crash/net.c
Dave Anderson 2a38cb01c8 Speed up session initialization by attempting MEMBER_OFFSET_INIT()
before falling back to ANON_MEMBER_OFFSET_INIT() in several known
cases of structure members that are contained within anonymous
structures.
(anderson@redhat.com)
2016-08-26 14:37:05 -04:00

1666 lines
46 KiB
C

/* net.c - core analysis suite
*
* Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
* Copyright (C) 2002-2016 David Anderson
* Copyright (C) 2002-2016 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "defs.h"
#include <netinet/in.h>
#include <netdb.h>
#include <net/if_arp.h>
#include <arpa/inet.h>
/*
* Cache values we need that can change based on OS version, or any other
* variables static to this file. These are setup in net_init(). Dump
* the table during runtime via "help -n".
*/
struct net_table {
ulong flags;
char *netdevice; /* name of net device */
char *dev_name_t; /* readmem ID's */
char *dev_type_t;
char *dev_addr_t;
long dev_name;
long dev_next;
long dev_type;
long dev_addr_len;
long dev_ip_ptr;
long in_device_ifa_list;
long in_ifaddr_ifa_next;
long in_ifaddr_ifa_address;
int net_device_name_index;
} net_table = { 0 };
struct net_table *net = &net_table;
#define NETDEV_INIT (0x1)
#define STRUCT_DEVICE (0x2)
#define STRUCT_NET_DEVICE (0x4)
#define SOCK_V1 (0x8)
#define SOCK_V2 (0x10)
#define NO_INET_SOCK (0x20)
#define DEV_NAME_MAX 100
struct devinfo {
char dev_name[DEV_NAME_MAX];
unsigned char dev_addr_len;
short dev_type;
};
#define BYTES_IP_ADDR 15 /* bytes to print IP addr (xxx.xxx.xxx.xxx) */
#define BYTES_PORT_NUM 5 /* bytes to print port number */
/* bytes needed for <ip address>:<port> notation */
#define BYTES_IP_TUPLE (BYTES_IP_ADDR + BYTES_PORT_NUM + 1)
static void show_net_devices(ulong);
static void show_net_devices_v2(ulong);
static void show_net_devices_v3(ulong);
static void print_neighbour_q(ulong, int);
static void get_netdev_info(ulong, struct devinfo *);
static void get_device_name(ulong, char *);
static void get_device_address(ulong, char *);
static void get_sock_info(ulong, char *);
static void dump_arp(void);
static void arp_state_to_flags(unsigned char);
static void dump_ether_hw(unsigned char *, int);
static void dump_sockets(ulong, struct reference *);
static int sym_socket_dump(ulong, int, int, ulong, struct reference *);
static void dump_hw_addr(unsigned char *, int);
static char *dump_in6_addr_port(uint16_t *, uint16_t, char *, int *);
#define MK_TYPE_T(f,s,m) \
do { \
(f) = malloc(strlen(s) + strlen(m) + 2); \
if ((f) == NULL) { \
error(WARNING, "malloc fail for type %s.%s", (s), (m)); \
} else { \
sprintf((f), "%s %s", (s), (m)); \
} \
} while(0)
void
net_init(void)
{
/*
* Note the order of the following checks. The device struct was
* renamed to net_device in 2.3, but there may be another struct
* called 'device' so we check for the new one first.
*/
STRUCT_SIZE_INIT(net_device, "net_device");
if (VALID_STRUCT(net_device)) {
net->netdevice = "net_device";
net->dev_next = MEMBER_OFFSET_INIT(net_device_next,
"net_device", "next");
net->dev_name = MEMBER_OFFSET_INIT(net_device_name,
"net_device", "name");
net->dev_type = MEMBER_OFFSET_INIT(net_device_type,
"net_device", "type");
net->dev_addr_len = MEMBER_OFFSET_INIT(net_device_addr_len,
"net_device", "addr_len");
net->dev_ip_ptr = MEMBER_OFFSET_INIT(net_device_ip_ptr,
"net_device", "ip_ptr");
MEMBER_OFFSET_INIT(net_device_dev_list, "net_device", "dev_list");
MEMBER_OFFSET_INIT(net_dev_base_head, "net", "dev_base_head");
ARRAY_LENGTH_INIT(net->net_device_name_index,
net_device_name, "net_device.name", NULL, sizeof(char));
net->flags |= (NETDEV_INIT|STRUCT_NET_DEVICE);
} else {
STRUCT_SIZE_INIT(device, "device");
if (VALID_STRUCT(device)) {
net->netdevice = "device";
net->dev_next = MEMBER_OFFSET_INIT(device_next,
"device", "next");
net->dev_name = MEMBER_OFFSET_INIT(device_name,
"device", "name");
net->dev_type = MEMBER_OFFSET_INIT(device_type,
"device", "type");
net->dev_ip_ptr = MEMBER_OFFSET_INIT(device_ip_ptr,
"device", "ip_ptr");
net->dev_addr_len = MEMBER_OFFSET_INIT(device_addr_len,
"device", "addr_len");
net->flags |= (NETDEV_INIT|STRUCT_DEVICE);
} else
error(WARNING,
"net_init: unknown device type for net device");
}
if (VALID_MEMBER(task_struct_nsproxy))
MEMBER_OFFSET_INIT(nsproxy_net_ns, "nsproxy", "net_ns");
if (net->flags & NETDEV_INIT) {
MK_TYPE_T(net->dev_name_t, net->netdevice, "name");
MK_TYPE_T(net->dev_type_t, net->netdevice, "type");
MK_TYPE_T(net->dev_addr_t, net->netdevice, "addr_len");
MEMBER_OFFSET_INIT(socket_sk, "socket", "sk");
MEMBER_OFFSET_INIT(neighbour_next, "neighbour", "next");
MEMBER_OFFSET_INIT(neighbour_primary_key,
"neighbour", "primary_key");
MEMBER_OFFSET_INIT(neighbour_ha, "neighbour", "ha");
MEMBER_OFFSET_INIT(neighbour_dev, "neighbour", "dev");
MEMBER_OFFSET_INIT(neighbour_nud_state,
"neighbour", "nud_state");
MEMBER_OFFSET_INIT(neigh_table_nht_ptr, "neigh_table", "nht");
if (VALID_MEMBER(neigh_table_nht_ptr)) {
MEMBER_OFFSET_INIT(neigh_table_hash_mask,
"neigh_hash_table", "hash_mask");
MEMBER_OFFSET_INIT(neigh_table_hash_shift,
"neigh_hash_table", "hash_shift");
MEMBER_OFFSET_INIT(neigh_table_hash_buckets,
"neigh_hash_table", "hash_buckets");
} else {
MEMBER_OFFSET_INIT(neigh_table_hash_buckets,
"neigh_table", "hash_buckets");
MEMBER_OFFSET_INIT(neigh_table_hash_mask,
"neigh_table", "hash_mask");
}
MEMBER_OFFSET_INIT(neigh_table_key_len,
"neigh_table", "key_len");
MEMBER_OFFSET_INIT(in_device_ifa_list,
"in_device", "ifa_list");
MEMBER_OFFSET_INIT(in_ifaddr_ifa_next,
"in_ifaddr", "ifa_next");
MEMBER_OFFSET_INIT(in_ifaddr_ifa_address,
"in_ifaddr", "ifa_address");
STRUCT_SIZE_INIT(sock, "sock");
MEMBER_OFFSET_INIT(sock_family, "sock", "family");
if (VALID_MEMBER(sock_family)) {
MEMBER_OFFSET_INIT(sock_daddr, "sock", "daddr");
MEMBER_OFFSET_INIT(sock_rcv_saddr, "sock", "rcv_saddr");
MEMBER_OFFSET_INIT(sock_dport, "sock", "dport");
MEMBER_OFFSET_INIT(sock_sport, "sock", "sport");
MEMBER_OFFSET_INIT(sock_num, "sock", "num");
MEMBER_OFFSET_INIT(sock_type, "sock", "type");
net->flags |= SOCK_V1;
} else {
/*
* struct sock {
* struct sock_common __sk_common;
* #define sk_family __sk_common.skc_family
* ...
*/
MEMBER_OFFSET_INIT(sock_common_skc_family,
"sock_common", "skc_family");
MEMBER_OFFSET_INIT(sock_sk_type, "sock", "sk_type");
/*
* struct inet_sock {
* struct sock sk;
* struct ipv6_pinfo *pinet6;
* struct inet_opt inet;
* };
*/
STRUCT_SIZE_INIT(inet_sock, "inet_sock");
STRUCT_SIZE_INIT(socket, "socket");
if (STRUCT_EXISTS("inet_opt")) {
MEMBER_OFFSET_INIT(inet_sock_inet, "inet_sock", "inet");
MEMBER_OFFSET_INIT(inet_opt_daddr, "inet_opt", "daddr");
MEMBER_OFFSET_INIT(inet_opt_rcv_saddr, "inet_opt", "rcv_saddr");
MEMBER_OFFSET_INIT(inet_opt_dport, "inet_opt", "dport");
MEMBER_OFFSET_INIT(inet_opt_sport, "inet_opt", "sport");
MEMBER_OFFSET_INIT(inet_opt_num, "inet_opt", "num");
} else { /* inet_opt moved to inet_sock */
ASSIGN_OFFSET(inet_sock_inet) = 0;
if (MEMBER_EXISTS("inet_sock", "daddr")) {
MEMBER_OFFSET_INIT(inet_opt_daddr, "inet_sock", "daddr");
MEMBER_OFFSET_INIT(inet_opt_rcv_saddr, "inet_sock", "rcv_saddr");
MEMBER_OFFSET_INIT(inet_opt_dport, "inet_sock", "dport");
MEMBER_OFFSET_INIT(inet_opt_sport, "inet_sock", "sport");
MEMBER_OFFSET_INIT(inet_opt_num, "inet_sock", "num");
} else if (MEMBER_EXISTS("inet_sock", "inet_daddr")) {
MEMBER_OFFSET_INIT(inet_opt_daddr, "inet_sock", "inet_daddr");
MEMBER_OFFSET_INIT(inet_opt_rcv_saddr, "inet_sock", "inet_rcv_saddr");
MEMBER_OFFSET_INIT(inet_opt_dport, "inet_sock", "inet_dport");
MEMBER_OFFSET_INIT(inet_opt_sport, "inet_sock", "inet_sport");
MEMBER_OFFSET_INIT(inet_opt_num, "inet_sock", "inet_num");
} else if ((MEMBER_OFFSET("inet_sock", "sk") == 0) &&
(MEMBER_OFFSET("sock", "__sk_common") == 0)) {
MEMBER_OFFSET_INIT(inet_opt_daddr, "sock_common", "skc_daddr");
if (INVALID_MEMBER(inet_opt_daddr))
ANON_MEMBER_OFFSET_INIT(inet_opt_daddr, "sock_common",
"skc_daddr");
MEMBER_OFFSET_INIT(inet_opt_rcv_saddr, "sock_common", "skc_rcv_saddr");
if (INVALID_MEMBER(inet_opt_rcv_saddr))
ANON_MEMBER_OFFSET_INIT(inet_opt_rcv_saddr, "sock_common",
"skc_rcv_saddr");
MEMBER_OFFSET_INIT(inet_opt_dport, "inet_sock", "inet_dport");
if (INVALID_MEMBER(inet_opt_dport)) {
MEMBER_OFFSET_INIT(inet_opt_dport, "sock_common",
"skc_dport");
if (INVALID_MEMBER(inet_opt_dport))
ANON_MEMBER_OFFSET_INIT(inet_opt_dport, "sock_common",
"skc_dport");
}
MEMBER_OFFSET_INIT(inet_opt_sport, "inet_sock", "inet_sport");
MEMBER_OFFSET_INIT(inet_opt_num, "inet_sock", "inet_num");
if (INVALID_MEMBER(inet_opt_num)) {
MEMBER_OFFSET_INIT(inet_opt_num, "sock_common", "skc_num");
if (INVALID_MEMBER(inet_opt_num))
ANON_MEMBER_OFFSET_INIT(inet_opt_num, "sock_common",
"skc_num");
}
}
}
if (VALID_STRUCT(inet_sock) &&
INVALID_MEMBER(inet_sock_inet)) {
/*
* gdb can't seem to figure out the inet_sock
* in later 2.6 kernels, returning this:
*
* struct inet_sock {
* <no data fields>
* }
*
* It does know the struct size, so kludge it
* to subtract the size of the inet_opt struct
* from the size of the containing inet_sock.
*/
net->flags |= NO_INET_SOCK;
ASSIGN_OFFSET(inet_sock_inet) =
SIZE(inet_sock) - STRUCT_SIZE("inet_opt");
}
/*
* If necessary, set inet_sock size and inet_sock_inet offset,
* accounting for the configuration-dependent, intervening,
* struct ipv6_pinfo pointer located in between the sock and
* inet_opt members of the inet_sock.
*/
if (!VALID_STRUCT(inet_sock))
{
if (symbol_exists("tcpv6_protocol") &&
symbol_exists("udpv6_protocol")) {
ASSIGN_SIZE(inet_sock) = SIZE(sock) +
sizeof(void *) + STRUCT_SIZE("inet_opt");
ASSIGN_OFFSET(inet_sock_inet) = SIZE(sock) +
sizeof(void *);
} else {
ASSIGN_SIZE(inet_sock) = SIZE(sock) +
STRUCT_SIZE("inet_opt");
ASSIGN_OFFSET(inet_sock_inet) = SIZE(sock);
}
}
MEMBER_OFFSET_INIT(ipv6_pinfo_rcv_saddr, "ipv6_pinfo", "rcv_saddr");
MEMBER_OFFSET_INIT(ipv6_pinfo_daddr, "ipv6_pinfo", "daddr");
STRUCT_SIZE_INIT(in6_addr, "in6_addr");
MEMBER_OFFSET_INIT(socket_alloc_vfs_inode, "socket_alloc", "vfs_inode");
net->flags |= SOCK_V2;
}
}
}
/*
* The net command...
*/
#define NETOPTS "N:asSR:xdn"
#define s_FLAG FOREACH_s_FLAG
#define S_FLAG FOREACH_S_FLAG
#define x_FLAG FOREACH_x_FLAG
#define d_FLAG FOREACH_d_FLAG
#define NET_REF_FOUND (0x1)
#define NET_REF_HEXNUM (0x2)
#define NET_REF_DECNUM (0x4)
#define NET_TASK_HEADER_PRINTED (0x8)
#define NET_SOCK_HEADER_PRINTED (0x10)
#define NET_REF_FOUND_ITEM (0x20)
#define NET_REFERENCE_CHECK(X) (X)
#define NET_REFERENCE_FOUND(X) ((X) && ((X)->cmdflags & NET_REF_FOUND))
void
cmd_net(void)
{
int c;
ulong sflag, nflag, aflag;
ulong value;
ulong task;
struct task_context *tc = NULL;
struct in_addr in_addr;
struct reference reference, *ref;
if (!(net->flags & NETDEV_INIT))
error(FATAL, "net subsystem not initialized!");
ref = NULL;
sflag = nflag = aflag = 0;
task = pid_to_task(0);
while ((c = getopt(argcnt, args, NETOPTS)) != EOF) {
switch (c) {
case 'R':
if (ref)
error(INFO, "only one -R option allowed\n");
else {
ref = &reference;
BZERO(ref, sizeof(struct reference));
ref->str = optarg;
}
break;
case 'a':
dump_arp();
aflag++;
break;
case 'N':
value = stol(optarg, FAULT_ON_ERROR, NULL);
in_addr.s_addr = (in_addr_t)value;
fprintf(fp, "%s\n", inet_ntoa(in_addr));
return;
case 's':
if (sflag & S_FLAG)
error(INFO,
"only one -s or -S option allowed\n");
else
sflag |= s_FLAG;
break;
case 'S':
if (sflag & s_FLAG)
error(INFO,
"only one -s or -S option allowed\n");
else
sflag |= S_FLAG;
break;
case 'x':
if (sflag & d_FLAG)
error(FATAL,
"-d and -x are mutually exclusive\n");
sflag |= x_FLAG;
break;
case 'd':
if (sflag & x_FLAG)
error(FATAL,
"-d and -x are mutually exclusive\n");
sflag |= d_FLAG;
break;
case 'n':
nflag = 1;
task = CURRENT_TASK();
if (args[optind]) {
switch (str_to_context(args[optind],
&value, &tc)) {
case STR_PID:
case STR_TASK:
task = tc->task;
}
}
break;
default:
argerrs++;
break;
}
}
if (argerrs)
cmd_usage(pc->curcmd, SYNOPSIS);
if (sflag & (s_FLAG|S_FLAG))
dump_sockets(sflag, ref);
else {
if ((argcnt == 1) || nflag)
show_net_devices(task);
else if (!aflag)
cmd_usage(pc->curcmd, SYNOPSIS);
}
}
/*
* Just display the address and name of each net device.
*/
static void
show_net_devices(ulong task)
{
ulong next;
long flen;
char buf[BUFSIZE];
if (symbol_exists("dev_base_head")) {
show_net_devices_v2(task);
return;
} else if (symbol_exists("init_net")) {
show_net_devices_v3(task);
return;
}
if (!symbol_exists("dev_base"))
error(FATAL, "dev_base, dev_base_head or init_net do not exist!\n");
get_symbol_data("dev_base", sizeof(void *), &next);
if (!net->netdevice || !next)
return;
flen = MAX(VADDR_PRLEN, strlen(net->netdevice));
fprintf(fp, "%s NAME IP ADDRESS(ES)\n",
mkstring(upper_case(net->netdevice, buf),
flen, CENTER|LJUST, NULL));
do {
fprintf(fp, "%s ",
mkstring(buf, flen, CENTER|RJUST|LONG_HEX, MKSTR(next)));
get_device_name(next, buf);
fprintf(fp, "%-6s ", buf);
get_device_address(next, buf);
fprintf(fp, "%s\n", buf);
readmem(next+net->dev_next, KVADDR, &next,
sizeof(void *), "(net_)device.next", FAULT_ON_ERROR);
} while (next);
}
static void
show_net_devices_v2(ulong task)
{
struct list_data list_data, *ld;
char *net_device_buf;
char buf[BUFSIZE];
int ndevcnt, i;
long flen;
if (!net->netdevice) /* initialized in net_init() */
return;
flen = MAX(VADDR_PRLEN, strlen(net->netdevice));
fprintf(fp, "%s NAME IP ADDRESS(ES)\n",
mkstring(upper_case(net->netdevice, buf),
flen, CENTER|LJUST, NULL));
net_device_buf = GETBUF(SIZE(net_device));
ld = &list_data;
BZERO(ld, sizeof(struct list_data));
ld->flags |= LIST_ALLOCATE;
get_symbol_data("dev_base_head", sizeof(void *), &ld->start);
ld->end = symbol_value("dev_base_head");
ld->list_head_offset = OFFSET(net_device_dev_list);
ndevcnt = do_list(ld);
for (i = 0; i < ndevcnt; ++i) {
readmem(ld->list_ptr[i], KVADDR, net_device_buf,
SIZE(net_device), "net_device buffer",
FAULT_ON_ERROR);
fprintf(fp, "%s ",
mkstring(buf, flen, CENTER|RJUST|LONG_HEX,
MKSTR(ld->list_ptr[i])));
get_device_name(ld->list_ptr[i], buf);
fprintf(fp, "%-6s ", buf);
get_device_address(ld->list_ptr[i], buf);
fprintf(fp, "%s\n", buf);
}
FREEBUF(ld->list_ptr);
FREEBUF(net_device_buf);
}
static void
show_net_devices_v3(ulong task)
{
ulong nsproxy_p, net_ns_p;
struct list_data list_data, *ld;
char *net_device_buf;
char buf[BUFSIZE];
int ndevcnt, i;
long flen;
if (!net->netdevice) /* initialized in net_init() */
return;
flen = MAX(VADDR_PRLEN, strlen(net->netdevice));
fprintf(fp, "%s NAME IP ADDRESS(ES)\n",
mkstring(upper_case(net->netdevice, buf),
flen, CENTER|LJUST, NULL));
net_device_buf = GETBUF(SIZE(net_device));
ld = &list_data;
BZERO(ld, sizeof(struct list_data));
ld->flags |= LIST_ALLOCATE;
if (VALID_MEMBER(nsproxy_net_ns)) {
readmem(task + OFFSET(task_struct_nsproxy), KVADDR, &nsproxy_p,
sizeof(ulong), "task_struct.nsproxy", FAULT_ON_ERROR);
if (!readmem(nsproxy_p + OFFSET(nsproxy_net_ns), KVADDR, &net_ns_p,
sizeof(ulong), "nsproxy.net_ns", RETURN_ON_ERROR|QUIET))
error(FATAL, "cannot determine net_namespace location!\n");
} else
net_ns_p = symbol_value("init_net");
ld->start = ld->end = net_ns_p + OFFSET(net_dev_base_head);
ld->list_head_offset = OFFSET(net_device_dev_list);
ndevcnt = do_list(ld);
/*
* Skip the first entry (init_net).
*/
for (i = 1; i < ndevcnt; ++i) {
readmem(ld->list_ptr[i], KVADDR, net_device_buf,
SIZE(net_device), "net_device buffer",
FAULT_ON_ERROR);
fprintf(fp, "%s ",
mkstring(buf, flen, CENTER|RJUST|LONG_HEX,
MKSTR(ld->list_ptr[i])));
get_device_name(ld->list_ptr[i], buf);
fprintf(fp, "%-6s ", buf);
get_device_address(ld->list_ptr[i], buf);
fprintf(fp, "%s\n", buf);
}
FREEBUF(ld->list_ptr);
FREEBUF(net_device_buf);
}
/*
* Perform the actual work of dumping the ARP table...
*/
#define ARP_HEADING \
"NEIGHBOUR IP ADDRESS HW TYPE HW ADDRESS DEVICE STATE"
static void
dump_arp(void)
{
ulong arp_tbl; /* address of arp_tbl */
ulong *hash_buckets;
ulong hash;
long hash_bytes;
int nhash_buckets = 0;
int key_len;
int i;
int header_printed = 0;
int hash_mask = 0;
ulong nht;
if (!symbol_exists("arp_tbl"))
error(FATAL, "arp_tbl does not exist in this kernel\n");
arp_tbl = symbol_value("arp_tbl");
/*
* NOTE: 2.6.8 -> 2.6.9 neigh_table struct changed from:
*
* struct neighbour *hash_buckets[32];
* to
* struct neighbour **hash_buckets;
*
* Use 'hash_mask' as indicator to decide if we're dealing
* with an array or a pointer.
*
* Around 2.6.37 neigh_hash_table struct has been introduced
* and pointer to it has been added to neigh_table.
*/
if (VALID_MEMBER(neigh_table_nht_ptr)) {
readmem(arp_tbl + OFFSET(neigh_table_nht_ptr),
KVADDR, &nht, sizeof(nht),
"neigh_table nht", FAULT_ON_ERROR);
/* NB! Re-use of offsets like neigh_table_hash_mask
* with neigh_hash_table structure */
if (VALID_MEMBER(neigh_table_hash_mask)) {
readmem(nht + OFFSET(neigh_table_hash_mask),
KVADDR, &hash_mask, sizeof(hash_mask),
"neigh_hash_table hash_mask", FAULT_ON_ERROR);
nhash_buckets = hash_mask + 1;
} else if (VALID_MEMBER(neigh_table_hash_shift)) {
readmem(nht + OFFSET(neigh_table_hash_shift),
KVADDR, &hash_mask, sizeof(hash_mask),
"neigh_hash_table hash_shift", FAULT_ON_ERROR);
nhash_buckets = 1U << hash_mask;
}
} else if (VALID_MEMBER(neigh_table_hash_mask)) {
readmem(arp_tbl + OFFSET(neigh_table_hash_mask),
KVADDR, &hash_mask, sizeof(hash_mask),
"neigh_table hash_mask", FAULT_ON_ERROR);
nhash_buckets = hash_mask + 1;
} else
nhash_buckets = (i = ARRAY_LENGTH(neigh_table_hash_buckets)) ?
i : get_array_length("neigh_table.hash_buckets",
NULL, sizeof(void *));
if (nhash_buckets == 0) {
option_not_supported('a');
return;
}
hash_bytes = nhash_buckets * sizeof(*hash_buckets);
hash_buckets = (ulong *)GETBUF(hash_bytes);
readmem(arp_tbl + OFFSET(neigh_table_key_len),
KVADDR, &key_len, sizeof(key_len),
"neigh_table key_len", FAULT_ON_ERROR);
if (VALID_MEMBER(neigh_table_nht_ptr)) {
readmem(nht + OFFSET(neigh_table_hash_buckets),
KVADDR, &hash, sizeof(hash),
"neigh_hash_table hash_buckets ptr", FAULT_ON_ERROR);
readmem(hash, KVADDR, hash_buckets, hash_bytes,
"neigh_hash_table hash_buckets", FAULT_ON_ERROR);
} else if (hash_mask) {
readmem(arp_tbl + OFFSET(neigh_table_hash_buckets),
KVADDR, &hash, sizeof(hash),
"neigh_table hash_buckets pointer", FAULT_ON_ERROR);
readmem(hash,
KVADDR, hash_buckets, hash_bytes,
"neigh_table hash_buckets", FAULT_ON_ERROR);
} else
readmem(arp_tbl + OFFSET(neigh_table_hash_buckets),
KVADDR, hash_buckets, hash_bytes,
"neigh_table hash_buckets", FAULT_ON_ERROR);
for (i = 0; i < nhash_buckets; i++) {
if (hash_buckets[i] != (ulong)NULL) {
if (!header_printed) {
fprintf(fp, "%s\n", ARP_HEADING);
header_printed = 1;
}
print_neighbour_q(hash_buckets[i], key_len);
}
}
fflush(fp);
FREEBUF(hash_buckets);
}
/*
* Dump out the relevant information of a neighbour structure for the
* ARP table.
*/
static void
print_neighbour_q(ulong addr, int key_len)
{
int i;
ulong dev; /* dev address of this struct */
unsigned char *ha_buf; /* buffer for hardware address */
uint ha_size; /* size of HW address */
uint ipaddr; /* hold ipaddr (aka primary_key) */
struct devinfo dinfo;
unsigned char state; /* state of ARP entry */
struct in_addr in_addr;
ha_size = (i = ARRAY_LENGTH(neighbour_ha)) ?
i : get_array_length("neighbour.ha", NULL, sizeof(char));
ha_buf = (unsigned char *)GETBUF(ha_size);
while (addr) {
readmem(addr + OFFSET(neighbour_primary_key), KVADDR,
&ipaddr, sizeof(ipaddr), "neighbour primary_key",
FAULT_ON_ERROR);
readmem(addr + OFFSET(neighbour_ha), KVADDR, ha_buf, ha_size,
"neighbour ha", FAULT_ON_ERROR);
readmem(addr + OFFSET(neighbour_dev), KVADDR, &dev, sizeof(dev),
"neighbour dev", FAULT_ON_ERROR);
get_netdev_info(dev, &dinfo);
readmem(addr + OFFSET(neighbour_nud_state), KVADDR,
&state, sizeof(state), "neighbour nud_state",
FAULT_ON_ERROR);
in_addr.s_addr = ipaddr;
fprintf(fp, "%-16lx %-16s", addr, inet_ntoa(in_addr));
switch (dinfo.dev_type) {
case ARPHRD_ETHER:
/*
* Use the actual HW address size in the device struct
* rather than the max size of the array (as was done
* during the readmem() call above....
*/
fprintf(fp, "%-10s ", "ETHER");
dump_ether_hw(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_NETROM:
fprintf(fp, "%-10s ", "NETROM");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_EETHER:
fprintf(fp, "%-10s ", "EETHER");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_AX25:
fprintf(fp, "%-10s ", "AX25");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_PRONET:
fprintf(fp, "%-10s ", "PRONET");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_CHAOS:
fprintf(fp, "%-10s ", "CHAOS");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_IEEE802:
fprintf(fp, "%-10s ", "IEEE802");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_ARCNET:
fprintf(fp, "%-10s ", "ARCNET");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_APPLETLK:
fprintf(fp, "%-10s ", "APPLETLK");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_DLCI:
fprintf(fp, "%-10s ", "DLCI");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
case ARPHRD_METRICOM:
fprintf(fp, "%-10s ", "METRICOM");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
default:
fprintf(fp, "%-10s ", "UNKNOWN");
dump_hw_addr(ha_buf, dinfo.dev_addr_len);
break;
}
fprintf(fp, " %-6s ", dinfo.dev_name);
arp_state_to_flags(state);
readmem(addr + OFFSET(neighbour_next), KVADDR,
&addr, sizeof(addr), "neighbour next", FAULT_ON_ERROR);
}
FREEBUF(ha_buf);
}
/*
* read netdevice info....
*/
static void
get_netdev_info(ulong devaddr, struct devinfo *dip)
{
short dev_type;
get_device_name(devaddr, dip->dev_name);
readmem(devaddr + net->dev_type, KVADDR,
&dev_type, sizeof(dev_type), net->dev_type_t, FAULT_ON_ERROR);
dip->dev_type = dev_type;
readmem(devaddr + net->dev_addr_len, KVADDR,
&dip->dev_addr_len, sizeof(dip->dev_addr_len), net->dev_addr_t,
FAULT_ON_ERROR);
}
/*
* Get the device name.
*/
static void
get_device_name(ulong devaddr, char *buf)
{
ulong name_addr;
switch (net->flags & (STRUCT_DEVICE|STRUCT_NET_DEVICE))
{
case STRUCT_NET_DEVICE:
if (net->net_device_name_index > 0) {
readmem(devaddr + net->dev_name, KVADDR,
buf, net->net_device_name_index,
net->dev_name_t, FAULT_ON_ERROR);
return;
}
/* fallthrough */
case STRUCT_DEVICE:
readmem(devaddr + net->dev_name, KVADDR,
&name_addr, sizeof(name_addr), net->dev_name_t,
FAULT_ON_ERROR);
read_string(name_addr, buf, DEV_NAME_MAX);
break;
}
}
/*
* Get the device address.
*
* {net_}device->ip_ptr points to in_device.
* in_device->in_ifaddr points to in_ifaddr list.
* in_ifaddr->ifa_address contains the address.
* in_ifaddr->ifa_next points to the next in_ifaddr in the list (if any).
*
*/
static void
get_device_address(ulong devaddr, char *buf)
{
ulong ip_ptr, ifa_list;
struct in_addr ifa_address;
BZERO(buf, BUFSIZE);
readmem(devaddr + net->dev_ip_ptr, KVADDR,
&ip_ptr, sizeof(ulong), "ip_ptr", FAULT_ON_ERROR);
if (!ip_ptr)
return;
readmem(ip_ptr + OFFSET(in_device_ifa_list), KVADDR,
&ifa_list, sizeof(ulong), "ifa_list", FAULT_ON_ERROR);
while (ifa_list) {
readmem(ifa_list + OFFSET(in_ifaddr_ifa_address), KVADDR,
&ifa_address, sizeof(struct in_addr), "ifa_address",
FAULT_ON_ERROR);
sprintf(&buf[strlen(buf)], "%s%s",
strlen(buf) ? ", " : "",
inet_ntoa(ifa_address));
readmem(ifa_list + OFFSET(in_ifaddr_ifa_next), KVADDR,
&ifa_list, sizeof(ulong), "ifa_next", FAULT_ON_ERROR);
}
}
/*
* Get the family, type, local and destination address/port pairs.
*/
static void
get_sock_info(ulong sock, char *buf)
{
uint32_t daddr, rcv_saddr;
uint16_t dport, sport;
ushort family, type;
ushort num ATTRIBUTE_UNUSED;
char *sockbuf, *inet_sockbuf;
ulong ipv6_pinfo, ipv6_rcv_saddr, ipv6_daddr;
uint16_t u6_addr16_src[8];
uint16_t u6_addr16_dest[8];
char buf2[BUFSIZE];
struct in_addr in_addr;
int len;
BZERO(buf, BUFSIZE);
BZERO(buf2, BUFSIZE);
sockbuf = inet_sockbuf = NULL;
rcv_saddr = daddr = 0;
dport = sport = 0;
family = type = 0;
ipv6_pinfo = 0;
switch (net->flags & (SOCK_V1|SOCK_V2))
{
case SOCK_V1:
sockbuf = GETBUF(SIZE(sock));
readmem(sock, KVADDR, sockbuf, SIZE(sock),
"sock buffer", FAULT_ON_ERROR);
daddr = UINT(sockbuf + OFFSET(sock_daddr));
rcv_saddr = UINT(sockbuf + OFFSET(sock_rcv_saddr));
dport = USHORT(sockbuf + OFFSET(sock_dport));
sport = USHORT(sockbuf + OFFSET(sock_sport));
num = USHORT(sockbuf + OFFSET(sock_num));
family = USHORT(sockbuf + OFFSET(sock_family));
type = USHORT(sockbuf + OFFSET(sock_type));
break;
case SOCK_V2:
inet_sockbuf = GETBUF(SIZE(inet_sock));
readmem(sock, KVADDR, inet_sockbuf, SIZE(inet_sock),
"inet_sock buffer", FAULT_ON_ERROR);
daddr = UINT(inet_sockbuf + OFFSET(inet_sock_inet) +
OFFSET(inet_opt_daddr));
rcv_saddr = UINT(inet_sockbuf + OFFSET(inet_sock_inet) +
OFFSET(inet_opt_rcv_saddr));
dport = USHORT(inet_sockbuf + OFFSET(inet_sock_inet) +
OFFSET(inet_opt_dport));
sport = USHORT(inet_sockbuf + OFFSET(inet_sock_inet) +
OFFSET(inet_opt_sport));
num = USHORT(inet_sockbuf + OFFSET(inet_sock_inet) +
OFFSET(inet_opt_num));
family = USHORT(inet_sockbuf + OFFSET(sock_common_skc_family));
type = USHORT(inet_sockbuf + OFFSET(sock_sk_type));
ipv6_pinfo = ULONG(inet_sockbuf + SIZE(sock));
break;
}
switch (family)
{
case AF_UNSPEC:
sprintf(buf, "UNSPEC:"); break;
case AF_UNIX:
sprintf(buf, "UNIX:"); break;
case AF_INET:
sprintf(buf, "INET:"); break;
case AF_AX25:
sprintf(buf, "AX25:"); break;
case AF_IPX:
sprintf(buf, "IPX:"); break;
case AF_APPLETALK:
sprintf(buf, "APPLETALK:"); break;
case AF_NETROM:
sprintf(buf, "NETROM:"); break;
case AF_BRIDGE:
sprintf(buf, "BRIDGE:"); break;
case AF_ATMPVC:
sprintf(buf, "ATMPVC:"); break;
case AF_X25:
sprintf(buf, "X25:"); break;
case AF_INET6:
sprintf(buf, "INET6:"); break;
case AF_ROSE:
sprintf(buf, "ROSE:"); break;
case AF_DECnet:
sprintf(buf, "DECnet:"); break;
case AF_NETBEUI:
sprintf(buf, "NETBEUI:"); break;
case AF_SECURITY:
sprintf(buf, "SECURITY/KEY:"); break;
case AF_NETLINK:
sprintf(buf, "NETLINK/ROUTE:"); break;
case AF_PACKET:
sprintf(buf, "PACKET:"); break;
case AF_ASH:
sprintf(buf, "ASH:"); break;
case AF_ECONET:
sprintf(buf, "ECONET:"); break;
case AF_ATMSVC:
sprintf(buf, "ATMSVC:"); break;
case AF_SNA:
sprintf(buf, "SNA:"); break;
case AF_IRDA:
sprintf(buf, "IRDA:"); break;
#ifndef AF_PPPOX
#define AF_PPPOX 24
#endif
case AF_PPPOX:
sprintf(buf, "PPPOX:"); break;
default:
sprintf(buf, "%d:", family); break;
}
switch (type)
{
case SOCK_STREAM:
sprintf(&buf[strlen(buf)], "STREAM"); break;
case SOCK_DGRAM:
sprintf(&buf[strlen(buf)], "DGRAM "); break;
case SOCK_RAW:
sprintf(&buf[strlen(buf)], "RAW"); break;
case SOCK_RDM:
sprintf(&buf[strlen(buf)], "RDM"); break;
case SOCK_SEQPACKET:
sprintf(&buf[strlen(buf)], "SEQPACKET"); break;
case SOCK_PACKET:
sprintf(&buf[strlen(buf)], "PACKET"); break;
default:
sprintf(&buf[strlen(buf)], "%d", type); break;
}
/* make sure we have room at the end... */
// sprintf(&buf[strlen(buf)], "%s", space(MINSPACE-1));
sprintf(&buf[strlen(buf)], " ");
if (family == AF_INET) {
if (BITS32()) {
in_addr.s_addr = rcv_saddr;
sprintf(&buf[strlen(buf)], "%*s-%-*d%s",
BYTES_IP_ADDR,
inet_ntoa(in_addr),
BYTES_PORT_NUM,
ntohs(sport),
space(1));
in_addr.s_addr = daddr;
sprintf(&buf[strlen(buf)], "%*s-%-*d%s",
BYTES_IP_ADDR,
inet_ntoa(in_addr),
BYTES_PORT_NUM,
ntohs(dport),
space(1));
} else {
in_addr.s_addr = rcv_saddr;
sprintf(&buf[strlen(buf)], " %s-%d ",
inet_ntoa(in_addr),
ntohs(sport));
in_addr.s_addr = daddr;
sprintf(&buf[strlen(buf)], "%s-%d",
inet_ntoa(in_addr),
ntohs(dport));
}
}
if (sockbuf)
FREEBUF(sockbuf);
if (inet_sockbuf)
FREEBUF(inet_sockbuf);
if (family != AF_INET6)
return;
switch (net->flags & (SOCK_V1|SOCK_V2))
{
case SOCK_V1:
break;
case SOCK_V2:
if (INVALID_MEMBER(ipv6_pinfo_rcv_saddr) ||
INVALID_MEMBER(ipv6_pinfo_daddr))
break;
ipv6_rcv_saddr = ipv6_pinfo + OFFSET(ipv6_pinfo_rcv_saddr);
ipv6_daddr = ipv6_pinfo + OFFSET(ipv6_pinfo_daddr);
if (!readmem(ipv6_rcv_saddr, KVADDR, u6_addr16_src, SIZE(in6_addr),
"ipv6_rcv_saddr buffer", QUIET|RETURN_ON_ERROR))
break;
if (!readmem(ipv6_daddr, KVADDR, u6_addr16_dest, SIZE(in6_addr),
"ipv6_daddr buffer", QUIET|RETURN_ON_ERROR))
break;
sprintf(&buf[strlen(buf)], "%*s ", BITS32() ? 22 : 12,
dump_in6_addr_port(u6_addr16_src, sport, buf2, &len));
if (BITS32() && (len > 22))
len = 1;
mkstring(dump_in6_addr_port(u6_addr16_dest, dport, buf2, NULL),
len, CENTER, NULL);
sprintf(&buf[strlen(buf)], "%s", buf2);
break;
}
}
static char *
dump_in6_addr_port(uint16_t *addr, uint16_t port, char *buf, int *len)
{
sprintf(buf, "%x:%x:%x:%x:%x:%x:%x:%x-%d",
ntohs(addr[0]),
ntohs(addr[1]),
ntohs(addr[2]),
ntohs(addr[3]),
ntohs(addr[4]),
ntohs(addr[5]),
ntohs(addr[6]),
ntohs(addr[7]),
ntohs(port));
if (len)
*len = strlen(buf);
return buf;
}
/*
* XXX - copied from neighbour.h !!!!!!
*
* Neighbor Cache Entry States.
*/
#define NUD_INCOMPLETE 0x01
#define NUD_REACHABLE 0x02
#define NUD_STALE 0x04
#define NUD_DELAY 0x08
#define NUD_PROBE 0x10
#define NUD_FAILED 0x20
#define NUD_NOARP 0x40
#define NUD_PERMANENT 0x80
#define FLAGBUF_SIZE 100
#define FILLBUF(s) \
do { \
char *bp; \
int blen; \
blen=strlen(flag_buffer); \
if ((blen + strlen(s)) < FLAGBUF_SIZE-2) { \
bp = &flag_buffer[blen]; \
if (blen != 0) { \
sprintf(bp, "|%s", (s)); \
} else { \
sprintf(bp, "%s", (s)); \
} \
} \
} while(0)
/*
* Take the state of the ARP entry and print it out the flag associated
* with the binary state...
*/
static void
arp_state_to_flags(unsigned char state)
{
char flag_buffer[FLAGBUF_SIZE];
int had_flags = 0;
if (!state) {
fprintf(fp, "\n");
return;
}
bzero(flag_buffer, FLAGBUF_SIZE);
if (state & NUD_INCOMPLETE) {
FILLBUF("INCOMPLETE");
had_flags = 1;
}
if (state & NUD_REACHABLE) {
FILLBUF("REACHABLE");
had_flags = 1;
}
if (state & NUD_STALE) {
FILLBUF("STALE");
had_flags = 1;
}
if (state & NUD_DELAY) {
FILLBUF("DELAY");
had_flags = 1;
}
if (state & NUD_PROBE) {
FILLBUF("PROBE");
had_flags = 1;
}
if (state & NUD_FAILED) {
FILLBUF("FAILED");
had_flags = 1;
}
if (state & NUD_NOARP) {
FILLBUF("NOARP");
had_flags = 1;
}
if (state & NUD_PERMANENT) {
FILLBUF("PERMANENT");
had_flags = 1;
}
if (had_flags) {
fprintf(fp, "%s\n", flag_buffer);
/* fprintf(fp, "%29.29s%s)\n", " ", flag_buffer); */
}
}
#undef FILLBUF
/*
* Print out a formatted ethernet HW address....
*/
static void
dump_ether_hw(unsigned char *ha, int len)
{
int i;
for (i = 0; i < len; i++) {
char sep = ':';
if (i == (len - 1)) {
sep = ' ';
}
fprintf(fp, "%02x%c", ha[i], sep);
}
}
/*
* Catchall routine for dumping out a HA address whose format we
* don't know about...
*/
static void
dump_hw_addr(unsigned char *ha, int len)
{
int i;
for (i = 0; i < len; i++) {
fprintf(fp, "%02x ", ha[i]);
}
}
/*
* help -n output
*/
void
dump_net_table(void)
{
int others;
others = 0;
fprintf(fp, " flags: %lx (", net->flags);
if (net->flags & NETDEV_INIT)
fprintf(fp, "%sNETDEV_INIT", others++ ? "|" : "");
if (net->flags & STRUCT_DEVICE)
fprintf(fp, "%sSTRUCT_DEVICE", others++ ? "|" : "");
if (net->flags & STRUCT_NET_DEVICE)
fprintf(fp, "%sSTRUCT_NET_DEVICE", others++ ? "|" : "");
if (net->flags & NO_INET_SOCK)
fprintf(fp, "%sNO_INET_SOCK", others++ ? "|" : "");
if (net->flags & SOCK_V1)
fprintf(fp, "%sSOCK_V1", others++ ? "|" : "");
if (net->flags & SOCK_V2)
fprintf(fp, "%sSOCK_V2", others++ ? "|" : "");
fprintf(fp, ")\n");
fprintf(fp, " netdevice: \"%s\"\n", net->netdevice);
fprintf(fp, " dev_name_t: \"%s\"\n", net->dev_name_t);
fprintf(fp, " dev_type_t: \"%s\"\n", net->dev_type_t);
fprintf(fp, " dev_addr_t: \"%s\"\n", net->dev_addr_t);
fprintf(fp, " dev_name: %ld\n", net->dev_name);
fprintf(fp, " dev_next: %ld\n", net->dev_next);
fprintf(fp, " dev_type: %ld\n", net->dev_type);
fprintf(fp, " dev_ip_ptr: %ld\n", net->dev_ip_ptr);
fprintf(fp, " dev_addr_len: %ld\n", net->dev_addr_len);
fprintf(fp, "net_device_name_index: %d\n", net->net_device_name_index);
}
/*
* Dump the open sockets for a given PID.
*/
static void
dump_sockets(ulong flag, struct reference *ref)
{
struct task_context *tc;
ulong value;
int subsequent;
if (!args[optind]) {
if (!NET_REFERENCE_CHECK(ref))
print_task_header(fp, CURRENT_CONTEXT(), 0);
dump_sockets_workhorse(CURRENT_TASK(), flag, ref);
return;
}
subsequent = 0;
while (args[optind]) {
switch (str_to_context(args[optind], &value, &tc))
{
case STR_PID:
for (tc = pid_to_context(value); tc; tc = tc->tc_next) {
if (!NET_REFERENCE_CHECK(ref))
print_task_header(fp, tc, subsequent++);
dump_sockets_workhorse(tc->task, flag, ref);
}
break;
case STR_TASK:
if (!NET_REFERENCE_CHECK(ref))
print_task_header(fp, tc, subsequent++);
dump_sockets_workhorse(tc->task, flag, ref);
break;
case STR_INVALID:
error(INFO, "%sinvalid task or pid value: %s\n",
subsequent++ ? "\n" : "", args[optind]);
break;
}
optind++;
}
}
/*
* Find all sockets in the designated task and call sym_socket_dump()
* to display them.
*/
void
dump_sockets_workhorse(ulong task, ulong flag, struct reference *ref)
{
ulong files_struct_addr = 0, fdtable_addr = 0;
int max_fdset = 0;
int max_fds = 0;
ulong open_fds_addr = 0;
fd_set open_fds;
ulong fd;
ulong file;
int i, j;
int sockets_found = 0;
ulong value;
/*
* Steps to getting open sockets:
*
* 1) task->files (struct files_struct)
* 2) files->fd (struct file **)
* 3) cycle through from 0 to files->open_fds offset from *fd
* i.e. fd[0], fd[1], fd[2] are pointers to the first three
* open file descriptors. Thus, we have:
* struct file *fd[0], *fd[1], *fd[2],...
*
* 4) file->f_dentry (struct dentry)
* 5) dentry->d_inode (struct inode)
* 6) S_ISSOCK(inode.mode)
* Assuming it _is_ a socket:
* 7) inode.u (struct socket) -- offset 0xdc from inode pointer
*/
readmem(task + OFFSET(task_struct_files), KVADDR, &files_struct_addr,
sizeof(void *), "task files contents", FAULT_ON_ERROR);
if (files_struct_addr) {
if (VALID_MEMBER(files_struct_max_fdset)) {
readmem(files_struct_addr + OFFSET(files_struct_max_fdset),
KVADDR, &max_fdset, sizeof(int),
"files_struct max_fdset", FAULT_ON_ERROR);
readmem(files_struct_addr + OFFSET(files_struct_max_fds),
KVADDR, &max_fds, sizeof(int), "files_struct max_fds",
FAULT_ON_ERROR);
}
else if (VALID_MEMBER(files_struct_fdt)) {
readmem(files_struct_addr + OFFSET(files_struct_fdt), KVADDR,
&fdtable_addr, sizeof(void *), "fdtable buffer",
FAULT_ON_ERROR);
if (VALID_MEMBER(fdtable_max_fdset))
readmem(fdtable_addr + OFFSET(fdtable_max_fdset),
KVADDR, &max_fdset, sizeof(int),
"fdtable_struct max_fdset", FAULT_ON_ERROR);
else
max_fdset = -1;
readmem(fdtable_addr + OFFSET(fdtable_max_fds),
KVADDR, &max_fds, sizeof(int), "fdtable_struct max_fds",
FAULT_ON_ERROR);
}
}
if ((VALID_MEMBER(files_struct_fdt) && !fdtable_addr) ||
!files_struct_addr || (max_fdset == 0) || (max_fds == 0)) {
if (!NET_REFERENCE_CHECK(ref))
fprintf(fp, "No open sockets.\n");
return;
}
if (VALID_MEMBER(fdtable_open_fds)){
readmem(fdtable_addr + OFFSET(fdtable_open_fds), KVADDR,
&open_fds_addr, sizeof(void *), "files_struct open_fds addr",
FAULT_ON_ERROR);
readmem(fdtable_addr + OFFSET(fdtable_fd), KVADDR, &fd,
sizeof(void *), "files_struct fd addr", FAULT_ON_ERROR);
} else {
readmem(files_struct_addr + OFFSET(files_struct_open_fds), KVADDR,
&open_fds_addr, sizeof(void *), "files_struct open_fds addr",
FAULT_ON_ERROR);
readmem(files_struct_addr + OFFSET(files_struct_fd), KVADDR, &fd,
sizeof(void *), "files_struct fd addr", FAULT_ON_ERROR);
}
if (open_fds_addr)
readmem(open_fds_addr, KVADDR, &open_fds, sizeof(fd_set),
"files_struct open_fds", FAULT_ON_ERROR);
if (!open_fds_addr || !fd) {
if (!NET_REFERENCE_CHECK(ref))
fprintf(fp, "No open sockets.\n");
return;
}
if (NET_REFERENCE_CHECK(ref)) {
if (IS_A_NUMBER(ref->str)) {
if (hexadecimal_only(ref->str, 0)) {
ref->hexval = htol(ref->str,
FAULT_ON_ERROR, NULL);
ref->cmdflags |= NET_REF_HEXNUM;
} else {
value = dtol(ref->str, FAULT_ON_ERROR, NULL);
if (value <= MAX(max_fdset, max_fds)) {
ref->decval = value;
ref->cmdflags |= NET_REF_DECNUM;
} else {
ref->hexval = htol(ref->str,
FAULT_ON_ERROR, NULL);
ref->cmdflags |= NET_REF_HEXNUM;
}
}
}
ref->ref1 = task;
}
j = 0;
for (;;) {
unsigned long set;
i = j * __NFDBITS;
if (((max_fdset >= 0) && (i >= max_fdset)) || (i >= max_fds))
break;
set = open_fds.__fds_bits[j++];
while (set) {
if (set & 1) {
readmem(fd + i*sizeof(struct file *), KVADDR,
&file, sizeof(struct file *),
"fd file", FAULT_ON_ERROR);
if (file) {
if (sym_socket_dump(file, i,
sockets_found, flag, ref)) {
sockets_found++;
}
}
}
i++;
set >>= 1;
}
}
if (!sockets_found && !NET_REFERENCE_CHECK(ref))
fprintf(fp, "No open sockets.\n");
if (NET_REFERENCE_FOUND(ref))
fprintf(fp, "\n");
}
/*
* Dump a struct socket symbolically. Dave makes this _very_ easy.
*
* Return TRUE if we found a socket, FALSE otherwise.
*/
static char *socket_hdr_32 =
"FD SOCKET SOCK FAMILY:TYPE SOURCE-PORT DESTINATION-PORT";
static char *socket_hdr_64 =
"FD SOCKET SOCK FAMILY:TYPE SOURCE-PORT DESTINATION-PORT";
static int
sym_socket_dump(ulong file,
int fd,
int sockets_found,
ulong flag,
struct reference *ref)
{
uint16_t umode16 = 0;
uint32_t umode32 = 0;
uint mode = 0;
ulong dentry = 0, inode = 0,
struct_socket = 0;
ulong sock = 0;
char *file_buf, *dentry_buf, *inode_buf, *socket_buf;
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char *socket_hdr = BITS32() ? socket_hdr_32 : socket_hdr_64;
unsigned int radix;
file_buf = fill_file_cache(file);
dentry = ULONG(file_buf + OFFSET(file_f_dentry));
if (flag & d_FLAG)
radix = 10;
else if (flag & x_FLAG)
radix = 16;
else
radix = 0;
if (!dentry)
return FALSE;
dentry_buf = fill_dentry_cache(dentry);
inode = ULONG(dentry_buf + OFFSET(dentry_d_inode));
if (!inode)
return FALSE;
inode_buf = fill_inode_cache(inode);
switch (SIZE(umode_t))
{
case SIZEOF_32BIT:
umode32 = UINT(inode_buf + OFFSET(inode_i_mode));
break;
case SIZEOF_16BIT:
umode16 = USHORT(inode_buf + OFFSET(inode_i_mode));
break;
}
if (SIZE(umode_t) == SIZEOF_32BIT)
mode = umode32;
else
mode = (uint)umode16;
if (!S_ISSOCK(mode))
return FALSE;
/*
* 2.6 (SOCK_V2) -- socket is inode addr minus sizeof(struct socket)
*/
switch (net->flags & (SOCK_V1|SOCK_V2))
{
case SOCK_V1:
struct_socket = inode + OFFSET(inode_u);
sock = ULONG(inode_buf + OFFSET(inode_u) + OFFSET(socket_sk));
break;
case SOCK_V2:
if (!VALID_SIZE(inet_sock))
error(FATAL,
"cannot determine what an inet_sock structure is\n");
struct_socket = inode - OFFSET(socket_alloc_vfs_inode);
socket_buf = GETBUF(SIZE(socket));
readmem(struct_socket, KVADDR, socket_buf,
SIZE(socket), "socket buffer", FAULT_ON_ERROR);
sock = ULONG(socket_buf + OFFSET(socket_sk));
FREEBUF(socket_buf);
break;
}
if (NET_REFERENCE_CHECK(ref)) {
if ((ref->cmdflags & NET_REF_HEXNUM) &&
((ref->hexval == sock) || (ref->hexval == struct_socket)))
ref->cmdflags |= NET_REF_FOUND_ITEM;
else if ((ref->cmdflags & NET_REF_DECNUM) &&
(ref->decval == (ulong)fd))
ref->cmdflags |= NET_REF_FOUND_ITEM;
else if ((ref->cmdflags & NET_REF_HEXNUM) &&
(ref->hexval == (ulong)fd))
ref->cmdflags |= NET_REF_FOUND_ITEM;
if (!(ref->cmdflags & NET_REF_FOUND_ITEM))
return FALSE;
ref->cmdflags &= ~NET_REF_FOUND_ITEM;
ref->cmdflags |= NET_REF_FOUND;
if (!(ref->cmdflags & NET_TASK_HEADER_PRINTED)) {
print_task_header(fp, task_to_context(ref->ref1), 0);
ref->cmdflags |= NET_TASK_HEADER_PRINTED;
}
if (!(ref->cmdflags & NET_SOCK_HEADER_PRINTED)) {
sockets_found = 0;
ref->cmdflags |= NET_SOCK_HEADER_PRINTED;
}
}
switch (flag & (S_FLAG|s_FLAG))
{
case S_FLAG:
fprintf(fp, "%sFD %s %s\n", sockets_found ? "\n" : "",
mkstring(buf1, VADDR_PRLEN, CENTER|LJUST, "SOCKET"),
mkstring(buf2, VADDR_PRLEN, CENTER|LJUST, "SOCK"));
fprintf(fp, "%2d %s %s\n\n",
fd,
mkstring(buf1, VADDR_PRLEN, RJUST|LONG_HEX,
MKSTR(struct_socket)),
mkstring(buf2, VADDR_PRLEN, RJUST|LONG_HEX,
MKSTR(sock)));
dump_struct("socket", struct_socket, radix);
switch (net->flags & (SOCK_V1|SOCK_V2))
{
case SOCK_V1:
dump_struct("sock", sock, radix);
break;
case SOCK_V2:
if (STRUCT_EXISTS("inet_sock") && !(net->flags & NO_INET_SOCK))
dump_struct("inet_sock", sock, radix);
else if (STRUCT_EXISTS("sock"))
dump_struct("sock", sock, radix);
else
fprintf(fp, "\nunable to display inet_sock structure\n");
break;
}
break;
case s_FLAG:
if (!sockets_found) {
fprintf(fp, "%s\n", socket_hdr);
}
fprintf(fp, "%2d%s%s%s%s%s",
fd, space(MINSPACE),
mkstring(buf1, VADDR_PRLEN, RJUST|LONG_HEX,
MKSTR(struct_socket)),
space(MINSPACE),
mkstring(buf2, VADDR_PRLEN, RJUST|LONG_HEX,
MKSTR(sock)),
space(MINSPACE));
buf1[0] = NULLCHAR;
get_sock_info(sock, buf1);
fprintf(fp, "%s\n", buf1);
return TRUE;
default:
error(FATAL, "illegal flag: %lx\n", flag);
}
return TRUE;
}