crash/unwind_arm.c
Dave Anderson 8e21aa3fa5 32-bit ARM kernels built with the Thumb-2 instruction set utilize
the R7 register instead of FP for unwinding stacks using the DWARF
unwinder.  On those kernels, without the patch, the "bt" command
only shows the task header.
(vincent.whitchurch@axis.com)
2019-02-26 10:13:59 -05:00

762 lines
19 KiB
C

/*
* Stack unwinding support for ARM
*
* This code is derived from the kernel source:
* arch/arm/kernel/unwind.c
* Copyright (C) 2008 ARM Limited
*
* Created by: Mika Westerberg <ext-mika.1.westerberg@nokia.com>
* Copyright (C) 2010 Nokia Corporation
*
* For more information about ARM unwind tables see "Exception handling ABI for
* the ARM architecture" document at:
*
* http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifdef ARM
#include "defs.h"
/**
* struct unwind_idx - index table entry
* @addr: prel31 offset to the start of the function
* @insn: index table entry.
*
* @insn can be encoded as follows:
* 1. if bit31 is clear this points to the start of the EHT entry
* (prel31 offset)
* 2. if bit31 is set, this contains the EHT entry itself
* 3. if 0x1, cannot unwind.
*/
struct unwind_idx {
ulong addr;
ulong insn;
};
/**
* struct unwind_table - per-module unwind table
* @idx: pointer to the star of the unwind table
* @start: pointer to the start of the index table
* @end: pointer to the last element +1 of the index table
* @begin_addr: start address which this table covers
* @end_addr: end address which this table covers
* @kv_base: kernel virtual address of the start of the index table
*
* Kernel stores per-module unwind tables in this format. There can be more than
* one table per module as we have different ELF sections in the module.
*/
struct unwind_table {
struct unwind_idx *idx;
struct unwind_idx *start;
struct unwind_idx *end;
ulong begin_addr;
ulong end_addr;
ulong kv_base;
};
/*
* Unwind table pointers to master kernel table and for modules.
*/
static struct unwind_table *kernel_unwind_table;
static struct unwind_table *module_unwind_tables;
struct unwind_ctrl_block {
ulong vrs[16];
ulong insn;
ulong insn_kvaddr;
int entries;
int byte;
};
struct stackframe {
ulong fp;
ulong sp;
ulong lr;
ulong pc;
};
enum regs {
R7 = 7,
FP = 11,
SP = 13,
LR = 14,
PC = 15,
};
static int init_kernel_unwind_table(void);
static int read_module_unwind_table(struct unwind_table *, ulong);
static int init_module_unwind_tables(void);
static int unwind_get_insn(struct unwind_ctrl_block *);
static ulong unwind_get_byte(struct unwind_ctrl_block *);
static ulong get_value_from_stack(ulong *);
static int unwind_exec_insn(struct unwind_ctrl_block *);
static int is_core_kernel_text(ulong);
static struct unwind_table *search_table(ulong);
static struct unwind_idx *search_index(const struct unwind_table *, ulong);
static ulong prel31_to_addr(ulong, ulong);
static void index_prel31_to_addr(struct unwind_table *);
static int unwind_frame(struct stackframe *, ulong);
/*
* Function reads in-memory kernel and module unwind tables and makes
* local copy of them for unwinding. If unwinding tables cannot be found, this
* function returns FALSE, otherwise TRUE.
*/
int
init_unwind_tables(void)
{
if (!symbol_exists("__start_unwind_idx") ||
!symbol_exists("__stop_unwind_idx") ||
!symbol_exists("__start_unwind_tab") ||
!symbol_exists("__stop_unwind_tab") ||
!symbol_exists("unwind_tables")) {
return FALSE;
}
if (!init_kernel_unwind_table()) {
error(WARNING,
"UNWIND: failed to initialize kernel unwind table\n");
return FALSE;
}
/*
* Initialize symbols for per-module unwind tables. Actually there are
* several tables per module (one per code section).
*/
STRUCT_SIZE_INIT(unwind_table, "unwind_table");
MEMBER_OFFSET_INIT(unwind_table_list, "unwind_table", "list");
MEMBER_OFFSET_INIT(unwind_table_start, "unwind_table", "start");
MEMBER_OFFSET_INIT(unwind_table_stop, "unwind_table", "stop");
MEMBER_OFFSET_INIT(unwind_table_begin_addr, "unwind_table",
"begin_addr");
MEMBER_OFFSET_INIT(unwind_table_end_addr, "unwind_table", "end_addr");
STRUCT_SIZE_INIT(unwind_idx, "unwind_idx");
MEMBER_OFFSET_INIT(unwind_idx_addr, "unwind_idx", "addr");
MEMBER_OFFSET_INIT(unwind_idx_insn, "unwind_idx", "insn");
if (!init_module_unwind_tables()) {
error(WARNING,
"UNWIND: failed to initialize module unwind tables\n");
}
/*
* We abuse DWARF_UNWIND flag a little here as ARM unwinding tables are
* not in DWARF format but we can use the flags to indicate that we have
* unwind tables support ready.
*/
kt->flags |= DWARF_UNWIND_CAPABLE;
kt->flags |= DWARF_UNWIND;
return TRUE;
}
/*
* Allocate and fill master kernel unwind table.
*/
static int
init_kernel_unwind_table(void)
{
ulong idx_start, idx_end, idx_size;
kernel_unwind_table = calloc(sizeof(*kernel_unwind_table), 1);
if (!kernel_unwind_table)
return FALSE;
idx_start = symbol_value("__start_unwind_idx");
idx_end = symbol_value("__stop_unwind_idx");
idx_size = idx_end - idx_start;
kernel_unwind_table->idx = calloc(idx_size, 1);
if (!kernel_unwind_table->idx)
goto fail;
/* now read in the index table */
if (!readmem(idx_start, KVADDR, kernel_unwind_table->idx, idx_size,
"master kernel unwind table", RETURN_ON_ERROR)) {
free(kernel_unwind_table->idx);
goto fail;
}
/*
* Kernel versions before v3.2 (specifically, before commit
* de66a979012db "ARM: 7187/1: fix unwinding for XIP kernels")
* converted the prel31 offsets in the unwind index table to absolute
* addresses on startup. Newer kernels don't perform this conversion,
* and have a slightly more involved search algorithm.
*
* We always just use the older search method (a straightforward binary
* search) and convert the index table offsets ourselves if we detect
* that the kernel didn't do it.
*/
machdep->machspec->unwind_index_prel31 = !is_kernel_text(kernel_unwind_table->idx[0].addr);
kernel_unwind_table->start = kernel_unwind_table->idx;
kernel_unwind_table->end = (struct unwind_idx *)
((char *)kernel_unwind_table->idx + idx_size);
kernel_unwind_table->begin_addr = kernel_unwind_table->start->addr;
kernel_unwind_table->end_addr = (kernel_unwind_table->end - 1)->addr;
kernel_unwind_table->kv_base = idx_start;
if (machdep->machspec->unwind_index_prel31)
index_prel31_to_addr(kernel_unwind_table);
if (CRASHDEBUG(1)) {
fprintf(fp, "UNWIND: master kernel table start\n");
fprintf(fp, "UNWIND: size : %ld\n", idx_size);
fprintf(fp, "UNWIND: start : %p\n", kernel_unwind_table->start);
fprintf(fp, "UNWIND: end : %p\n", kernel_unwind_table->end);
fprintf(fp, "UNWIND: begin_addr: 0x%lx\n",
kernel_unwind_table->begin_addr);
fprintf(fp, "UNWIND: begin_addr: 0x%lx\n",
kernel_unwind_table->end_addr);
fprintf(fp, "UNWIND: master kernel table end\n");
}
return TRUE;
fail:
free(kernel_unwind_table);
return FALSE;
}
/*
* Read single module unwind table from addr.
*/
static int
read_module_unwind_table(struct unwind_table *tbl, ulong addr)
{
ulong idx_start, idx_stop, idx_size;
char *buf;
buf = GETBUF(SIZE(unwind_table));
/*
* First read in the unwind table for this module. It then contains
* pointers to the index table which we will read later.
*/
if (!readmem(addr, KVADDR, buf, SIZE(unwind_table),
"module unwind table", RETURN_ON_ERROR)) {
error(WARNING, "UNWIND: cannot read unwind table\n");
goto fail;
}
#define TABLE_VALUE(b, offs) (*((ulong *)((b) + OFFSET(offs))))
idx_start = TABLE_VALUE(buf, unwind_table_start);
idx_stop = TABLE_VALUE(buf, unwind_table_stop);
idx_size = idx_stop - idx_start;
/*
* We know the size of the index table. Allocate memory for
* the table and read the contents from the kernel memory.
*/
tbl->idx = calloc(idx_size, 1);
if (!tbl->idx)
goto fail;
if (!readmem(idx_start, KVADDR, tbl->idx, idx_size,
"module unwind index table", RETURN_ON_ERROR)) {
free(tbl->idx);
goto fail;
}
tbl->start = &tbl->idx[0];
tbl->end = (struct unwind_idx *)((char *)tbl->start + idx_size);
tbl->begin_addr = TABLE_VALUE(buf, unwind_table_begin_addr);
tbl->end_addr = TABLE_VALUE(buf, unwind_table_end_addr);
tbl->kv_base = idx_start;
if (machdep->machspec->unwind_index_prel31)
index_prel31_to_addr(tbl);
if (CRASHDEBUG(1)) {
fprintf(fp, "UNWIND: module table start\n");
fprintf(fp, "UNWIND: start : %p\n", tbl->start);
fprintf(fp, "UNWIND: end : %p\n", tbl->end);
fprintf(fp, "UNWIND: begin_addr: 0x%lx\n", tbl->begin_addr);
fprintf(fp, "UNWIND: begin_addr: 0x%lx\n", tbl->end_addr);
fprintf(fp, "UNWIND: module table end\n");
}
FREEBUF(buf);
return TRUE;
fail:
FREEBUF(buf);
return FALSE;
}
/*
* Allocate and fill per-module unwind tables.
*/
static int
init_module_unwind_tables(void)
{
ulong head = symbol_value("unwind_tables");
struct unwind_table *tbl;
struct list_data ld;
ulong *table_list;
int cnt, i, n;
BZERO(&ld, sizeof(ld));
ld.start = head;
ld.member_offset = OFFSET(unwind_table_list);
ld.flags = RETURN_ON_LIST_ERROR;
if (CRASHDEBUG(1))
ld.flags |= VERBOSE;
/*
* Iterate through unwind table list and store start address of each
* table in table_list.
*/
hq_open();
cnt = do_list(&ld);
if (cnt == -1) {
error(WARNING, "UNWIND: failed to gather unwind_table list\n");
hq_close();
return FALSE;
}
table_list = (ulong *)GETBUF(cnt * sizeof(ulong));
cnt = retrieve_list(table_list, cnt);
hq_close();
module_unwind_tables = calloc(sizeof(struct unwind_table), cnt);
if (!module_unwind_tables) {
error(WARNING,
"UNWIND: failed to allocate memory for (%d tables)\n",
cnt);
FREEBUF(table_list);
return FALSE;
}
/* we skip the first address as it is just head pointer */
for (i = 1, n = 0; i < cnt; i++, n++) {
tbl = &module_unwind_tables[n];
if (!read_module_unwind_table(tbl, table_list[i]))
goto fail;
}
/* just in case, zero the last entry (again) */
BZERO(&module_unwind_tables[n], sizeof(module_unwind_tables[n]));
FREEBUF(table_list);
return TRUE;
fail:
FREEBUF(table_list);
while (--n >= 0) {
tbl = &module_unwind_tables[n];
free(tbl->idx);
}
free(module_unwind_tables);
module_unwind_tables = NULL;
return FALSE;
}
/*
* Read next unwind instruction pointed by ctrl->insn_kvaddr into
* ctrl->insn. As a side-effect, increase the ctrl->insn_kvaddr to
* point to the next instruction.
*/
static int
unwind_get_insn(struct unwind_ctrl_block *ctrl)
{
if (readmem(ctrl->insn_kvaddr, KVADDR, &ctrl->insn, sizeof(ctrl->insn),
"unwind insn", RETURN_ON_ERROR)) {
ctrl->insn_kvaddr += sizeof(ctrl->insn);
return TRUE;
}
return FALSE;
}
/*
* Return next insn byte from ctl or 0 in case of failure. As a side-effect,
* changes ctrl according the next byte.
*/
static ulong
unwind_get_byte(struct unwind_ctrl_block *ctrl)
{
ulong ret;
if (ctrl->entries <= 0) {
error(WARNING, "UNWIND: corrupt unwind entry\n");
return 0;
}
ret = (ctrl->insn >> (ctrl->byte * 8)) & 0xff;
if (!ctrl->byte && --ctrl->entries > 0) {
if (!unwind_get_insn(ctrl))
return 0;
ctrl->byte = 3;
} else {
ctrl->byte--;
}
return ret;
}
/*
* Gets one value from stack pointed by vsp.
*/
static ulong
get_value_from_stack(ulong *vsp)
{
ulong val;
/*
* We just read the value from kernel memory instead of peeking it from
* the bt->stack.
*/
if (!readmem((ulong)vsp, KVADDR, &val, sizeof(val),
"unwind stack value", RETURN_ON_ERROR)) {
error(FATAL, "unwind: failed to read value from stack\n");
}
return val;
}
/*
* Execute the next unwind instruction.
*/
static int
unwind_exec_insn(struct unwind_ctrl_block *ctrl)
{
ulong insn = unwind_get_byte(ctrl);
if ((insn & 0xc0) == 0) {
/*
* 00xx xxxx: vsp = vsp + (xx xxx << 2) + 4
*
* Note that it seems that there is a typo in the spec and this
* is corrected in kernel.
*/
ctrl->vrs[SP] += ((insn & 0x3f) << 2) + 4;
} else if ((insn & 0xc0) == 0x40) {
/* 00xx xxxx: vsp = vsp + (xx xxx << 2) + 4 */
ctrl->vrs[SP] -= ((insn & 0x3f) << 2) + 4;
} else if ((insn & 0xf0) == 0x80) {
/*
* Pop up to 12 integer registers under masks
* {r15-r12}, {r11-r4}.
*/
ulong mask;
ulong *vsp = (ulong *)ctrl->vrs[SP];
int load_sp, reg = 4;
insn = (insn << 8) | unwind_get_byte(ctrl);
mask = insn & 0x0fff;
if (mask == 0) {
error(WARNING, "UNWIND: refuse to unwind\n");
return FALSE;
}
/* pop {r4-r15} according to mask */
load_sp = mask & (1 << (13 - 4));
while (mask) {
if (mask & 1)
ctrl->vrs[reg] = get_value_from_stack(vsp++);
mask >>= 1;
reg++;
}
if (!load_sp)
ctrl->vrs[SP] = (ulong)vsp;
} else if ((insn & 0xf0) == 0x90 &&
(insn & 0x0d) != 0x0d) {
/* 1001 nnnn: set vsp = r[nnnn] */
ctrl->vrs[SP] = ctrl->vrs[insn & 0x0f];
} else if ((insn & 0xf0) == 0xa0) {
/*
* 1010 0nnn: pop r4-r[4+nnn]
* 1010 1nnn: pop r4-r[4+nnn], r14
*/
ulong *vsp = (ulong *)ctrl->vrs[SP];
int reg;
for (reg = 4; reg <= 4 + (insn & 7); reg++)
ctrl->vrs[reg] = get_value_from_stack(vsp++);
if (insn & 0x80)
ctrl->vrs[14] = get_value_from_stack(vsp++);
ctrl->vrs[SP] = (ulong)vsp;
} else if (insn == 0xb0) {
/* 1011 0000: finish */
if (ctrl->vrs[PC] == 0)
ctrl->vrs[PC] = ctrl->vrs[LR];
/* no further processing */
ctrl->entries = 0;
} else if (insn == 0xb1) {
/* 1011 0001 xxxx yyyy: spare */
ulong mask = unwind_get_byte(ctrl);
ulong *vsp = (ulong *)ctrl->vrs[SP];
int reg = 0;
if (mask == 0 || mask & 0xf0) {
error(WARNING, "UNWIND: spare error\n");
return FALSE;
}
/* pop r0-r3 according to mask */
while (mask) {
if (mask & 1)
ctrl->vrs[reg] = get_value_from_stack(vsp++);
mask >>= 1;
reg++;
}
ctrl->vrs[SP] = (ulong)vsp;
} else if (insn == 0xb2) {
/* 1011 0010 uleb128: vsp = vsp + 0x204 (uleb128 << 2) */
ulong uleb128 = unwind_get_byte(ctrl);
ctrl->vrs[SP] += 0x204 + (uleb128 << 2);
} else {
error(WARNING, "UNWIND: unhandled instruction: %02lx\n", insn);
return FALSE;
}
return TRUE;
}
static int
is_core_kernel_text(ulong pc)
{
ulong text_start = machdep->machspec->kernel_text_start;
ulong text_end = machdep->machspec->kernel_text_end;
if (text_start && text_end)
return (pc >= text_start && pc <= text_end);
return FALSE;
}
static struct unwind_table *
search_table(ulong ip)
{
/*
* First check if this address is in the master kernel unwind table or
* some of the module unwind tables.
*/
if (is_core_kernel_text(ip)) {
return kernel_unwind_table;
} else if (module_unwind_tables) {
struct unwind_table *tbl;
for (tbl = &module_unwind_tables[0]; tbl->idx; tbl++) {
if (ip >= tbl->begin_addr && ip < tbl->end_addr)
return tbl;
}
}
return NULL;
}
static struct unwind_idx *
search_index(const struct unwind_table *tbl, ulong ip)
{
struct unwind_idx *start = tbl->start;
struct unwind_idx *end = tbl->end;
/*
* Do a binary search for the addresses in the index table.
* Addresses are guaranteed to be sorted in ascending order.
*/
while (start < end - 1) {
struct unwind_idx *mid = start + ((end - start + 1) >> 1);
if (ip < mid->addr)
end = mid;
else
start = mid;
}
return start;
}
/*
* Convert a prel31 symbol to an absolute kernel virtual address.
*/
static ulong
prel31_to_addr(ulong addr, ulong insn)
{
/* sign extend to 32 bits */
long offset = ((long)insn << 1) >> 1;
return addr + offset;
}
static void
index_prel31_to_addr(struct unwind_table *tbl)
{
struct unwind_idx *idx = tbl->start;
ulong kvaddr = tbl->kv_base;
for (; idx < tbl->end; idx++, kvaddr += sizeof(struct unwind_idx))
idx->addr = prel31_to_addr(kvaddr, idx->addr);
}
static int
unwind_frame(struct stackframe *frame, ulong stacktop)
{
const struct unwind_table *tbl;
struct unwind_ctrl_block ctrl;
struct unwind_idx *idx;
ulong low, high;
int fpindex = FP;
low = frame->sp;
high = stacktop;
if (!is_kernel_text(frame->pc))
return FALSE;
/* Thumb needs R7 instead of FP */
if (frame->pc & 1)
fpindex = R7;
tbl = search_table(frame->pc);
if (!tbl) {
error(WARNING, "UNWIND: cannot find unwind table for %lx\n",
frame->pc);
return FALSE;
}
idx = search_index(tbl, frame->pc);
ctrl.vrs[fpindex] = frame->fp;
ctrl.vrs[SP] = frame->sp;
ctrl.vrs[LR] = frame->lr;
ctrl.vrs[PC] = 0;
if (CRASHDEBUG(5)) {
fprintf(fp, "UNWIND: >frame: FP=%lx\n", ctrl.vrs[fpindex]);
fprintf(fp, "UNWIND: >frame: SP=%lx\n", ctrl.vrs[SP]);
fprintf(fp, "UNWIND: >frame: LR=%lx\n", ctrl.vrs[LR]);
fprintf(fp, "UNWIND: >frame: PC=%lx\n", ctrl.vrs[PC]);
}
if (idx->insn == 1) {
/* can't unwind */
return FALSE;
} else if ((idx->insn & 0x80000000) == 0) {
/* insn contains prel31 offset to the EHT entry */
/*
* Calculate a byte offset for idx->insn from the
* start of our copy of the index table. This offset
* is used to get a kernel virtual address of the
* unwind index entry (idx_kvaddr).
*/
ulong idx_offset = (ulong)&idx->insn - (ulong)tbl->start;
ulong idx_kvaddr = tbl->kv_base + idx_offset;
/*
* Now compute a kernel virtual address for the EHT
* entry by adding prel31 offset (idx->insn) to the
* unwind index entry address (idx_kvaddr) and read
* the EHT entry.
*/
ctrl.insn_kvaddr = prel31_to_addr(idx_kvaddr, idx->insn);
if (!unwind_get_insn(&ctrl))
return FALSE;
} else if ((idx->insn & 0xff000000) == 0x80000000) {
/* EHT entry is encoded in the insn itself */
ctrl.insn = idx->insn;
} else {
error(WARNING, "UNWIND: unsupported instruction %lx\n",
idx->insn);
return FALSE;
}
/* check the personality routine */
if ((ctrl.insn & 0xff000000) == 0x80000000) {
/* personality routine 0 */
ctrl.byte = 2;
ctrl.entries = 1;
} else if ((ctrl.insn & 0xff000000) == 0x81000000) {
/* personality routine 1 */
ctrl.byte = 1;
ctrl.entries = 1 + ((ctrl.insn & 0x00ff0000) >> 16);
} else {
error(WARNING, "UNWIND: unsupported personality routine\n");
return FALSE;
}
/* now, execute the instructions */
while (ctrl.entries > 0) {
if (!unwind_exec_insn(&ctrl)) {
error(WARNING, "UNWIND: failed to exec instruction\n");
return FALSE;
}
if (ctrl.vrs[SP] < low || ctrl.vrs[SP] >= high)
return FALSE;
}
if (ctrl.vrs[PC] == 0)
ctrl.vrs[PC] = ctrl.vrs[LR];
if (frame->pc == ctrl.vrs[PC])
return FALSE;
frame->fp = ctrl.vrs[fpindex];
frame->sp = ctrl.vrs[SP];
frame->lr = ctrl.vrs[LR];
frame->pc = ctrl.vrs[PC];
if (CRASHDEBUG(5)) {
fprintf(fp, "UNWIND: <frame: FP=%lx\n", ctrl.vrs[fpindex]);
fprintf(fp, "UNWIND: <frame: SP=%lx\n", ctrl.vrs[SP]);
fprintf(fp, "UNWIND: <frame: LR=%lx\n", ctrl.vrs[LR]);
fprintf(fp, "UNWIND: <frame: PC=%lx\n", ctrl.vrs[PC]);
}
return TRUE;
}
void
unwind_backtrace(struct bt_info *bt)
{
struct stackframe frame;
int n = 0;
BZERO(&frame, sizeof(frame));
frame.fp = bt->frameptr;
frame.sp = bt->stkptr;
frame.pc = bt->instptr;
/*
* In case bt->machdep contains pointer to a full register set, we take
* LR from there.
*/
if (bt->machdep) {
const struct arm_pt_regs *regs = bt->machdep;
frame.fp = regs->ARM_fp;
frame.lr = regs->ARM_lr;
}
while (IS_KVADDR(bt->instptr)) {
if (!unwind_frame(&frame, bt->stacktop))
break;
arm_dump_backtrace_entry(bt, n++, frame.lr, frame.sp);
bt->instptr = frame.pc;
bt->stkptr = frame.sp;
}
}
#endif /* ARM */