld\n",
space(unw_debug),
(ulong)addr, ia64_rse_slot_num(addr), num_regs);
}
if (num_regs < 0)
delta -= 0x3e;
if (CRASHDEBUG(1)) {
fprintf(fp, "%sia64_rse_skip_regs: delta: %ld return(%lx)",
space(unw_debug), delta,
(ulong)(addr + num_regs + delta/0x3f));
if (addr > (addr + num_regs + delta/0x3f))
fprintf(fp, "(-%ld)\n",
addr - (addr + num_regs + delta/0x3f));
else
fprintf(fp, "(+%ld)\n",
(addr + num_regs + delta/0x3f) - addr);
}
return(addr + num_regs + delta/0x3f);
}
/*
* Returns the address of the RNAT slot that covers the slot at
* address SLOT_ADDR.
*/
static unsigned long *
ia64_rse_rnat_addr (unsigned long *slot_addr)
{
return (unsigned long *) ((unsigned long) slot_addr | (0x3f << 3));
}
/*
* Initialize the key fields in the unw_frame_info structure.
*
* NOTE: see kernel source: unw_init_from_blocked_task()
*/
static void
unw_init_from_blocked_task(struct unw_frame_info *info, ulong task)
{
ulong sw;
ulong sol, limit, top;
ulong ar_pfs, ar_bspstore, b0;
sw = SWITCH_STACK_ADDR(task);
BZERO(info, sizeof(struct unw_frame_info));
readmem(sw + OFFSET(switch_stack_b0), KVADDR,
&b0, sizeof(ulong), "switch_stack b0", FAULT_ON_ERROR);
readmem(sw + OFFSET(switch_stack_ar_pfs), KVADDR,
&ar_pfs, sizeof(ulong), "switch_stack ar_pfs", FAULT_ON_ERROR);
readmem(sw + OFFSET(switch_stack_ar_bspstore), KVADDR,
&ar_bspstore, sizeof(ulong), "switch_stack ar_bspstore",
FAULT_ON_ERROR);
sol = (ar_pfs >> 7) & 0x7f; /* size of locals */
limit = task + IA64_RBS_OFFSET;
top = ar_bspstore;
if ((top - task) >= IA64_STK_OFFSET)
top = limit;
if (CRASHDEBUG(1)) {
unw_debug++;
fprintf(fp,
"unw_init_from_blocked_task: stack top: %lx sol: %ld\n",
top, sol);
}
info->regstk.limit = limit;
info->regstk.top = top;
info->sw = (struct switch_stack *)sw;
info->bsp = (ulong)ia64_rse_skip_regs((ulong *)info->regstk.top, -sol);
info->cfm = (ulong *)(sw + OFFSET(switch_stack_ar_pfs));
info->ip = b0;
if (CRASHDEBUG(1))
dump_unw_frame_info(info);
}
/*
* Update the unw_frame_info structure based upon its current state.
* This routine works without enabling CONFIG_IA64_NEW_UNWIND because
* gdb allocates two additional "local" register locations for each
* function, found at the end of the stored locals:
*
* register "sol-1" (last local) = ar.pfs (gives us previous sol)
* register "sol-2" (2nd to last local = b0 to previous address
*
* NOTE: see kernel source: unw_unwind() (#ifndef CONFIG_IA64_NEW_UNWIND)
* On entry, info->regstk.top should point to the register backing
* store for r32.
*/
static int
old_unw_unwind (struct unw_frame_info *info)
{
unsigned long sol, cfm;
int is_nat;
if (!readmem((ulong)info->cfm, KVADDR, &cfm,
sizeof(long), "info->cfm", QUIET|RETURN_ON_ERROR))
return -1;
sol = (cfm >> 7) & 0x7f; /* size of locals */
if (CRASHDEBUG(1)) {
fprintf(fp, "old_unw_unwind: cfm: %lx sol: %ld\n", cfm, sol);
unw_debug++;
}
/*
* In general, we would have to make use of unwind info to
* unwind an IA-64 stack, but for now gcc uses a special
* convention that makes this possible without full-fledged
* unwind info. Specifically, we expect "rp" in the second
* last, and "ar.pfs" in the last local register, so the
* number of locals in a frame must be at least two. If it's
* less than that, we reached the end of the C call stack.
*/
if (sol < 2)
return -1;
info->ip = rse_read_reg(info, sol - 2, &is_nat);
if (CRASHDEBUG(1))
fprintf(fp, "old_unw_unwind: ip: %lx\n", info->ip);
if (is_nat || (info->ip & (machdep->machspec->unimpl_va_mask | 0xf)))
return -1;
info->cfm = ia64_rse_skip_regs((ulong *)info->bsp, sol - 1);
cfm = rse_read_reg(info, sol - 1, &is_nat);
if (CRASHDEBUG(1))
fprintf(fp, "old_unw_unwind: info->cfm: %lx => %lx\n",
(ulong)info->cfm, cfm);
if (is_nat)
return -1;
sol = (cfm >> 7) & 0x7f;
info->bsp = (ulong)ia64_rse_skip_regs((ulong *)info->bsp, -sol);
if (CRASHDEBUG(1)) {
fprintf(fp, "old_unw_unwind: next sol: %ld\n", sol);
fprintf(fp, "old_unw_unwind: next bsp: %lx\n", info->bsp);
}
return 0;
#ifdef KERNEL_SOURCE
unsigned long sol, cfm = *info->cfm;
int is_nat;
sol = (cfm >> 7) & 0x7f; /* size of locals */
/*
* In general, we would have to make use of unwind info to
* unwind an IA-64 stack, but for now gcc uses a special
* convention that makes this possible without full-fledged
* unwind info. Specifically, we expect "rp" in the second
* last, and "ar.pfs" in the last local register, so the
* number of locals in a frame must be at least two. If it's
* less than that, we reached the end of the C call stack.
*/
if (sol < 2)
return -1;
info->ip = rse_read_reg(info, sol - 2, &is_nat);
if (is_nat || (info->ip & (my_cpu_data.unimpl_va_mask | 0xf)))
/* reject let obviously bad addresses */
return -1;
info->cfm = ia64_rse_skip_regs((unsigned long *) info->bsp, sol - 1);
cfm = rse_read_reg(info, sol - 1, &is_nat);
if (is_nat)
return -1;
sol = (cfm >> 7) & 0x7f;
info->bsp = (unsigned long) ia64_rse_skip_regs((unsigned long *) info->bsp, -sol);
return 0;
#endif /* KERNEL_SOURCE */
}
/*
* Retrieve a register value from the stack, returning its NAT attribute
* as well.
*
* NOTE: see kernel source: read_reg()
*/
static ulong
rse_read_reg (struct unw_frame_info *info, int regnum, int *is_nat)
{
ulong *addr, *rnat_addr, rnat;
ulong regcontent;
if (CRASHDEBUG(1)) {
fprintf(fp, "%srse_read_reg: bsp: %lx\n", space(unw_debug),
info->bsp);
unw_debug++;
}
addr = ia64_rse_skip_regs((unsigned long *) info->bsp, regnum);
if (CRASHDEBUG(1)) {
unw_debug--;
fprintf(fp, "%srse_read_reg: addr: %lx\n",
space(unw_debug), (ulong)addr);
}
if (((ulong)addr < info->regstk.limit) ||
((ulong)addr >= info->regstk.top) ||
(((long)addr & 0x7) != 0)) {
*is_nat = 1;
if (CRASHDEBUG(1))
fprintf(fp,
"%srse_read_reg: is_nat: %d -- return 0xdeadbeefdeadbeef\n",
space(unw_debug), *is_nat);
return 0xdeadbeefdeadbeef;
}
rnat_addr = ia64_rse_rnat_addr(addr);
if (CRASHDEBUG(1))
fprintf(fp, "%srse_read_reg: rnat_addr: %lx\n",
space(unw_debug), (ulong)rnat_addr);
if ((unsigned long) rnat_addr >= info->regstk.top)
readmem((ulong)(info->sw) + OFFSET(switch_stack_ar_rnat),
KVADDR, &rnat, sizeof(long),
"info->sw->ar_rnat", FAULT_ON_ERROR);
else
readmem((ulong)rnat_addr, KVADDR, &rnat, sizeof(long),
"rnat_addr", FAULT_ON_ERROR);
*is_nat = (rnat & (1UL << ia64_rse_slot_num(addr))) != 0;
if (CRASHDEBUG(1))
fprintf(fp, "%srse_read_reg: rnat: %lx is_nat: %d\n",
space(unw_debug), rnat, *is_nat);
readmem((ulong)addr, KVADDR, &regcontent, sizeof(long),
"rse_read_reg addr", FAULT_ON_ERROR);
if (CRASHDEBUG(1)) {
char buf[BUFSIZE];
fprintf(fp, "%srse_read_reg: addr: %lx => %lx ",
space(unw_debug), (ulong)addr, regcontent);
if (is_kernel_text(regcontent))
fprintf(fp, "(%s)",
value_to_symstr(regcontent, buf, pc->output_radix));
fprintf(fp, "\n");
}
return regcontent;
}
/*
* Display the arguments to a function, presuming that they are found at
* the beginning of the sol section.
*/
#define MAX_REGISTER_PARAMS (8)
static void
rse_function_params(struct unw_frame_info *info, char *name)
{
int i;
int numargs, is_nat[MAX_REGISTER_PARAMS];
char buf1[BUFSIZE], buf2[BUFSIZE], *p1, *p2;
ulong arglist[MAX_REGISTER_PARAMS];
numargs = MIN(get_function_numargs(info->ip), MAX_REGISTER_PARAMS);
if (CRASHDEBUG(1))
fprintf(fp, "rse_function_params: %s: %d args\n",
name, numargs);
switch (numargs)
{
case 0:
fprintf(fp, " (void)\n");
return;
case -1:
return;
default:
break;
}
for (i = 0; i < numargs; i++)
arglist[i] = rse_read_reg(info, i, &is_nat[i]);
sprintf(buf1, " (");
for (i = 0; i < numargs; i++) {
p1 = &buf1[strlen(buf1)];
if (is_nat[i])
sprintf(buf2, "[NAT]");
else {
if ((p2 = value_symbol(arglist[i])))
sprintf(buf2, "%s", p2);
else
sprintf(buf2, "%lx", arglist[i]);
}
sprintf(p1, "%s%s", i ? ", " : "", buf2);
if (strlen(buf1) >= 80)
sprintf(p1, ",\n %s", buf2);
}
strcat(buf1, ")\n");
fprintf(fp, "%s", buf1);
}
static void
dump_unw_frame_info(struct unw_frame_info *info)
{
unw_debug++;
fprintf(fp, "%sregstk.limit: %lx\n",
space(unw_debug), info->regstk.limit);
fprintf(fp, "%s regstk.top: %lx\n",
space(unw_debug), info->regstk.top);
fprintf(fp, "%s sw: %lx\n",
space(unw_debug), (ulong)info->sw);
fprintf(fp, "%s bsp: %lx\n",
space(unw_debug), info->bsp);
fprintf(fp, "%s cfm: %lx\n",
space(unw_debug), (ulong)info->cfm);
fprintf(fp, "%s ip: %lx\n",
space(unw_debug), info->ip);
unw_debug--;
}
static const char *hook_files[] = {
"arch/ia64/kernel/entry.S",
"arch/ia64/kernel/head.S",
};
#define ENTRY_S ((char **)&hook_files[0])
#define HEAD_S ((char **)&hook_files[1])
static struct line_number_hook ia64_line_number_hooks[] = {
{"ia64_execve", ENTRY_S},
{"sys_clone2", ENTRY_S},
{"sys_clone", ENTRY_S},
{"ia64_switch_to", ENTRY_S},
{"save_switch_stack", ENTRY_S},
{"load_switch_stack", ENTRY_S},
{"__ia64_syscall", ENTRY_S},
{"invoke_syscall_trace", ENTRY_S},
{"ia64_trace_syscall", ENTRY_S},
{"ia64_ret_from_clone", ENTRY_S},
{"ia64_ret_from_syscall", ENTRY_S},
{"ia64_leave_kernel", ENTRY_S},
{"handle_syscall_error", ENTRY_S},
{"invoke_schedule_tail", ENTRY_S},
{"invoke_schedule", ENTRY_S},
{"handle_signal_delivery", ENTRY_S},
{"sys_rt_sigsuspend", ENTRY_S},
{"sys_rt_sigreturn", ENTRY_S},
{"ia64_prepare_handle_unaligned", ENTRY_S},
{"unw_init_running", ENTRY_S},
{"_start", HEAD_S},
{"ia64_save_debug_regs", HEAD_S},
{"ia64_load_debug_regs", HEAD_S},
{"__ia64_save_fpu", HEAD_S},
{"__ia64_load_fpu", HEAD_S},
{"__ia64_init_fpu", HEAD_S},
{"ia64_switch_mode", HEAD_S},
{"ia64_set_b1", HEAD_S},
{"ia64_set_b2", HEAD_S},
{"ia64_set_b3", HEAD_S},
{"ia64_set_b4", HEAD_S},
{"ia64_set_b5", HEAD_S},
{"ia64_spinlock_contention", HEAD_S},
{NULL, NULL} /* list must be NULL-terminated */
};
void
ia64_dump_line_number(ulong ip)
{
int retries;
char buf[BUFSIZE], *p;
retries = 0;
try_closest:
get_line_number(ip, buf, FALSE);
if (strlen(buf)) {
if (retries) {
p = strstr(buf, ": ");
if (p)
*p = NULLCHAR;
}
fprintf(fp, " %s\n", buf);
} else {
if (retries)
fprintf(fp, GDB_PATCHED() ?
"" : " (cannot determine file and line number)\n");
else {
retries++;
ip = closest_symbol_value(ip);
goto try_closest;
}
}
}
/*
* For now, just make it a region 7 address for all cases, ignoring the
* fact that it might be in a 2.6 kernel's non-unity mapped region. XXX
*/
ulong
ia64_PTOV(ulong paddr)
{
ulong vaddr;
switch (machdep->machspec->kernel_region)
{
case KERNEL_VMALLOC_REGION:
// error(FATAL, "ia64_PTOV: TBD for kernels loaded in region 5\n");
default:
case KERNEL_CACHED_REGION:
vaddr = paddr + (ulong)(KERNEL_CACHED_BASE);
}
return vaddr;
}
/*
* Account for 2.6 kernel mapping in region 5.
*/
ulong
ia64_VTOP(ulong vaddr)
{
struct machine_specific *ms;
ulong paddr;
ms = &ia64_machine_specific;
switch (VADDR_REGION(vaddr))
{
case KERNEL_CACHED_REGION:
paddr = vaddr - (ulong)(KERNEL_CACHED_BASE);
break;
case KERNEL_UNCACHED_REGION:
paddr = vaddr - (ulong)(KERNEL_UNCACHED_BASE);
break;
/*
* Differentiate between a 2.6 kernel address in region 5 and
* a real vmalloc() address.
*/
case KERNEL_VMALLOC_REGION:
/*
* Real vmalloc() addresses should never be the subject
* of a VTOP() translation.
*/
if (ia64_IS_VMALLOC_ADDR(vaddr) ||
(ms->kernel_region != KERNEL_VMALLOC_REGION))
return(error(FATAL,
"ia64_VTOP(%lx): unexpected region 5 address\n",
vaddr));
/*
* If it's a region 5 kernel address, subtract the starting
* kernel virtual address, and then add the base physical page.
*/
paddr = vaddr - ms->kernel_start +
(ms->phys_start & KERNEL_TR_PAGE_MASK);
break;
default:
return(error(FATAL,
"ia64_VTOP(%lx): invalid kernel address\n", vaddr));
}
return paddr;
}
/*
* vmalloc() starting address is either the traditional 0xa000000000000000 or
* bumped up in 2.6 to 0xa000000200000000.
*/
int
ia64_IS_VMALLOC_ADDR(ulong vaddr)
{
return ((vaddr >= machdep->machspec->vmalloc_start) &&
(vaddr < (ulong)KERNEL_UNCACHED_BASE));
}
static int
compare_kvaddr(const void *v1, const void *v2)
{
struct vaddr_range *r1, *r2;
r1 = (struct vaddr_range *)v1;
r2 = (struct vaddr_range *)v2;
return (r1->start < r2->start ? -1 :
r1->start == r2->start ? 0 : 1);
}
static int
ia64_get_kvaddr_ranges(struct vaddr_range *vrp)
{
int cnt;
cnt = 0;
vrp[cnt].type = KVADDR_UNITY_MAP;
vrp[cnt].start = machdep->identity_map_base;
vrp[cnt++].end = vt->high_memory;
if (machdep->machspec->kernel_start != machdep->identity_map_base) {
vrp[cnt].type = KVADDR_START_MAP;
vrp[cnt].start = machdep->machspec->kernel_start;
vrp[cnt++].end = kt->end;
}
vrp[cnt].type = KVADDR_VMALLOC;
vrp[cnt].start = machdep->machspec->vmalloc_start;
vrp[cnt++].end = (ulong)KERNEL_UNCACHED_REGION << REGION_SHIFT;
if (VADDR_REGION(vt->node_table[0].mem_map) == KERNEL_VMALLOC_REGION) {
vrp[cnt].type = KVADDR_VMEMMAP;
vrp[cnt].start = vt->node_table[0].mem_map;
vrp[cnt].end = vt->node_table[vt->numnodes-1].mem_map +
(vt->node_table[vt->numnodes-1].size *
SIZE(page));
/*
* Prevent overlap with KVADDR_VMALLOC range.
*/
if (vrp[cnt].start > vrp[cnt-1].start)
vrp[cnt-1].end = vrp[cnt].start;
cnt++;
}
qsort(vrp, cnt, sizeof(struct vaddr_range), compare_kvaddr);
return cnt;
}
/* Generic abstraction to translate user or kernel virtual
* addresses to physical using a 4 level page table.
*/
static int
ia64_vtop_4l_xen_wpt(ulong vaddr, physaddr_t *paddr, ulong *pgd, int verbose, int usr)
{
error(FATAL, "ia64_vtop_4l_xen_wpt: TBD\n");
return FALSE;
#ifdef TBD
ulong *page_dir;
ulong *page_upper;
ulong *page_middle;
ulong *page_table;
ulong pgd_pte;
ulong pud_pte;
ulong pmd_pte;
ulong pte;
ulong region, offset;
if (usr) {
region = VADDR_REGION(vaddr);
offset = (vaddr >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
offset |= (region << (PAGESHIFT() - 6));
page_dir = pgd + offset;
} else {
if (!(pgd = (ulong *)vt->kernel_pgd[0]))
error(FATAL, "cannot determine kernel pgd pointer\n");
page_dir = pgd + ((vaddr >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1));
}
if (verbose)
fprintf(fp, "PAGE DIRECTORY: %lx\n", (ulong)pgd);
FILL_PGD(PAGEBASE(pgd), KVADDR, PAGESIZE());
pgd_pte = ULONG(machdep->pgd + PAGEOFFSET(page_dir));
if (verbose)
fprintf(fp, " PGD: %lx => %lx\n", (ulong)page_dir, pgd_pte);
if (!(pgd_pte))
return FALSE;
offset = (vaddr >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
page_upper = (ulong *)(PTOV(pgd_pte & _PFN_MASK)) + offset;
FILL_PUD(PAGEBASE(page_upper), KVADDR, PAGESIZE());
pud_pte = ULONG(machdep->pud + PAGEOFFSET(page_upper));
if (verbose)
fprintf(fp, " PUD: %lx => %lx\n", (ulong)page_upper, pud_pte);
if (!(pud_pte))
return FALSE;
offset = (vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
page_middle = (ulong *)(PTOV(pud_pte & _PFN_MASK)) + offset;
FILL_PMD(PAGEBASE(page_middle), KVADDR, PAGESIZE());
pmd_pte = ULONG(machdep->pmd + PAGEOFFSET(page_middle));
if (verbose)
fprintf(fp, " PMD: %lx => %lx\n", (ulong)page_middle, pmd_pte);
if (!(pmd_pte))
return FALSE;
offset = (vaddr >> PAGESHIFT()) & (PTRS_PER_PTE - 1);
page_table = (ulong *)(PTOV(pmd_pte & _PFN_MASK)) + offset;
FILL_PTBL(PAGEBASE(page_table), KVADDR, PAGESIZE());
pte = ULONG(machdep->ptbl + PAGEOFFSET(page_table));
if (verbose)
fprintf(fp, " PTE: %lx => %lx\n", (ulong)page_table, pte);
if (!(pte & (_PAGE_P))) {
if (usr)
*paddr = pte;
if (pte && verbose) {
fprintf(fp, "\n");
ia64_translate_pte(pte, 0, 0);
}
return FALSE;
}
*paddr = (pte & _PFN_MASK) + PAGEOFFSET(vaddr);
if (verbose) {
fprintf(fp, " PAGE: %lx\n\n", PAGEBASE(*paddr));
ia64_translate_pte(pte, 0, 0);
}
return TRUE;
#endif
}
/* Generic abstraction to translate user or kernel virtual
* addresses to physical using a 3 level page table.
*/
static int
ia64_vtop_xen_wpt(ulong vaddr, physaddr_t *paddr, ulong *pgd, int verbose, int usr)
{
error(FATAL, "ia64_vtop_xen_wpt: TBD\n");
return FALSE;
#ifdef TBD
ulong *page_dir;
ulong *page_middle;
ulong *page_table;
ulong pgd_pte;
ulong pmd_pte;
ulong pte;
ulong region, offset;
if (usr) {
region = VADDR_REGION(vaddr);
offset = (vaddr >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
offset |= (region << (PAGESHIFT() - 6));
page_dir = pgd + offset;
} else {
if (!(pgd = (ulong *)vt->kernel_pgd[0]))
error(FATAL, "cannot determine kernel pgd pointer\n");
page_dir = pgd + ((vaddr >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1));
}
if (verbose)
fprintf(fp, "PAGE DIRECTORY: %lx\n", (ulong)pgd);
FILL_PGD(PAGEBASE(pgd), KVADDR, PAGESIZE());
pgd_pte = ULONG(machdep->pgd + PAGEOFFSET(page_dir));
if (verbose)
fprintf(fp, " PGD: %lx => %lx\n", (ulong)page_dir, pgd_pte);
if (!(pgd_pte))
return FALSE;
offset = (vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
page_middle = (ulong *)(PTOV(pgd_pte & _PFN_MASK)) + offset;
FILL_PMD(PAGEBASE(page_middle), KVADDR, PAGESIZE());
pmd_pte = ULONG(machdep->pmd + PAGEOFFSET(page_middle));
if (verbose)
fprintf(fp, " PMD: %lx => %lx\n", (ulong)page_middle, pmd_pte);
if (!(pmd_pte))
return FALSE;
offset = (vaddr >> PAGESHIFT()) & (PTRS_PER_PTE - 1);
page_table = (ulong *)(PTOV(pmd_pte & _PFN_MASK)) + offset;
FILL_PTBL(PAGEBASE(page_table), KVADDR, PAGESIZE());
pte = ULONG(machdep->ptbl + PAGEOFFSET(page_table));
if (verbose)
fprintf(fp, " PTE: %lx => %lx\n", (ulong)page_table, pte);
if (!(pte & (_PAGE_P))) {
if (usr)
*paddr = pte;
if (pte && verbose) {
fprintf(fp, "\n");
ia64_translate_pte(pte, 0, 0);
}
return FALSE;
}
*paddr = (pte & _PFN_MASK) + PAGEOFFSET(vaddr);
if (verbose) {
fprintf(fp, " PAGE: %lx\n\n", PAGEBASE(*paddr));
ia64_translate_pte(pte, 0, 0);
}
return TRUE;
#endif
}
#include "netdump.h"
/*
* Determine the relocatable physical address base.
*/
static void
ia64_calc_phys_start(void)
{
FILE *iomem;
int i, found, errflag;
char buf[BUFSIZE];
char *p1;
ulong kernel_code_start;
struct vmcore_data *vd;
ulong phys_start, text_start;
Elf64_Phdr *phdr = NULL;
/*
* Default to 64MB.
*/
machdep->machspec->phys_start = DEFAULT_PHYS_START;
text_start = symbol_exists("_text") ? symbol_value("_text") : BADADDR;
if (ACTIVE()) {
if ((iomem = fopen("/proc/iomem", "r")) == NULL)
return;
errflag = 1;
while (fgets(buf, BUFSIZE, iomem)) {
if (strstr(buf, ": Kernel code")) {
clean_line(buf);
errflag = 0;
break;
}
}
fclose(iomem);
if (errflag)
return;
if (!(p1 = strstr(buf, "-")))
return;
else
*p1 = NULLCHAR;
errflag = 0;
kernel_code_start = htol(buf, RETURN_ON_ERROR|QUIET, &errflag);
if (errflag)
return;
machdep->machspec->phys_start = kernel_code_start;
if (CRASHDEBUG(1)) {
if (text_start == BADADDR)
fprintf(fp, "_text: (unknown) ");
else
fprintf(fp, "_text: %lx ", text_start);
fprintf(fp, "Kernel code: %lx -> ", kernel_code_start);
fprintf(fp, "phys_start: %lx\n\n",
machdep->machspec->phys_start);
}
return;
}
/*
* Get relocation value from whatever dumpfile format is being used.
*/
if (DISKDUMP_DUMPFILE()) {
if (diskdump_phys_base(&phys_start)) {
machdep->machspec->phys_start = phys_start;
if (CRASHDEBUG(1))
fprintf(fp,
"compressed kdump: phys_start: %lx\n",
phys_start);
}
return;
} else if (LKCD_DUMPFILE()) {
if (lkcd_get_kernel_start(&phys_start)) {
machdep->machspec->phys_start = phys_start;
if (CRASHDEBUG(1))
fprintf(fp,
"LKCD dump: phys_start: %lx\n",
phys_start);
}
}
if ((vd = get_kdump_vmcore_data())) {
/*
* There should be at most one region 5 region, and it
* should be equal to "_text". If not, take whatever
* region 5 address comes first and hope for the best.
*/
for (i = found = 0; i < vd->num_pt_load_segments; i++) {
phdr = vd->load64 + i;
if (phdr->p_vaddr == text_start) {
machdep->machspec->phys_start = phdr->p_paddr;
found++;
break;
}
}
for (i = 0; !found && (i < vd->num_pt_load_segments); i++) {
phdr = vd->load64 + i;
if (VADDR_REGION(phdr->p_vaddr) == KERNEL_VMALLOC_REGION) {
machdep->machspec->phys_start = phdr->p_paddr;
found++;
break;
}
}
if (found && CRASHDEBUG(1)) {
if (text_start == BADADDR)
fprintf(fp, "_text: (unknown) ");
else
fprintf(fp, "_text: %lx ", text_start);
fprintf(fp, "p_vaddr: %lx p_paddr: %lx\n",
phdr->p_vaddr, phdr->p_paddr);
}
return;
}
}
/*
* From the xen vmcore, create an index of mfns for each page that makes
* up the dom0 kernel's complete phys_to_machine_mapping[max_pfn] array.
*/
static int
ia64_xen_kdump_p2m_create(struct xen_kdump_data *xkd)
{
/*
* Temporarily read physical (machine) addresses from vmcore by
* going directly to read_netdump() instead of via read_kdump().
*/
pc->readmem = read_netdump;
if (CRASHDEBUG(1)) {
fprintf(fp, "readmem (temporary): read_netdump()\n");
fprintf(fp, "ia64_xen_kdump_p2m_create: p2m_mfn: %lx\n", xkd->p2m_mfn);
}
if ((xkd->p2m_mfn_frame_list = (ulong *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc p2m_frame_list");
if (!readmem(PTOB(xkd->p2m_mfn), PHYSADDR, xkd->p2m_mfn_frame_list, PAGESIZE(),
"xen kdump p2m mfn page", RETURN_ON_ERROR))
error(FATAL, "cannot read xen kdump p2m mfn page\n");
xkd->p2m_frames = PAGESIZE()/sizeof(ulong);
pc->readmem = read_kdump;
if (CRASHDEBUG(1))
fprintf(fp, "readmem (restore): read_kdump()\n");
return TRUE;
}
physaddr_t
ia64_xen_kdump_p2m(struct xen_kdump_data *xkd, physaddr_t pseudo)
{
ulong pgd_idx, pte_idx;
ulong pmd, pte;
physaddr_t paddr;
/*
* Temporarily read physical (machine) addresses from vmcore by
* going directly to read_netdump() instead of via read_kdump().
*/
pc->readmem = read_netdump;
if (CRASHDEBUG(1))
fprintf(fp, "readmem (temporary): read_netdump()\n");
xkd->accesses += 2;
pgd_idx = (pseudo >> PGDIR_SHIFT_3L) & (PTRS_PER_PGD - 1);
pmd = xkd->p2m_mfn_frame_list[pgd_idx] & _PFN_MASK;
if (!pmd) {
paddr = P2M_FAILURE;
goto out;
}
pmd += ((pseudo >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) * sizeof(ulong);
if (pmd != xkd->last_pmd_read) {
if (!readmem(pmd, PHYSADDR, &pte, sizeof(ulong),
"ia64_xen_kdump_p2m pmd", RETURN_ON_ERROR)) {
xkd->last_pmd_read = BADADDR;
xkd->last_mfn_read = BADADDR;
paddr = P2M_FAILURE;
goto out;
}
xkd->last_pmd_read = pmd;
} else {
pte = xkd->last_mfn_read;
xkd->cache_hits++;
}
pte = pte & _PFN_MASK;
if (!pte) {
paddr = P2M_FAILURE;
goto out;
}
if (pte != xkd->last_mfn_read) {
if (!readmem(pte, PHYSADDR, xkd->page, PAGESIZE(),
"ia64_xen_kdump_p2m pte page", RETURN_ON_ERROR)) {
xkd->last_pmd_read = BADADDR;
xkd->last_mfn_read = BADADDR;
paddr = P2M_FAILURE;
goto out;
}
xkd->last_mfn_read = pte;
} else
xkd->cache_hits++;
pte_idx = (pseudo >> PAGESHIFT()) & (PTRS_PER_PTE - 1);
paddr = *(((ulong *)xkd->page) + pte_idx);
if (!(paddr & _PAGE_P)) {
paddr = P2M_FAILURE;
goto out;
}
paddr = (paddr & _PFN_MASK) | PAGEOFFSET(pseudo);
out:
pc->readmem = read_kdump;
if (CRASHDEBUG(1))
fprintf(fp, "readmem (restore): read_kdump()\n");
return paddr;
}
#include "xendump.h"
/*
* Create an index of mfns for each page that makes up the
* kernel's complete phys_to_machine_mapping[max_pfn] array.
*/
static int
ia64_xendump_p2m_create(struct xendump_data *xd)
{
if (!symbol_exists("phys_to_machine_mapping")) {
xd->flags |= XC_CORE_NO_P2M;
return TRUE;
}
error(FATAL, "ia64_xendump_p2m_create: TBD\n");
/* dummy calls for clean "make [wW]arn" */
ia64_debug_dump_page(NULL, NULL, NULL);
ia64_xendump_load_page(0, xd);
ia64_xendump_page_index(0, xd);
ia64_xendump_panic_task(xd); /* externally called */
ia64_get_xendump_regs(xd, NULL, NULL, NULL); /* externally called */
return FALSE;
}
static void
ia64_debug_dump_page(FILE *ofp, char *page, char *name)
{
int i;
ulong *up;
fprintf(ofp, "%s\n", name);
up = (ulong *)page;
for (i = 0; i < 1024; i++) {
fprintf(ofp, "%016lx: %016lx %016lx\n",
(ulong)((i * 2) * sizeof(ulong)),
*up, *(up+1));
up += 2;
}
}
/*
* Find the page associate with the kvaddr, and read its contents
* into the passed-in buffer.
*/
static char *
ia64_xendump_load_page(ulong kvaddr, struct xendump_data *xd)
{
error(FATAL, "ia64_xendump_load_page: TBD\n");
return NULL;
}
/*
* Find the dumpfile page index associated with the kvaddr.
*/
static int
ia64_xendump_page_index(ulong kvaddr, struct xendump_data *xd)
{
error(FATAL, "ia64_xendump_page_index: TBD\n");
return 0;
}
static ulong
ia64_xendump_panic_task(struct xendump_data *xd)
{
if (CRASHDEBUG(1))
error(INFO, "ia64_xendump_panic_task: TBD\n");
return NO_TASK;
}
static void
ia64_get_xendump_regs(struct xendump_data *xd, struct bt_info *bt, ulong *rip, ulong *rsp)
{
machdep->get_stack_frame(bt, rip, rsp);
if (is_task_active(bt->task) &&
!(bt->flags & (BT_TEXT_SYMBOLS_ALL|BT_TEXT_SYMBOLS)) &&
STREQ(closest_symbol(*rip), "schedule"))
error(INFO,
"xendump: switch_stack possibly not saved -- try \"bt -t\"\n");
}
/* for XEN Hypervisor analysis */
static int
ia64_is_kvaddr_hyper(ulong addr)
{
return (addr >= HYPERVISOR_VIRT_START && addr < HYPERVISOR_VIRT_END);
}
static int
ia64_kvtop_hyper(struct task_context *tc, ulong kvaddr, physaddr_t *paddr, int verbose)
{
ulong virt_percpu_start, phys_percpu_start;
ulong addr, dirp, entry;
if (!IS_KVADDR(kvaddr))
return FALSE;
if (PERCPU_VIRT_ADDR(kvaddr)) {
virt_percpu_start = symbol_value("__phys_per_cpu_start");
phys_percpu_start = virt_percpu_start - DIRECTMAP_VIRT_START;
*paddr = kvaddr - PERCPU_ADDR + phys_percpu_start;
return TRUE;
} else if (DIRECTMAP_VIRT_ADDR(kvaddr)) {
*paddr = kvaddr - DIRECTMAP_VIRT_START;
return TRUE;
} else if (!FRAME_TABLE_VIRT_ADDR(kvaddr)) {
return FALSE;
}
/* frametable virtual address */
addr = kvaddr - xhmachdep->frame_table;
dirp = symbol_value("frametable_pg_dir");
dirp += ((addr >> PGDIR_SHIFT_3L) & (PTRS_PER_PGD - 1)) * sizeof(ulong);
readmem(dirp, KVADDR, &entry, sizeof(ulong),
"frametable_pg_dir", FAULT_ON_ERROR);
dirp = entry & _PFN_MASK;
if (!dirp)
return FALSE;
dirp += ((addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) * sizeof(ulong);
readmem(dirp, PHYSADDR, &entry, sizeof(ulong),
"frametable pmd", FAULT_ON_ERROR);
dirp = entry & _PFN_MASK;
if (!dirp)
return FALSE;
dirp += ((addr >> PAGESHIFT()) & (PTRS_PER_PTE - 1)) * sizeof(ulong);
readmem(dirp, PHYSADDR, &entry, sizeof(ulong),
"frametable pte", FAULT_ON_ERROR);
if (!(entry & _PAGE_P))
return FALSE;
*paddr = (entry & _PFN_MASK) + (kvaddr & (PAGESIZE() - 1));
return TRUE;
}
static void
ia64_post_init_hyper(void)
{
struct machine_specific *ms;
ulong frame_table;
ms = &ia64_machine_specific;
if (symbol_exists("unw_init_frame_info")) {
machdep->flags |= NEW_UNWIND;
if (MEMBER_EXISTS("unw_frame_info", "pt")) {
if (MEMBER_EXISTS("cpu_user_regs", "ar_csd")) {
machdep->flags |= NEW_UNW_V3;
ms->unwind_init = unwind_init_v3;
ms->unwind = unwind_v3;
ms->unwind_debug = unwind_debug_v3;
ms->dump_unwind_stats = dump_unwind_stats_v3;
} else {
machdep->flags |= NEW_UNW_V2;
ms->unwind_init = unwind_init_v2;
ms->unwind = unwind_v2;
ms->unwind_debug = unwind_debug_v2;
ms->dump_unwind_stats = dump_unwind_stats_v2;
}
} else {
machdep->flags |= NEW_UNW_V1;
ms->unwind_init = unwind_init_v1;
ms->unwind = unwind_v1;
ms->unwind_debug = unwind_debug_v1;
ms->dump_unwind_stats = dump_unwind_stats_v1;
}
} else {
machdep->flags |= OLD_UNWIND;
ms->unwind_init = ia64_old_unwind_init;
ms->unwind = ia64_old_unwind;
}
ms->unwind_init();
if (symbol_exists("frame_table")) {
frame_table = symbol_value("frame_table");
readmem(frame_table, KVADDR, &xhmachdep->frame_table, sizeof(ulong),
"frame_table virtual address", FAULT_ON_ERROR);
} else {
error(FATAL, "cannot find frame_table virtual address.");
}
}
int
ia64_in_mca_stack_hyper(ulong addr, struct bt_info *bt)
{
int plen, i;
ulong paddr, stackbase, stacktop;
ulong *__per_cpu_mca;
struct xen_hyper_vcpu_context *vcc;
vcc = xen_hyper_vcpu_to_vcpu_context(bt->task);
if (!vcc)
return 0;
if (!symbol_exists("__per_cpu_mca") ||
!(plen = get_array_length("__per_cpu_mca", NULL, 0)) ||
(plen < xht->pcpus))
return 0;
if (!machdep->kvtop(NULL, addr, &paddr, 0))
return 0;
__per_cpu_mca = (ulong *)GETBUF(sizeof(ulong) * plen);
if (!readmem(symbol_value("__per_cpu_mca"), KVADDR, __per_cpu_mca,
sizeof(ulong) * plen, "__per_cpu_mca", RETURN_ON_ERROR|QUIET))
return 0;
if (CRASHDEBUG(1)) {
for (i = 0; i < plen; i++) {
fprintf(fp, "__per_cpu_mca[%d]: %lx\n",
i, __per_cpu_mca[i]);
}
}
stackbase = __per_cpu_mca[vcc->processor];
stacktop = stackbase + (STACKSIZE() * 2);
FREEBUF(__per_cpu_mca);
if ((paddr >= stackbase) && (paddr < stacktop))
return 1;
else
return 0;
}
static void
ia64_init_hyper(int when)
{
struct syment *sp;
switch (when)
{
case SETUP_ENV:
#if defined(PR_SET_FPEMU) && defined(PR_FPEMU_NOPRINT)
prctl(PR_SET_FPEMU, PR_FPEMU_NOPRINT, 0, 0, 0);
#endif
#if defined(PR_SET_UNALIGN) && defined(PR_UNALIGN_NOPRINT)
prctl(PR_SET_UNALIGN, PR_UNALIGN_NOPRINT, 0, 0, 0);
#endif
break;
case PRE_SYMTAB:
machdep->verify_symbol = ia64_verify_symbol;
machdep->machspec = &ia64_machine_specific;
if (pc->flags & KERNEL_DEBUG_QUERY)
return;
machdep->pagesize = memory_page_size();
machdep->pageshift = ffs(machdep->pagesize) - 1;
machdep->pageoffset = machdep->pagesize - 1;
machdep->pagemask = ~(machdep->pageoffset);
switch (machdep->pagesize)
{
case 4096:
machdep->stacksize = (power(2, 3) * PAGESIZE());
break;
case 8192:
machdep->stacksize = (power(2, 2) * PAGESIZE());
break;
case 16384:
machdep->stacksize = (power(2, 1) * PAGESIZE());
break;
case 65536:
machdep->stacksize = (power(2, 0) * PAGESIZE());
break;
default:
machdep->stacksize = 32*1024;
break;
}
if ((machdep->pgd = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pgd space.");
if ((machdep->pud = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pud space.");
if ((machdep->pmd = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc pmd space.");
if ((machdep->ptbl = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc ptbl space.");
machdep->last_pgd_read = 0;
machdep->last_pud_read = 0;
machdep->last_pmd_read = 0;
machdep->last_ptbl_read = 0;
machdep->verify_paddr = ia64_verify_paddr;
machdep->ptrs_per_pgd = PTRS_PER_PGD;
machdep->machspec->phys_start = UNKNOWN_PHYS_START;
/* ODA: if need make hyper version
if (machdep->cmdline_args[0])
parse_cmdline_args(); */
break;
case PRE_GDB:
if (pc->flags & KERNEL_DEBUG_QUERY)
return;
machdep->kvbase = HYPERVISOR_VIRT_START;
machdep->identity_map_base = HYPERVISOR_VIRT_START;
machdep->is_kvaddr = ia64_is_kvaddr_hyper;
machdep->is_uvaddr = generic_is_uvaddr;
machdep->eframe_search = ia64_eframe_search;
machdep->back_trace = ia64_back_trace_cmd;
machdep->processor_speed = xen_hyper_ia64_processor_speed;
machdep->uvtop = ia64_uvtop;
machdep->kvtop = ia64_kvtop_hyper;
machdep->get_stack_frame = ia64_get_stack_frame;
machdep->get_stackbase = ia64_get_stackbase;
machdep->get_stacktop = ia64_get_stacktop;
machdep->translate_pte = ia64_translate_pte;
machdep->memory_size = xen_hyper_ia64_memory_size;
machdep->dis_filter = ia64_dis_filter;
machdep->cmd_mach = ia64_cmd_mach;
machdep->get_smp_cpus = xen_hyper_ia64_get_smp_cpus;
machdep->line_number_hooks = ia64_line_number_hooks;
machdep->value_to_symbol = generic_machdep_value_to_symbol;
machdep->init_kernel_pgd = NULL;
if ((sp = symbol_search("_stext"))) {
machdep->machspec->kernel_region =
VADDR_REGION(sp->value);
machdep->machspec->kernel_start = sp->value;
} else {
// machdep->machspec->kernel_region = KERNEL_CACHED_REGION;
// machdep->machspec->kernel_start = KERNEL_CACHED_BASE;
}
/* machdep table for Xen Hypervisor */
xhmachdep->pcpu_init = xen_hyper_ia64_pcpu_init;
break;
case POST_GDB:
STRUCT_SIZE_INIT(switch_stack, "switch_stack");
MEMBER_OFFSET_INIT(thread_struct_fph, "thread_struct", "fph");
MEMBER_OFFSET_INIT(switch_stack_b0, "switch_stack", "b0");
MEMBER_OFFSET_INIT(switch_stack_ar_bspstore,
"switch_stack", "ar_bspstore");
MEMBER_OFFSET_INIT(switch_stack_ar_pfs,
"switch_stack", "ar_pfs");
MEMBER_OFFSET_INIT(switch_stack_ar_rnat,
"switch_stack", "ar_rnat");
MEMBER_OFFSET_INIT(switch_stack_pr,
"switch_stack", "pr");
XEN_HYPER_STRUCT_SIZE_INIT(cpuinfo_ia64, "cpuinfo_ia64");
XEN_HYPER_MEMBER_OFFSET_INIT(cpuinfo_ia64_proc_freq, "cpuinfo_ia64", "proc_freq");
XEN_HYPER_MEMBER_OFFSET_INIT(cpuinfo_ia64_vendor, "cpuinfo_ia64", "vendor");
if (symbol_exists("per_cpu__cpu_info")) {
xht->cpu_data_address = symbol_value("per_cpu__cpu_info");
}
/* kakuma Can this be calculated? */
if (!machdep->hz) {
machdep->hz = XEN_HYPER_HZ;
}
break;
case POST_INIT:
ia64_post_init_hyper();
break;
}
}
#endif