crash/xen_hyper.c

2150 lines
62 KiB
C

/*
* xen_hyper.c
*
* Portions Copyright (C) 2006-2007 Fujitsu Limited
* Portions Copyright (C) 2006-2007 VA Linux Systems Japan K.K.
*
* Authors: Itsuro Oda <oda@valinux.co.jp>
* Fumihiko Kakuma <kakuma@valinux.co.jp>
*
* This file is part of Xencrash.
*
* Xencrash is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Xencrash is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Xencrash; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "defs.h"
#ifdef XEN_HYPERVISOR_ARCH
#include "xen_hyper_defs.h"
static void xen_hyper_schedule_init(void);
/*
* Do initialization for Xen Hyper system here.
*/
void
xen_hyper_init(void)
{
char *buf;
#if defined(X86) || defined(X86_64)
long member_offset;
#endif
#ifdef X86_64
xht->xen_virt_start = symbol_value("start");
/*
* Xen virtual mapping is aligned to 1 GiB boundary.
* Image starts no more than 1 GiB below
* beginning of virtual address space.
*/
xht->xen_virt_start &= 0xffffffffc0000000;
#endif
if (machine_type("X86_64") &&
symbol_exists("xen_phys_start") && !xen_phys_start())
error(WARNING,
"This hypervisor is relocatable; if initialization fails below, try\n"
" using the \"--xen_phys_start <address>\" command line option.\n\n");
if (symbol_exists("crashing_cpu")) {
get_symbol_data("crashing_cpu", sizeof(xht->crashing_cpu),
&xht->crashing_cpu);
} else {
xht->crashing_cpu = XEN_HYPER_PCPU_ID_INVALID;
}
machdep->get_smp_cpus();
machdep->memory_size();
if (symbol_exists("__per_cpu_offset")) {
xht->flags |= XEN_HYPER_SMP;
if((xht->__per_cpu_offset = malloc(sizeof(ulong) * XEN_HYPER_MAX_CPUS())) == NULL) {
error(FATAL, "cannot malloc __per_cpu_offset space.\n");
}
if (!readmem(symbol_value("__per_cpu_offset"), KVADDR,
xht->__per_cpu_offset, sizeof(ulong) * XEN_HYPER_MAX_CPUS(),
"__per_cpu_offset", RETURN_ON_ERROR)) {
error(FATAL, "cannot read __per_cpu_offset.\n");
}
}
#if defined(X86) || defined(X86_64)
if (symbol_exists("__per_cpu_shift")) {
xht->percpu_shift = (int)symbol_value("__per_cpu_shift");
} else if (xen_major_version() >= 3 && xen_minor_version() >= 3) {
xht->percpu_shift = 13;
} else {
xht->percpu_shift = 12;
}
member_offset = MEMBER_OFFSET("cpuinfo_x86", "x86_model_id");
buf = GETBUF(XEN_HYPER_SIZE(cpuinfo_x86));
if (xen_hyper_test_pcpu_id(XEN_HYPER_CRASHING_CPU())) {
xen_hyper_x86_fill_cpu_data(XEN_HYPER_CRASHING_CPU(), buf);
} else {
xen_hyper_x86_fill_cpu_data(xht->cpu_idxs[0], buf);
}
strncpy(xht->utsname.machine, (char *)(buf + member_offset),
sizeof(xht->utsname.machine)-1);
FREEBUF(buf);
#elif defined(IA64)
buf = GETBUF(XEN_HYPER_SIZE(cpuinfo_ia64));
if (xen_hyper_test_pcpu_id(XEN_HYPER_CRASHING_CPU())) {
xen_hyper_ia64_fill_cpu_data(XEN_HYPER_CRASHING_CPU(), buf);
} else {
xen_hyper_ia64_fill_cpu_data(xht->cpu_idxs[0], buf);
}
strncpy(xht->utsname.machine, (char *)(buf + XEN_HYPER_OFFSET(cpuinfo_ia64_vendor)),
sizeof(xht->utsname.machine)-1);
FREEBUF(buf);
#endif
#ifndef IA64
XEN_HYPER_STRUCT_SIZE_INIT(note_buf_t, "note_buf_t");
XEN_HYPER_STRUCT_SIZE_INIT(crash_note_t, "crash_note_t");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_t_core, "crash_note_t", "core");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_t_xen, "crash_note_t", "xen");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_t_xen_regs, "crash_note_t", "xen_regs");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_t_xen_info, "crash_note_t", "xen_info");
XEN_HYPER_STRUCT_SIZE_INIT(crash_note_core_t, "crash_note_core_t");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_core_t_note, "crash_note_core_t", "note");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_core_t_desc, "crash_note_core_t", "desc");
XEN_HYPER_STRUCT_SIZE_INIT(crash_note_xen_t, "crash_note_xen_t");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_t_note, "crash_note_xen_t", "note");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_t_desc, "crash_note_xen_t", "desc");
XEN_HYPER_STRUCT_SIZE_INIT(crash_note_xen_core_t, "crash_note_xen_core_t");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_core_t_note, "crash_note_xen_core_t", "note");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_core_t_desc, "crash_note_xen_core_t", "desc");
XEN_HYPER_STRUCT_SIZE_INIT(crash_note_xen_info_t, "crash_note_xen_info_t");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_info_t_note, "crash_note_xen_info_t", "note");
XEN_HYPER_MEMBER_OFFSET_INIT(crash_note_xen_info_t_desc, "crash_note_xen_info_t", "desc");
XEN_HYPER_STRUCT_SIZE_INIT(crash_xen_core_t, "crash_xen_core_t");
XEN_HYPER_STRUCT_SIZE_INIT(crash_xen_info_t, "crash_xen_info_t");
XEN_HYPER_STRUCT_SIZE_INIT(xen_crash_xen_regs_t, "xen_crash_xen_regs_t");
XEN_HYPER_STRUCT_SIZE_INIT(ELF_Prstatus,"ELF_Prstatus");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_info, "ELF_Prstatus", "pr_info");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_cursig, "ELF_Prstatus", "pr_cursig");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_sigpend, "ELF_Prstatus", "pr_sigpend");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_sighold, "ELF_Prstatus", "pr_sighold");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_pid, "ELF_Prstatus", "pr_pid");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_ppid, "ELF_Prstatus", "pr_ppid");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_pgrp, "ELF_Prstatus", "pr_pgrp");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_sid, "ELF_Prstatus", "pr_sid");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_utime, "ELF_Prstatus", "pr_utime");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_stime, "ELF_Prstatus", "pr_stime");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_cutime, "ELF_Prstatus", "pr_cutime");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_cstime, "ELF_Prstatus", "pr_cstime");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_reg, "ELF_Prstatus", "pr_reg");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Prstatus_pr_fpvalid, "ELF_Prstatus", "pr_fpvalid");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Timeval_tv_sec, "ELF_Timeval", "tv_sec");
XEN_HYPER_MEMBER_OFFSET_INIT(ELF_Timeval_tv_usec, "ELF_Timeval", "tv_usec");
XEN_HYPER_STRUCT_SIZE_INIT(ELF_Signifo,"ELF_Signifo");
XEN_HYPER_STRUCT_SIZE_INIT(ELF_Gregset,"ELF_Gregset");
XEN_HYPER_STRUCT_SIZE_INIT(ELF_Timeval,"ELF_Timeval");
#endif
XEN_HYPER_STRUCT_SIZE_INIT(domain, "domain");
XEN_HYPER_STRUCT_SIZE_INIT(vcpu, "vcpu");
#ifndef IA64
XEN_HYPER_STRUCT_SIZE_INIT(cpu_info, "cpu_info");
#endif
XEN_HYPER_STRUCT_SIZE_INIT(cpu_user_regs, "cpu_user_regs");
xht->idle_vcpu_size = get_array_length("idle_vcpu", NULL, 0);
xht->idle_vcpu_array = (ulong *)malloc(xht->idle_vcpu_size * sizeof(ulong));
if (xht->idle_vcpu_array == NULL) {
error(FATAL, "cannot malloc idle_vcpu_array space.\n");
}
if (!readmem(symbol_value("idle_vcpu"), KVADDR, xht->idle_vcpu_array,
xht->idle_vcpu_size * sizeof(ulong), "idle_vcpu_array",
RETURN_ON_ERROR)) {
error(FATAL, "cannot read idle_vcpu array.\n");
}
/*
* Do some initialization.
*/
#ifndef IA64
xen_hyper_dumpinfo_init();
#endif
xhmachdep->pcpu_init();
xen_hyper_domain_init();
xen_hyper_vcpu_init();
xen_hyper_misc_init();
/*
* xen_hyper_post_init() have to be called after all initialize
* functions finished.
*/
xen_hyper_post_init();
}
/*
* Do initialization for Domain of Xen Hyper system here.
*/
void
xen_hyper_domain_init(void)
{
XEN_HYPER_MEMBER_OFFSET_INIT(domain_domain_id, "domain", "domain_id");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_tot_pages, "domain", "tot_pages");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_max_pages, "domain", "max_pages");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_xenheap_pages, "domain", "xenheap_pages");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_shared_info, "domain", "shared_info");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_sched_priv, "domain", "sched_priv");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_next_in_list, "domain", "next_in_list");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_domain_flags, "domain", "domain_flags");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_evtchn, "domain", "evtchn");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_hvm, "domain", "is_hvm");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_guest_type, "domain", "guest_type");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_privileged, "domain", "is_privileged");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_debugger_attached, "domain", "debugger_attached");
/*
* Will be removed in Xen 4.4 (hg ae9b223a675d),
* need to check that with XEN_HYPER_VALID_MEMBER() before using
*/
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_polling, "domain", "is_polling");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_dying, "domain", "is_dying");
/*
* With Xen 4.2.5 is_paused_by_controller changed to
* controller_pause_count.
*/
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_paused_by_controller, "domain", "is_paused_by_controller");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_controller_pause_count, "domain", "controller_pause_count");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_shutting_down, "domain", "is_shutting_down");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_is_shut_down, "domain", "is_shut_down");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_vcpu, "domain", "vcpu");
XEN_HYPER_MEMBER_SIZE_INIT(domain_vcpu, "domain", "vcpu");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_max_vcpus, "domain", "max_vcpus");
XEN_HYPER_MEMBER_OFFSET_INIT(domain_arch, "domain", "arch");
XEN_HYPER_STRUCT_SIZE_INIT(arch_shared_info, "arch_shared_info");
XEN_HYPER_MEMBER_OFFSET_INIT(arch_shared_info_max_pfn, "arch_shared_info", "max_pfn");
XEN_HYPER_MEMBER_OFFSET_INIT(arch_shared_info_pfn_to_mfn_frame_list_list, "arch_shared_info", "pfn_to_mfn_frame_list_list");
XEN_HYPER_MEMBER_OFFSET_INIT(arch_shared_info_nmi_reason, "arch_shared_info", "nmi_reason");
XEN_HYPER_STRUCT_SIZE_INIT(shared_info, "shared_info");
XEN_HYPER_MEMBER_OFFSET_INIT(shared_info_vcpu_info, "shared_info", "vcpu_info");
XEN_HYPER_MEMBER_OFFSET_INIT(shared_info_evtchn_pending, "shared_info", "evtchn_pending");
XEN_HYPER_MEMBER_OFFSET_INIT(shared_info_evtchn_mask, "shared_info", "evtchn_mask");
XEN_HYPER_MEMBER_OFFSET_INIT(shared_info_arch, "shared_info", "arch");
XEN_HYPER_STRUCT_SIZE_INIT(arch_domain, "arch_domain");
#ifdef IA64
XEN_HYPER_MEMBER_OFFSET_INIT(arch_domain_mm, "arch_domain", "mm");
XEN_HYPER_STRUCT_SIZE_INIT(mm_struct, "mm_struct");
XEN_HYPER_MEMBER_OFFSET_INIT(mm_struct_pgd, "mm_struct", "pgd");
#endif
if((xhdt->domain_struct = malloc(XEN_HYPER_SIZE(domain))) == NULL) {
error(FATAL, "cannot malloc domain struct space.\n");
}
if((xhdt->domain_struct_verify = malloc(XEN_HYPER_SIZE(domain))) == NULL) {
error(FATAL, "cannot malloc domain struct space to verification.\n");
}
xen_hyper_refresh_domain_context_space();
xhdt->flags |= XEN_HYPER_DOMAIN_F_INIT;
}
/*
* Do initialization for vcpu of Xen Hyper system here.
*/
void
xen_hyper_vcpu_init(void)
{
XEN_HYPER_STRUCT_SIZE_INIT(timer, "timer");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_expires, "timer", "expires");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_cpu, "timer", "cpu");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_function, "timer", "function");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_data, "timer", "data");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_heap_offset, "timer", "heap_offset");
XEN_HYPER_MEMBER_OFFSET_INIT(timer_killed, "timer", "killed");
XEN_HYPER_STRUCT_SIZE_INIT(vcpu_runstate_info, "vcpu_runstate_info");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_runstate_info_state, "vcpu_runstate_info", "state");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_runstate_info_state_entry_time, "vcpu_runstate_info", "state_entry_time");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_runstate_info_time, "vcpu_runstate_info", "time");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_vcpu_id, "vcpu", "vcpu_id");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_processor, "vcpu", "processor");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_vcpu_info, "vcpu", "vcpu_info");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_domain, "vcpu", "domain");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_next_in_list, "vcpu", "next_in_list");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_timer, "vcpu", "timer");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_sleep_tick, "vcpu", "sleep_tick");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_poll_timer, "vcpu", "poll_timer");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_sched_priv, "vcpu", "sched_priv");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_runstate, "vcpu", "runstate");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_runstate_guest, "vcpu", "runstate_guest");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_vcpu_flags, "vcpu", "vcpu_flags");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_pause_count, "vcpu", "pause_count");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_virq_to_evtchn, "vcpu", "virq_to_evtchn");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_cpu_affinity, "vcpu", "cpu_affinity");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_nmi_addr, "vcpu", "nmi_addr");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_vcpu_dirty_cpumask, "vcpu", "vcpu_dirty_cpumask");
XEN_HYPER_MEMBER_OFFSET_INIT(vcpu_arch, "vcpu", "arch");
#ifdef IA64
XEN_HYPER_ASSIGN_OFFSET(vcpu_thread_ksp) =
MEMBER_OFFSET("vcpu", "arch") + MEMBER_OFFSET("arch_vcpu", "_thread") +
MEMBER_OFFSET("thread_struct", "ksp");
#endif
if((xhvct->vcpu_struct = malloc(XEN_HYPER_SIZE(vcpu))) == NULL) {
error(FATAL, "cannot malloc vcpu struct space.\n");
}
if((xhvct->vcpu_struct_verify = malloc(XEN_HYPER_SIZE(vcpu))) == NULL) {
error(FATAL, "cannot malloc vcpu struct space to verification.\n");
}
xen_hyper_refresh_vcpu_context_space();
xhvct->flags |= XEN_HYPER_VCPU_F_INIT;
xhvct->idle_vcpu = symbol_value("idle_vcpu");
}
/*
* Do initialization for pcpu of Xen Hyper system here.
*/
#if defined(X86) || defined(X86_64)
void
xen_hyper_x86_pcpu_init(void)
{
ulong cpu_info;
ulong init_tss_base, init_tss;
ulong sp;
struct xen_hyper_pcpu_context *pcc;
char *buf, *bp;
int i, cpuid;
int flag;
XEN_HYPER_MEMBER_OFFSET_INIT(cpu_info_guest_cpu_user_regs, "cpu_info", "guest_cpu_user_regs");
XEN_HYPER_MEMBER_OFFSET_INIT(cpu_info_processor_id, "cpu_info", "processor_id");
XEN_HYPER_MEMBER_OFFSET_INIT(cpu_info_current_vcpu, "cpu_info", "current_vcpu");
if((xhpct->pcpu_struct = malloc(XEN_HYPER_SIZE(cpu_info))) == NULL) {
error(FATAL, "cannot malloc pcpu struct space.\n");
}
/* get physical cpu context */
xen_hyper_alloc_pcpu_context_space(XEN_HYPER_MAX_CPUS());
if (symbol_exists("per_cpu__init_tss")) {
init_tss_base = symbol_value("per_cpu__init_tss");
flag = TRUE;
} else {
init_tss_base = symbol_value("init_tss");
flag = FALSE;
}
buf = GETBUF(XEN_HYPER_SIZE(tss_struct));
for_cpu_indexes(i, cpuid)
{
if (flag)
init_tss = xen_hyper_per_cpu(init_tss_base, cpuid);
else
init_tss = init_tss_base +
XEN_HYPER_SIZE(tss_struct) * cpuid;
if (!readmem(init_tss, KVADDR, buf,
XEN_HYPER_SIZE(tss_struct), "init_tss", RETURN_ON_ERROR)) {
error(FATAL, "cannot read init_tss.\n");
}
if (machine_type("X86")) {
sp = ULONG(buf + XEN_HYPER_OFFSET(tss_struct_esp0));
} else if (machine_type("X86_64")) {
sp = ULONG(buf + XEN_HYPER_OFFSET(tss_struct_rsp0));
} else
sp = 0;
cpu_info = XEN_HYPER_GET_CPU_INFO(sp);
if (CRASHDEBUG(1)) {
fprintf(fp, "sp=%lx, cpu_info=%lx\n", sp, cpu_info);
}
if(!(bp = xen_hyper_read_pcpu(cpu_info))) {
error(FATAL, "cannot read cpu_info.\n");
}
pcc = &xhpct->context_array[cpuid];
xen_hyper_store_pcpu_context(pcc, cpu_info, bp);
xen_hyper_store_pcpu_context_tss(pcc, init_tss, buf);
}
FREEBUF(buf);
}
#elif defined(IA64)
void
xen_hyper_ia64_pcpu_init(void)
{
struct xen_hyper_pcpu_context *pcc;
int i, cpuid;
/* get physical cpu context */
xen_hyper_alloc_pcpu_context_space(XEN_HYPER_MAX_CPUS());
for_cpu_indexes(i, cpuid)
{
pcc = &xhpct->context_array[cpuid];
pcc->processor_id = cpuid;
}
}
#endif
/*
* Do initialization for some miscellaneous thing
* of Xen Hyper system here.
*/
void
xen_hyper_misc_init(void)
{
XEN_HYPER_STRUCT_SIZE_INIT(schedule_data, "schedule_data");
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_schedule_lock, "schedule_data", "schedule_lock");
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_curr, "schedule_data", "curr");
if (MEMBER_EXISTS("schedule_data", "idle"))
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_idle, "schedule_data", "idle");
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_sched_priv, "schedule_data", "sched_priv");
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_s_timer, "schedule_data", "s_timer");
XEN_HYPER_MEMBER_OFFSET_INIT(schedule_data_tick, "schedule_data", "tick");
XEN_HYPER_STRUCT_SIZE_INIT(scheduler, "scheduler");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_name, "scheduler", "name");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_opt_name, "scheduler", "opt_name");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_sched_id, "scheduler", "sched_id");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_init, "scheduler", "init");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_tick, "scheduler", "tick");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_init_vcpu, "scheduler", "init_vcpu");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_destroy_domain, "scheduler", "destroy_domain");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_sleep, "scheduler", "sleep");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_wake, "scheduler", "wake");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_set_affinity, "scheduler", "set_affinity");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_do_schedule, "scheduler", "do_schedule");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_adjust, "scheduler", "adjust");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_dump_settings, "scheduler", "dump_settings");
XEN_HYPER_MEMBER_OFFSET_INIT(scheduler_dump_cpu_state, "scheduler", "dump_cpu_state");
xen_hyper_schedule_init();
}
/*
* Do initialization for scheduler of Xen Hyper system here.
*/
#define XEN_HYPER_SCHEDULERS_ARRAY_CNT 10
#define XEN_HYPER_SCHEDULER_NAME 1024
static void
xen_hyper_schedule_init(void)
{
ulong addr, opt_sched, schedulers, opt_name;
long scheduler_opt_name;
long schedulers_buf[XEN_HYPER_SCHEDULERS_ARRAY_CNT];
struct xen_hyper_sched_context *schc;
char *buf;
char opt_name_buf[XEN_HYPER_OPT_SCHED_SIZE];
int i, cpuid, flag;
/* get scheduler information */
if((xhscht->scheduler_struct =
malloc(XEN_HYPER_SIZE(scheduler))) == NULL) {
error(FATAL, "cannot malloc scheduler struct space.\n");
}
buf = GETBUF(XEN_HYPER_SCHEDULER_NAME);
scheduler_opt_name = XEN_HYPER_OFFSET(scheduler_opt_name);
if (symbol_exists("ops")) {
if (!readmem(symbol_value("ops") + scheduler_opt_name, KVADDR,
&opt_sched, sizeof(ulong), "ops.opt_name",
RETURN_ON_ERROR)) {
error(FATAL, "cannot read ops.opt_name.\n");
}
} else {
opt_sched = symbol_value("opt_sched");
}
if (!readmem(opt_sched, KVADDR, xhscht->opt_sched,
XEN_HYPER_OPT_SCHED_SIZE, "opt_sched,", RETURN_ON_ERROR)) {
error(FATAL, "cannot read opt_sched,.\n");
}
schedulers = symbol_value("schedulers");
addr = schedulers;
while (xhscht->name == NULL) {
if (!readmem(addr, KVADDR, schedulers_buf,
sizeof(long) * XEN_HYPER_SCHEDULERS_ARRAY_CNT,
"schedulers", RETURN_ON_ERROR)) {
error(FATAL, "cannot read schedulers.\n");
}
for (i = 0; i < XEN_HYPER_SCHEDULERS_ARRAY_CNT; i++) {
if (schedulers_buf[i] == 0) {
error(FATAL, "schedule data not found.\n");
}
if (!readmem(schedulers_buf[i], KVADDR,
xhscht->scheduler_struct, XEN_HYPER_SIZE(scheduler),
"scheduler", RETURN_ON_ERROR)) {
error(FATAL, "cannot read scheduler.\n");
}
opt_name = ULONG(xhscht->scheduler_struct +
scheduler_opt_name);
if (!readmem(opt_name, KVADDR, opt_name_buf,
XEN_HYPER_OPT_SCHED_SIZE, "opt_name", RETURN_ON_ERROR)) {
error(FATAL, "cannot read opt_name.\n");
}
if (strncmp(xhscht->opt_sched, opt_name_buf,
XEN_HYPER_OPT_SCHED_SIZE))
continue;
xhscht->scheduler = schedulers_buf[i];
xhscht->sched_id = INT(xhscht->scheduler_struct +
XEN_HYPER_OFFSET(scheduler_sched_id));
addr = ULONG(xhscht->scheduler_struct +
XEN_HYPER_OFFSET(scheduler_name));
if (!readmem(addr, KVADDR, buf, XEN_HYPER_SCHEDULER_NAME,
"scheduler_name", RETURN_ON_ERROR)) {
error(FATAL, "cannot read scheduler_name.\n");
}
if (strlen(buf) >= XEN_HYPER_SCHEDULER_NAME) {
error(FATAL, "cannot read scheduler_name.\n");
}
if((xhscht->name = malloc(strlen(buf) + 1)) == NULL) {
error(FATAL, "cannot malloc scheduler_name space.\n");
}
BZERO(xhscht->name, strlen(buf) + 1);
strncpy(xhscht->name, buf, strlen(buf));
break;
}
addr += sizeof(long) * XEN_HYPER_SCHEDULERS_ARRAY_CNT;
}
FREEBUF(buf);
/* get schedule_data information */
if((xhscht->sched_context_array =
malloc(sizeof(struct xen_hyper_sched_context) * XEN_HYPER_MAX_CPUS())) == NULL) {
error(FATAL, "cannot malloc xen_hyper_sched_context struct space.\n");
}
BZERO(xhscht->sched_context_array,
sizeof(struct xen_hyper_sched_context) * XEN_HYPER_MAX_CPUS());
buf = GETBUF(XEN_HYPER_SIZE(schedule_data));
if (symbol_exists("per_cpu__schedule_data")) {
addr = symbol_value("per_cpu__schedule_data");
flag = TRUE;
} else {
addr = symbol_value("schedule_data");
flag = FALSE;
}
for_cpu_indexes(i, cpuid)
{
schc = &xhscht->sched_context_array[cpuid];
if (flag) {
schc->schedule_data =
xen_hyper_per_cpu(addr, i);
} else {
schc->schedule_data = addr +
XEN_HYPER_SIZE(schedule_data) * i;
}
if (!readmem(schc->schedule_data,
KVADDR, buf, XEN_HYPER_SIZE(schedule_data),
"schedule_data", RETURN_ON_ERROR)) {
error(FATAL, "cannot read schedule_data.\n");
}
schc->cpu_id = cpuid;
schc->curr = ULONG(buf + XEN_HYPER_OFFSET(schedule_data_curr));
if (MEMBER_EXISTS("schedule_data", "idle"))
schc->idle = ULONG(buf + XEN_HYPER_OFFSET(schedule_data_idle));
else
schc->idle = xht->idle_vcpu_array[cpuid];
schc->sched_priv =
ULONG(buf + XEN_HYPER_OFFSET(schedule_data_sched_priv));
if (XEN_HYPER_VALID_MEMBER(schedule_data_tick))
schc->tick = ULONG(buf + XEN_HYPER_OFFSET(schedule_data_tick));
}
FREEBUF(buf);
}
/*
* This should be called after all initailize process finished.
*/
void
xen_hyper_post_init(void)
{
struct xen_hyper_pcpu_context *pcc;
int i, cpuid;
/* set current vcpu to pcpu context */
for_cpu_indexes(i, cpuid)
{
pcc = &xhpct->context_array[cpuid];
if (!pcc->current_vcpu) {
pcc->current_vcpu =
xen_hyper_get_active_vcpu_from_pcpuid(cpuid);
}
}
/* set pcpu last */
if (!(xhpct->last =
xen_hyper_id_to_pcpu_context(XEN_HYPER_CRASHING_CPU()))) {
xhpct->last = &xhpct->context_array[xht->cpu_idxs[0]];
}
/* set vcpu last */
if (xhpct->last) {
xhvct->last =
xen_hyper_vcpu_to_vcpu_context(xhpct->last->current_vcpu);
/* set crashing vcpu */
xht->crashing_vcc = xhvct->last;
}
if (!xhvct->last) {
xhvct->last = xhvct->vcpu_context_arrays->context_array;
}
/* set domain last */
if (xhvct->last) {
xhdt->last =
xen_hyper_domain_to_domain_context(xhvct->last->domain);
}
if (!xhdt->last) {
xhdt->last = xhdt->context_array;
}
}
/*
* Do initialization for dump information here.
*/
void
xen_hyper_dumpinfo_init(void)
{
Elf32_Nhdr *note;
char *buf, *bp, *np, *upp;
char *nccp, *xccp;
ulong addr;
long size;
int i, cpuid, samp_cpuid;
/*
* NOTE kakuma: It is not clear that what kind of
* a elf note format each one of the xen uses.
* So, we decide it confirming whether a symbol exists.
*/
if (STRUCT_EXISTS("note_buf_t"))
xhdit->note_ver = XEN_HYPER_ELF_NOTE_V1;
else if (STRUCT_EXISTS("crash_note_xen_t"))
xhdit->note_ver = XEN_HYPER_ELF_NOTE_V2;
else if (STRUCT_EXISTS("crash_xen_core_t")) {
if (STRUCT_EXISTS("crash_note_xen_core_t"))
xhdit->note_ver = XEN_HYPER_ELF_NOTE_V3;
else
xhdit->note_ver = XEN_HYPER_ELF_NOTE_V4;
} else {
error(WARNING, "found unsupported elf note format while checking of xen dumpinfo.\n");
return;
}
if (!xen_hyper_test_pcpu_id(XEN_HYPER_CRASHING_CPU())) {
error(WARNING, "crashing_cpu not found.\n");
return;
}
/* allocate a context area */
size = sizeof(struct xen_hyper_dumpinfo_context) * machdep->get_smp_cpus();
if((xhdit->context_array = malloc(size)) == NULL) {
error(FATAL, "cannot malloc dumpinfo table context space.\n");
}
BZERO(xhdit->context_array, size);
size = sizeof(struct xen_hyper_dumpinfo_context_xen_core) * machdep->get_smp_cpus();
if((xhdit->context_xen_core_array = malloc(size)) == NULL) {
error(FATAL, "cannot malloc dumpinfo table context_xen_core_array space.\n");
}
BZERO(xhdit->context_xen_core_array, size);
if (symbol_exists("per_cpu__crash_notes"))
addr = symbol_value("per_cpu__crash_notes");
else
get_symbol_data("crash_notes", sizeof(ulong), &addr);
for (i = 0; i < machdep->get_smp_cpus(); i++) {
ulong addr_notes;
if (symbol_exists("per_cpu__crash_notes"))
addr_notes = xen_hyper_per_cpu(addr, i);
else
addr_notes = addr + i * STRUCT_SIZE("crash_note_range_t") +
MEMBER_OFFSET("crash_note_range_t", "start");
if (xhdit->note_ver == XEN_HYPER_ELF_NOTE_V4) {
if (!readmem(addr_notes, KVADDR, &(xhdit->context_array[i].note),
sizeof(ulong), "crash_notes", RETURN_ON_ERROR)) {
error(WARNING, "cannot read crash_notes.\n");
return;
}
} else {
xhdit->context_array[i].note = addr_notes;
}
}
if (xhdit->note_ver == XEN_HYPER_ELF_NOTE_V1) {
xhdit->note_size = XEN_HYPER_SIZE(note_buf_t);
} else if (xhdit->note_ver == XEN_HYPER_ELF_NOTE_V4) {
xhdit->note_size = XEN_HYPER_ELF_NOTE_V4_NOTE_SIZE;
} else {
xhdit->note_size = XEN_HYPER_SIZE(crash_note_t);
}
/* read a sample note */
buf = GETBUF(xhdit->note_size);
if (xhdit->note_ver == XEN_HYPER_ELF_NOTE_V4)
samp_cpuid = xht->cpu_idxs[0];
else
samp_cpuid = XEN_HYPER_CRASHING_CPU();
xhdit->xen_info_cpu = samp_cpuid;
if (!xen_hyper_fill_elf_notes(xhdit->context_array[samp_cpuid].note,
buf, XEN_HYPER_ELF_NOTE_FILL_T_NOTE)) {
error(FATAL, "cannot read crash_notes.\n");
}
bp = buf;
/* Get elf format information for each version. */
switch (xhdit->note_ver) {
case XEN_HYPER_ELF_NOTE_V1:
/* core data */
note = (Elf32_Nhdr *)bp;
np = bp + sizeof(Elf32_Nhdr);
upp = np + note->n_namesz;
upp = (char *)roundup((ulong)upp, 4);
xhdit->core_offset = (Elf_Word)((ulong)upp - (ulong)note);
note = (Elf32_Nhdr *)(upp + note->n_descsz);
/* cr3 data */
np = (char *)note + sizeof(Elf32_Nhdr);
upp = np + note->n_namesz;
upp = (char *)roundup((ulong)upp, 4);
upp = upp + note->n_descsz;
xhdit->core_size = upp - bp;
break;
case XEN_HYPER_ELF_NOTE_V2:
/* core data */
xhdit->core_offset = XEN_HYPER_OFFSET(crash_note_core_t_desc);
xhdit->core_size = XEN_HYPER_SIZE(crash_note_core_t);
/* xen core */
xhdit->xen_info_offset = XEN_HYPER_OFFSET(crash_note_xen_t_desc);
xhdit->xen_info_size = XEN_HYPER_SIZE(crash_note_xen_t);
break;
case XEN_HYPER_ELF_NOTE_V3:
/* core data */
xhdit->core_offset = XEN_HYPER_OFFSET(crash_note_core_t_desc);
xhdit->core_size = XEN_HYPER_SIZE(crash_note_core_t);
/* xen core */
xhdit->xen_core_offset = XEN_HYPER_OFFSET(crash_note_xen_core_t_desc);
xhdit->xen_core_size = XEN_HYPER_SIZE(crash_note_xen_core_t);
/* xen info */
xhdit->xen_info_offset = XEN_HYPER_OFFSET(crash_note_xen_info_t_desc);
xhdit->xen_info_size = XEN_HYPER_SIZE(crash_note_xen_info_t);
break;
case XEN_HYPER_ELF_NOTE_V4:
/* core data */
note = (Elf32_Nhdr *)bp;
np = bp + sizeof(Elf32_Nhdr);
upp = np + note->n_namesz;
upp = (char *)roundup((ulong)upp, 4);
xhdit->core_offset = (Elf_Word)((ulong)upp - (ulong)note);
upp = upp + note->n_descsz;
xhdit->core_size = (Elf_Word)((ulong)upp - (ulong)note);
if (XEN_HYPER_ELF_NOTE_V4_NOTE_SIZE < xhdit->core_size + 32) {
error(WARNING, "note size is assumed on crash is incorrect.(core data)\n");
return;
}
/* xen core */
note = (Elf32_Nhdr *)upp;
np = (char *)note + sizeof(Elf32_Nhdr);
upp = np + note->n_namesz;
upp = (char *)roundup((ulong)upp, 4);
xhdit->xen_core_offset = (Elf_Word)((ulong)upp - (ulong)note);
upp = upp + note->n_descsz;
xhdit->xen_core_size = (Elf_Word)((ulong)upp - (ulong)note);
if (XEN_HYPER_ELF_NOTE_V4_NOTE_SIZE <
xhdit->core_size + xhdit->xen_core_size + 32) {
error(WARNING, "note size is assumed on crash is incorrect.(xen core)\n");
return;
}
/* xen info */
note = (Elf32_Nhdr *)upp;
np = (char *)note + sizeof(Elf32_Nhdr);
upp = np + note->n_namesz;
upp = (char *)roundup((ulong)upp, 4);
xhdit->xen_info_offset = (Elf_Word)((ulong)upp - (ulong)note);
upp = upp + note->n_descsz;
xhdit->xen_info_size = (Elf_Word)((ulong)upp - (ulong)note);
if (XEN_HYPER_ELF_NOTE_V4_NOTE_SIZE <
xhdit->core_size + xhdit->xen_core_size + xhdit->xen_info_size) {
error(WARNING, "note size is assumed on crash is incorrect.(xen info)\n");
return;
}
xhdit->note_size = xhdit->core_size + xhdit->xen_core_size + xhdit->xen_info_size;
break;
default:
error(FATAL, "logic error in cheking elf note format occurs.\n");
}
/* fill xen info context. */
if (xhdit->note_ver >= XEN_HYPER_ELF_NOTE_V3) {
if((xhdit->crash_note_xen_info_ptr =
malloc(xhdit->xen_info_size)) == NULL) {
error(FATAL, "cannot malloc dumpinfo table "
"crash_note_xen_info_ptr space.\n");
}
memcpy(xhdit->crash_note_xen_info_ptr,
bp + xhdit->core_size + xhdit->xen_core_size,
xhdit->xen_info_size);
xhdit->context_xen_info.note =
xhdit->context_array[samp_cpuid].note +
xhdit->core_size + xhdit->xen_core_size;
xhdit->context_xen_info.pcpu_id = samp_cpuid;
xhdit->context_xen_info.crash_xen_info_ptr =
xhdit->crash_note_xen_info_ptr + xhdit->xen_info_offset;
}
/* allocate note core */
size = xhdit->core_size * XEN_HYPER_NR_PCPUS();
if(!(xhdit->crash_note_core_array = malloc(size))) {
error(FATAL, "cannot malloc crash_note_core_array space.\n");
}
nccp = xhdit->crash_note_core_array;
BZERO(nccp, size);
xccp = NULL;
/* allocate xen core */
if (xhdit->note_ver >= XEN_HYPER_ELF_NOTE_V2) {
size = xhdit->xen_core_size * XEN_HYPER_NR_PCPUS();
if(!(xhdit->crash_note_xen_core_array = malloc(size))) {
error(FATAL, "cannot malloc dumpinfo table "
"crash_note_xen_core_array space.\n");
}
xccp = xhdit->crash_note_xen_core_array;
BZERO(xccp, size);
}
/* fill a context. */
for_cpu_indexes(i, cpuid)
{
/* fill core context. */
addr = xhdit->context_array[cpuid].note;
if (!xen_hyper_fill_elf_notes(addr, nccp,
XEN_HYPER_ELF_NOTE_FILL_T_CORE)) {
error(FATAL, "cannot read elf note core.\n");
}
xhdit->context_array[cpuid].pcpu_id = cpuid;
xhdit->context_array[cpuid].ELF_Prstatus_ptr =
nccp + xhdit->core_offset;
xhdit->context_array[cpuid].pr_reg_ptr =
nccp + xhdit->core_offset +
XEN_HYPER_OFFSET(ELF_Prstatus_pr_reg);
/* Is there xen core data? */
if (xhdit->note_ver < XEN_HYPER_ELF_NOTE_V2) {
nccp += xhdit->core_size;
continue;
}
if (xhdit->note_ver == XEN_HYPER_ELF_NOTE_V2 &&
cpuid != samp_cpuid) {
xccp += xhdit->xen_core_size;
nccp += xhdit->core_size;
continue;
}
/* fill xen core context, in case of more elf note V2. */
xhdit->context_xen_core_array[cpuid].note =
xhdit->context_array[cpuid].note +
xhdit->core_size;
xhdit->context_xen_core_array[cpuid].pcpu_id = cpuid;
xhdit->context_xen_core_array[cpuid].crash_xen_core_ptr =
xccp + xhdit->xen_core_offset;
if (!xen_hyper_fill_elf_notes(xhdit->context_xen_core_array[cpuid].note,
xccp, XEN_HYPER_ELF_NOTE_FILL_T_XEN_CORE)) {
error(FATAL, "cannot read elf note xen core.\n");
}
xccp += xhdit->xen_core_size;
nccp += xhdit->core_size;
}
FREEBUF(buf);
}
/*
* Get dump information context from physical cpu id.
*/
struct xen_hyper_dumpinfo_context *
xen_hyper_id_to_dumpinfo_context(uint id)
{
if (!xen_hyper_test_pcpu_id(id))
return NULL;
return &xhdit->context_array[id];
}
/*
* Get dump information context from ELF Note address.
*/
struct xen_hyper_dumpinfo_context *
xen_hyper_note_to_dumpinfo_context(ulong note)
{
int i;
for (i = 0; i < XEN_HYPER_MAX_CPUS(); i++) {
if (note == xhdit->context_array[i].note) {
return &xhdit->context_array[i];
}
}
return NULL;
}
/*
* Fill ELF Notes header here.
* This assume that variable note has a top address of an area for
* specified type.
*/
char *
xen_hyper_fill_elf_notes(ulong note, char *note_buf, int type)
{
long size;
ulong rp = note;
if (type == XEN_HYPER_ELF_NOTE_FILL_T_NOTE)
size = xhdit->note_size;
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_CORE)
size = xhdit->core_size;
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_CORE)
size = xhdit->xen_core_size;
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_CORE_M)
size = xhdit->core_size + xhdit->xen_core_size;
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_PRS)
size = XEN_HYPER_SIZE(ELF_Prstatus);
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_REGS)
size = XEN_HYPER_SIZE(xen_crash_xen_regs_t);
else
return NULL;
if (!readmem(rp, KVADDR, note_buf, size,
"note_buf_t or crash_note_t", RETURN_ON_ERROR)) {
if (type == XEN_HYPER_ELF_NOTE_FILL_T_NOTE)
error(WARNING, "cannot fill note_buf_t or crash_note_t.\n");
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_CORE)
error(WARNING, "cannot fill note core.\n");
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_CORE)
error(WARNING, "cannot fill note xen core.\n");
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_CORE_M)
error(WARNING, "cannot fill note core & xen core.\n");
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_PRS)
error(WARNING, "cannot fill ELF_Prstatus.\n");
else if (type == XEN_HYPER_ELF_NOTE_FILL_T_XEN_REGS)
error(WARNING, "cannot fill xen_crash_xen_regs_t.\n");
return NULL;
}
return note_buf;
}
/*
* Get domain status.
*/
ulong
xen_hyper_domain_state(struct xen_hyper_domain_context *dc)
{
if (ACTIVE()) {
if (xen_hyper_read_domain_verify(dc->domain) == NULL) {
return XEN_HYPER_DOMF_ERROR;
}
}
return dc->domain_flags;
}
/*
* Allocate domain context space.
*/
void
xen_hyper_refresh_domain_context_space(void)
{
char *domain_struct;
ulong domain, next, dom_xen, dom_io, idle_vcpu;
struct xen_hyper_domain_context *dc;
struct xen_hyper_domain_context *dom0;
int i;
if ((xhdt->flags & XEN_HYPER_DOMAIN_F_INIT) && !ACTIVE()) {
return;
}
XEN_HYPER_RUNNING_DOMAINS() = XEN_HYPER_NR_DOMAINS() =
xen_hyper_get_domains();
xen_hyper_alloc_domain_context_space(XEN_HYPER_NR_DOMAINS());
dc = xhdt->context_array;
/* restore an dom_io context. */
get_symbol_data("dom_io", sizeof(dom_io), &dom_io);
if ((domain_struct = xen_hyper_read_domain(dom_io)) == NULL) {
error(FATAL, "cannot read dom_io.\n");
}
xen_hyper_store_domain_context(dc, dom_io, domain_struct);
xhdt->dom_io = dc;
dc++;
/* restore an dom_xen context. */
get_symbol_data("dom_xen", sizeof(dom_xen), &dom_xen);
if ((domain_struct = xen_hyper_read_domain(dom_xen)) == NULL) {
error(FATAL, "cannot read dom_xen.\n");
}
xen_hyper_store_domain_context(dc, dom_xen, domain_struct);
xhdt->dom_xen = dc;
dc++;
/* restore an idle domain context. */
for (i = 0; i < xht->idle_vcpu_size; i += XEN_HYPER_MAX_VIRT_CPUS) {
idle_vcpu = xht->idle_vcpu_array[i];
if (idle_vcpu == 0)
break;
if (!readmem(idle_vcpu + MEMBER_OFFSET("vcpu", "domain"),
KVADDR, &domain, sizeof(domain), "domain", RETURN_ON_ERROR)) {
error(FATAL, "cannot read domain member in vcpu.\n");
}
if (CRASHDEBUG(1)) {
fprintf(fp, "idle_vcpu=%lx, domain=%lx\n", idle_vcpu, domain);
}
if ((domain_struct = xen_hyper_read_domain(domain)) == NULL) {
error(FATAL, "cannot read idle domain.\n");
}
xen_hyper_store_domain_context(dc, domain, domain_struct);
if (i == 0)
xhdt->idle_domain = dc;
dc++;
}
/* restore domain contexts from dom0 symbol. */
xen_hyper_get_domain_next(XEN_HYPER_DOMAIN_READ_DOM0, &next);
domain = next;
dom0 = dc;
while((domain_struct =
xen_hyper_get_domain_next(XEN_HYPER_DOMAIN_READ_NEXT, &next)) != NULL) {
xen_hyper_store_domain_context(dc, domain, domain_struct);
domain = next;
dc++;
}
xhdt->dom0 = dom0;
}
/*
* Get number of domain.
*/
int
xen_hyper_get_domains(void)
{
ulong domain, next_in_list;
long domain_next_in_list;
int i, j;
if (!try_get_symbol_data("dom0", sizeof(void *), &domain))
get_symbol_data("hardware_domain", sizeof(void *), &domain);
domain_next_in_list = MEMBER_OFFSET("domain", "next_in_list");
i = 0;
while (domain != 0) {
i++;
next_in_list = domain + domain_next_in_list;
if (!readmem(next_in_list, KVADDR, &domain, sizeof(void *),
"domain.next_in_list", RETURN_ON_ERROR)) {
error(FATAL, "cannot read domain.next_in_list.\n");
}
}
i += 2; /* for dom_io, dom_xen */
/* for idle domains */
for (j = 0; j < xht->idle_vcpu_size; j += XEN_HYPER_MAX_VIRT_CPUS) {
if (xht->idle_vcpu_array[j])
i++;
}
return i;
}
/*
* Get next domain struct.
* mod - XEN_HYPER_DOMAIN_READ_DOM0:start from dom0 symbol
* - XEN_HYPER_DOMAIN_READ_INIT:start from xhdt->context_array
* - XEN_HYPER_DOMAIN_READ_NEXT:next
*/
char *
xen_hyper_get_domain_next(int mod, ulong *next)
{
static int idx = 0;
char *domain_struct;
struct xen_hyper_domain_context *dc;
switch (mod) {
case XEN_HYPER_DOMAIN_READ_DOM0:
/* Case of search from dom0 symbol. */
idx = 0;
if (xhdt->dom0) {
*next = xhdt->dom0->domain;
} else {
if (!try_get_symbol_data("dom0", sizeof(void *), next))
get_symbol_data("hardware_domain", sizeof(void *), next);
}
return xhdt->domain_struct;
break;
case XEN_HYPER_DOMAIN_READ_INIT:
/* Case of search from context_array. */
if (xhdt->context_array && xhdt->context_array->domain) {
idx = 1; /* this has a next index. */
*next = xhdt->context_array->domain;
} else {
idx = 0;
*next = 0;
return NULL;
}
return xhdt->domain_struct;
break;
case XEN_HYPER_DOMAIN_READ_NEXT:
break;
default :
error(FATAL, "xen_hyper_get_domain_next mod error: %d\n", mod);
return NULL;
}
/* Finished search */
if (!*next) {
return NULL;
}
domain_struct = NULL;
/* Is domain context array valid? */
if (idx) {
if ((domain_struct =
xen_hyper_read_domain(*next)) == NULL) {
error(FATAL, "cannot get next domain from domain context array.\n");
}
if (idx > XEN_HYPER_NR_DOMAINS()) {
*next = 0;
} else {
dc = xhdt->context_array;
dc += idx;
*next = dc->domain;
idx++;
}
return domain_struct;
}
/* Search from dom0 symbol. */
if ((domain_struct =
xen_hyper_read_domain(*next)) == NULL) {
error(FATAL, "cannot get next domain from dom0 symbol.\n");
}
*next = ULONG(domain_struct + XEN_HYPER_OFFSET(domain_next_in_list));
return domain_struct;
}
/*
* from domain address to id.
*/
domid_t
xen_hyper_domain_to_id(ulong domain)
{
struct xen_hyper_domain_context *dc;
/* Is domain context array valid? */
if (xhdt->context_array && xhdt->context_array->domain) {
if ((dc = xen_hyper_domain_to_domain_context(domain)) == NULL) {
return XEN_HYPER_DOMAIN_ID_INVALID;
} else {
return dc->domain_id;
}
} else {
return XEN_HYPER_DOMAIN_ID_INVALID;
}
}
/*
* Get domain struct from id.
*/
char *
xen_hyper_id_to_domain_struct(domid_t id)
{
char *domain_struct;
struct xen_hyper_domain_context *dc;
domain_struct = NULL;
/* Is domain context array valid? */
if (xhdt->context_array && xhdt->context_array->domain) {
if ((dc = xen_hyper_id_to_domain_context(id)) == NULL) {
return NULL;
} else {
if ((domain_struct =
xen_hyper_read_domain(dc->domain)) == NULL) {
error(FATAL, "cannot get domain from domain context array with id.\n");
}
return domain_struct;
}
} else {
return NULL;
}
}
/*
* Get domain context from domain address.
*/
struct xen_hyper_domain_context *
xen_hyper_domain_to_domain_context(ulong domain)
{
struct xen_hyper_domain_context *dc;
int i;
if (xhdt->context_array == NULL ||
xhdt->context_array->domain == 0) {
return NULL;
}
if (!domain) {
return NULL;
}
for (i = 0, dc = xhdt->context_array; i < XEN_HYPER_NR_DOMAINS();
i++, dc++) {
if (domain == dc->domain) {
return dc;
}
}
return NULL;
}
/*
* Get domain context from domain id.
*/
struct xen_hyper_domain_context *
xen_hyper_id_to_domain_context(domid_t id)
{
struct xen_hyper_domain_context *dc;
int i;
if (xhdt->context_array == NULL ||
xhdt->context_array->domain == 0) {
return NULL;
}
if (id == XEN_HYPER_DOMAIN_ID_INVALID) {
return NULL;
}
for (i = 0, dc = xhdt->context_array; i < XEN_HYPER_NR_DOMAINS();
i++, dc++) {
if (id == dc->domain_id) {
return dc;
}
}
return NULL;
}
/*
* Store domain struct contents.
*/
struct xen_hyper_domain_context *
xen_hyper_store_domain_context(struct xen_hyper_domain_context *dc,
ulong domain, char *dp)
{
char *vcpup;
unsigned int max_vcpus;
unsigned int i;
dc->domain = domain;
BCOPY((char *)(dp + XEN_HYPER_OFFSET(domain_domain_id)),
&dc->domain_id, sizeof(domid_t));
dc->tot_pages = UINT(dp + XEN_HYPER_OFFSET(domain_tot_pages));
dc->max_pages = UINT(dp + XEN_HYPER_OFFSET(domain_max_pages));
dc->xenheap_pages = UINT(dp + XEN_HYPER_OFFSET(domain_xenheap_pages));
dc->shared_info = ULONG(dp + XEN_HYPER_OFFSET(domain_shared_info));
dc->sched_priv = ULONG(dp + XEN_HYPER_OFFSET(domain_sched_priv));
dc->next_in_list = ULONG(dp + XEN_HYPER_OFFSET(domain_next_in_list));
if (XEN_HYPER_VALID_MEMBER(domain_domain_flags))
dc->domain_flags = ULONG(dp + XEN_HYPER_OFFSET(domain_domain_flags));
else if (XEN_HYPER_VALID_MEMBER(domain_is_shut_down)) {
dc->domain_flags = 0;
if (XEN_HYPER_VALID_MEMBER(domain_is_hvm) &&
*(dp + XEN_HYPER_OFFSET(domain_is_hvm))) {
dc->domain_flags |= XEN_HYPER_DOMS_HVM;
}
if (XEN_HYPER_VALID_MEMBER(domain_guest_type) &&
*(dp + XEN_HYPER_OFFSET(domain_guest_type))) {
/* For now PVH and HVM are the same for crash.
* and 0 is PV.
*/
dc->domain_flags |= XEN_HYPER_DOMS_HVM;
}
if (*(dp + XEN_HYPER_OFFSET(domain_is_privileged))) {
dc->domain_flags |= XEN_HYPER_DOMS_privileged;
}
if (*(dp + XEN_HYPER_OFFSET(domain_debugger_attached))) {
dc->domain_flags |= XEN_HYPER_DOMS_debugging;
}
if (XEN_HYPER_VALID_MEMBER(domain_is_polling) &&
*(dp + XEN_HYPER_OFFSET(domain_is_polling))) {
dc->domain_flags |= XEN_HYPER_DOMS_polling;
}
if (XEN_HYPER_VALID_MEMBER(domain_is_paused_by_controller) &&
*(dp + XEN_HYPER_OFFSET(domain_is_paused_by_controller))) {
dc->domain_flags |= XEN_HYPER_DOMS_ctrl_pause;
}
if (XEN_HYPER_VALID_MEMBER(domain_controller_pause_count) &&
*(dp + XEN_HYPER_OFFSET(domain_controller_pause_count))) {
dc->domain_flags |= XEN_HYPER_DOMS_ctrl_pause;
}
if (*(dp + XEN_HYPER_OFFSET(domain_is_dying))) {
dc->domain_flags |= XEN_HYPER_DOMS_dying;
}
if (*(dp + XEN_HYPER_OFFSET(domain_is_shutting_down))) {
dc->domain_flags |= XEN_HYPER_DOMS_shuttingdown;
}
if (*(dp + XEN_HYPER_OFFSET(domain_is_shut_down))) {
dc->domain_flags |= XEN_HYPER_DOMS_shutdown;
}
} else {
dc->domain_flags = XEN_HYPER_DOMF_ERROR;
}
dc->evtchn = ULONG(dp + XEN_HYPER_OFFSET(domain_evtchn));
if (XEN_HYPER_VALID_MEMBER(domain_max_vcpus)) {
max_vcpus = UINT(dp + XEN_HYPER_OFFSET(domain_max_vcpus));
} else if (XEN_HYPER_VALID_SIZE(domain_vcpu)) {
max_vcpus = XEN_HYPER_SIZE(domain_vcpu) / sizeof(void *);
} else {
max_vcpus = XEN_HYPER_MAX_VIRT_CPUS;
}
if (!(dc->vcpu = malloc(sizeof(ulong) * max_vcpus))) {
error(FATAL, "cannot malloc vcpu array (%d VCPUs).",
max_vcpus);
}
if (MEMBER_TYPE("domain", "vcpu") == TYPE_CODE_ARRAY)
vcpup = dp + XEN_HYPER_OFFSET(domain_vcpu);
else {
ulong vcpu_array = ULONG(dp + XEN_HYPER_OFFSET(domain_vcpu));
if (vcpu_array && max_vcpus) {
if (!(vcpup =
malloc(max_vcpus * sizeof(void *)))) {
error(FATAL, "cannot malloc VCPU array for domain %lx.",
domain);
}
if (!readmem(vcpu_array, KVADDR,
vcpup, max_vcpus * sizeof(void*),
"VCPU array", RETURN_ON_ERROR)) {
error(FATAL, "cannot read VCPU array for domain %lx.",
domain);
}
} else {
vcpup = NULL;
}
}
if (vcpup) {
for (i = 0; i < max_vcpus; i++) {
dc->vcpu[i] = ULONG(vcpup + i*sizeof(void *));
if (dc->vcpu[i]) XEN_HYPER_NR_VCPUS_IN_DOM(dc)++;
}
if (vcpup != dp + XEN_HYPER_OFFSET(domain_vcpu)) {
free(vcpup);
}
}
return dc;
}
/*
* Read domain struct from domain context.
*/
char *
xen_hyper_read_domain_from_context(struct xen_hyper_domain_context *dc)
{
return xen_hyper_fill_domain_struct(dc->domain, xhdt->domain_struct);
}
/*
* Read domain struct.
*/
char *
xen_hyper_read_domain(ulong domain)
{
return xen_hyper_fill_domain_struct(domain, xhdt->domain_struct);
}
/*
* Read domain struct to verification.
*/
char *
xen_hyper_read_domain_verify(ulong domain)
{
return xen_hyper_fill_domain_struct(domain, xhdt->domain_struct_verify);
}
/*
* Fill domain struct.
*/
char *
xen_hyper_fill_domain_struct(ulong domain, char *domain_struct)
{
if (!readmem(domain, KVADDR, domain_struct,
XEN_HYPER_SIZE(domain), "fill_domain_struct",
ACTIVE() ? (RETURN_ON_ERROR|QUIET) : RETURN_ON_ERROR)) {
error(WARNING, "cannot fill domain struct.\n");
return NULL;
}
return domain_struct;
}
/*
* Allocate domain context space.
*/
void
xen_hyper_alloc_domain_context_space(int domains)
{
if (xhdt->context_array == NULL) {
if (!(xhdt->context_array =
malloc(domains * sizeof(struct xen_hyper_domain_context)))) {
error(FATAL, "cannot malloc context array (%d domains).",
domains);
}
xhdt->context_array_cnt = domains;
} else if (domains > xhdt->context_array_cnt) {
struct xen_hyper_domain_context *dc;
int i;
for (dc = xhdt->context_array, i = 0;
i < xhdt->context_array_cnt; ++dc, ++i) {
if (dc->vcpu)
free(dc->vcpu);
}
if (!(xhdt->context_array =
realloc(xhdt->context_array,
domains * sizeof(struct xen_hyper_domain_context)))) {
error(FATAL, "cannot realloc context array (%d domains).",
domains);
}
xhdt->context_array_cnt = domains;
}
BZERO(xhdt->context_array,
domains * sizeof(struct xen_hyper_domain_context));
}
/*
* Get vcpu status.
*/
int
xen_hyper_vcpu_state(struct xen_hyper_vcpu_context *vcc)
{
if (ACTIVE()) {
if (xen_hyper_read_vcpu_verify(vcc->vcpu) == NULL) {
return XEN_HYPER_RUNSTATE_ERROR;
}
}
return vcc->state;
}
/*
* Allocate vcpu context space.
*/
void
xen_hyper_refresh_vcpu_context_space(void)
{
struct xen_hyper_domain_context *dc;
struct xen_hyper_vcpu_context_array *vcca;
struct xen_hyper_vcpu_context *vcc;
int i, j;
if ((xhvct->flags & XEN_HYPER_VCPU_F_INIT) && !ACTIVE()) {
return;
}
xen_hyper_alloc_vcpu_context_arrays_space(XEN_HYPER_NR_DOMAINS());
for (i = 0, xht->vcpus = 0, dc = xhdt->context_array,
vcca = xhvct->vcpu_context_arrays;
i < XEN_HYPER_NR_DOMAINS(); i++, dc++, vcca++) {
dc->vcpu_context_array = vcca;
xen_hyper_alloc_vcpu_context_space(vcca,
XEN_HYPER_NR_VCPUS_IN_DOM(dc));
for (j = 0, vcc = vcca->context_array;
j < XEN_HYPER_NR_VCPUS_IN_DOM(dc); j++, vcc++) {
xen_hyper_read_vcpu(dc->vcpu[j]);
xen_hyper_store_vcpu_context(vcc, dc->vcpu[j],
xhvct->vcpu_struct);
}
if (dc == xhdt->idle_domain) {
xhvct->idle_vcpu_context_array = vcca;
}
xht->vcpus += vcca->context_array_cnt;
}
}
/*
* Get vcpu context from vcpu address.
*/
struct xen_hyper_vcpu_context *
xen_hyper_vcpu_to_vcpu_context(ulong vcpu)
{
struct xen_hyper_vcpu_context_array *vcca;
struct xen_hyper_vcpu_context *vcc;
int i, j;
if (!vcpu) {
return NULL;
}
for (i = 0, vcca = xhvct->vcpu_context_arrays;
i < xhvct->vcpu_context_arrays_cnt; i++, vcca++) {
for (j = 0, vcc = vcca->context_array;
j < vcca->context_array_cnt; j++, vcc++) {
if (vcpu == vcc->vcpu) {
return vcc;
}
}
}
return NULL;
}
/*
* Get vcpu context.
*/
struct xen_hyper_vcpu_context *
xen_hyper_id_to_vcpu_context(ulong domain, domid_t did, int vcid)
{
struct xen_hyper_vcpu_context_array *vcca;
struct xen_hyper_vcpu_context *vcc;
int i;
if (vcid == XEN_HYPER_VCPU_ID_INVALID) {
return NULL;
}
if ((vcca = xen_hyper_domain_to_vcpu_context_array(domain))) {
;
} else if (!(vcca = xen_hyper_domid_to_vcpu_context_array(did))) {
return NULL;
}
for (i = 0, vcc = vcca->context_array;
i < vcca->context_array_cnt; i++, vcc++) {
if (vcid == vcc->vcpu_id) {
return vcc;
}
}
return NULL;
}
/*
* Get pointer of a vcpu context array from domain address.
*/
struct xen_hyper_vcpu_context_array *
xen_hyper_domain_to_vcpu_context_array(ulong domain)
{
struct xen_hyper_domain_context *dc;
if(!(dc = xen_hyper_domain_to_domain_context(domain))) {
return NULL;
}
return dc->vcpu_context_array;
}
/*
* Get pointer of a vcpu context array from domain id.
*/
struct xen_hyper_vcpu_context_array *
xen_hyper_domid_to_vcpu_context_array(domid_t id)
{
struct xen_hyper_domain_context *dc;
if (!(dc = xen_hyper_id_to_domain_context(id))) {
return NULL;
}
return dc->vcpu_context_array;
}
/*
* Store vcpu struct contents.
*/
struct xen_hyper_vcpu_context *
xen_hyper_store_vcpu_context(struct xen_hyper_vcpu_context *vcc,
ulong vcpu, char *vcp)
{
vcc->vcpu = vcpu;
vcc->vcpu_id = INT(vcp + XEN_HYPER_OFFSET(vcpu_vcpu_id));
vcc->processor = INT(vcp + XEN_HYPER_OFFSET(vcpu_processor));
vcc->vcpu_info = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_vcpu_info));
vcc->domain = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_domain));
vcc->next_in_list = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_next_in_list));
if (XEN_HYPER_VALID_MEMBER(vcpu_sleep_tick))
vcc->sleep_tick = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_sleep_tick));
vcc->sched_priv = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_sched_priv));
vcc->state = INT(vcp + XEN_HYPER_OFFSET(vcpu_runstate) +
XEN_HYPER_OFFSET(vcpu_runstate_info_state));
vcc->state_entry_time = ULONGLONG(vcp +
XEN_HYPER_OFFSET(vcpu_runstate) +
XEN_HYPER_OFFSET(vcpu_runstate_info_state_entry_time));
vcc->runstate_guest = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_runstate_guest));
if (XEN_HYPER_VALID_MEMBER(vcpu_vcpu_flags))
vcc->vcpu_flags = ULONG(vcp + XEN_HYPER_OFFSET(vcpu_vcpu_flags));
else
vcc->vcpu_flags = XEN_HYPER_VCPUF_ERROR;
return vcc;
}
/*
* Read vcpu struct from vcpu context.
*/
char *
xen_hyper_read_vcpu_from_context(struct xen_hyper_vcpu_context *vcc)
{
return xen_hyper_fill_vcpu_struct(vcc->vcpu, xhvct->vcpu_struct);
}
/*
* Read vcpu struct.
*/
char *
xen_hyper_read_vcpu(ulong vcpu)
{
return xen_hyper_fill_vcpu_struct(vcpu, xhvct->vcpu_struct);
}
/*
* Read vcpu struct to verification.
*/
char *
xen_hyper_read_vcpu_verify(ulong vcpu)
{
return xen_hyper_fill_vcpu_struct(vcpu, xhvct->vcpu_struct_verify);
}
/*
* Fill vcpu struct.
*/
char *
xen_hyper_fill_vcpu_struct(ulong vcpu, char *vcpu_struct)
{
if (!readmem(vcpu, KVADDR, vcpu_struct,
XEN_HYPER_SIZE(vcpu), "fill_vcpu_struct",
ACTIVE() ? (RETURN_ON_ERROR|QUIET) : RETURN_ON_ERROR)) {
error(WARNING, "cannot fill vcpu struct.\n");
return NULL;
}
return vcpu_struct;
}
/*
* Allocate vcpu context arrays space.
*/
void
xen_hyper_alloc_vcpu_context_arrays_space(int domains)
{
struct xen_hyper_vcpu_context_array *vcca;
if (xhvct->vcpu_context_arrays == NULL) {
if (!(xhvct->vcpu_context_arrays =
malloc(domains * sizeof(struct xen_hyper_vcpu_context_array)))) {
error(FATAL, "cannot malloc context arrays (%d domains).",
domains);
}
BZERO(xhvct->vcpu_context_arrays, domains * sizeof(struct xen_hyper_vcpu_context_array));
xhvct->vcpu_context_arrays_cnt = domains;
} else if (domains > xhvct->vcpu_context_arrays_cnt) {
if (!(xhvct->vcpu_context_arrays =
realloc(xhvct->vcpu_context_arrays,
domains * sizeof(struct xen_hyper_vcpu_context_array)))) {
error(FATAL, "cannot realloc context arrays (%d domains).",
domains);
}
vcca = xhvct->vcpu_context_arrays + domains;
BZERO(vcca, (domains - xhvct->vcpu_context_arrays_cnt) *
sizeof(struct xen_hyper_vcpu_context_array));
xhvct->vcpu_context_arrays_cnt = domains;
}
}
/*
* Allocate vcpu context space.
*/
void
xen_hyper_alloc_vcpu_context_space(struct xen_hyper_vcpu_context_array *vcca, int vcpus)
{
if (!vcpus) {
if (vcca->context_array != NULL) {
free(vcca->context_array);
vcca->context_array = NULL;
}
vcca->context_array_cnt = vcpus;
} else if (vcca->context_array == NULL) {
if (!(vcca->context_array =
malloc(vcpus * sizeof(struct xen_hyper_vcpu_context)))) {
error(FATAL, "cannot malloc context array (%d vcpus).",
vcpus);
}
vcca->context_array_cnt = vcpus;
} else if (vcpus > vcca->context_array_cnt) {
if (!(vcca->context_array =
realloc(vcca->context_array,
vcpus * sizeof(struct xen_hyper_vcpu_context_array)))) {
error(FATAL, "cannot realloc context array (%d vcpus).",
vcpus);
}
vcca->context_array_cnt = vcpus;
}
vcca->context_array_valid = vcpus;
BZERO(vcca->context_array, vcpus * sizeof(struct xen_hyper_vcpu_context));
}
/*
* Get pcpu context from pcpu id.
*/
struct xen_hyper_pcpu_context *
xen_hyper_id_to_pcpu_context(uint id)
{
if (xhpct->context_array == NULL) {
return NULL;
}
if (!xen_hyper_test_pcpu_id(id)) {
return NULL;
}
return &xhpct->context_array[id];
}
/*
* Get pcpu context from pcpu address.
*/
struct xen_hyper_pcpu_context *
xen_hyper_pcpu_to_pcpu_context(ulong pcpu)
{
struct xen_hyper_pcpu_context *pcc;
int i;
uint cpuid;
if (xhpct->context_array == NULL) {
return NULL;
}
if (!pcpu) {
return NULL;
}
for_cpu_indexes(i, cpuid)
{
pcc = &xhpct->context_array[cpuid];
if (pcpu == pcc->pcpu) {
return pcc;
}
}
return NULL;
}
/*
* Store pcpu struct contents.
*/
struct xen_hyper_pcpu_context *
xen_hyper_store_pcpu_context(struct xen_hyper_pcpu_context *pcc,
ulong pcpu, char *pcp)
{
pcc->pcpu = pcpu;
pcc->processor_id =
UINT(pcp + XEN_HYPER_OFFSET(cpu_info_processor_id));
pcc->guest_cpu_user_regs = (ulong)(pcpu +
XEN_HYPER_OFFSET(cpu_info_guest_cpu_user_regs));
pcc->current_vcpu =
ULONG(pcp + XEN_HYPER_OFFSET(cpu_info_current_vcpu));
return pcc;
}
/*
* Store init_tss contents.
*/
struct xen_hyper_pcpu_context *
xen_hyper_store_pcpu_context_tss(struct xen_hyper_pcpu_context *pcc,
ulong init_tss, char *tss)
{
int i;
uint64_t *ist_p;
pcc->init_tss = init_tss;
if (machine_type("X86")) {
pcc->sp.esp0 = ULONG(tss + XEN_HYPER_OFFSET(tss_struct_esp0));
} else if (machine_type("X86_64")) {
pcc->sp.rsp0 = ULONG(tss + XEN_HYPER_OFFSET(tss_struct_rsp0));
ist_p = (uint64_t *)(tss + XEN_HYPER_OFFSET(tss_struct_ist));
for (i = 0; i < XEN_HYPER_TSS_IST_MAX; i++, ist_p++) {
pcc->ist[i] = ULONG(ist_p);
}
}
return pcc;
}
/*
* Read pcpu struct.
*/
char *
xen_hyper_read_pcpu(ulong pcpu)
{
return xen_hyper_fill_pcpu_struct(pcpu, xhpct->pcpu_struct);
}
/*
* Fill pcpu struct.
*/
char *
xen_hyper_fill_pcpu_struct(ulong pcpu, char *pcpu_struct)
{
if (!readmem(pcpu, KVADDR, pcpu_struct,
XEN_HYPER_SIZE(cpu_info), "fill_pcpu_struct",
ACTIVE() ? (RETURN_ON_ERROR|QUIET) : RETURN_ON_ERROR)) {
error(WARNING, "cannot fill pcpu_struct.\n");
return NULL;
}
return pcpu_struct;
}
/*
* Allocate pcpu context space.
*/
void
xen_hyper_alloc_pcpu_context_space(int pcpus)
{
if (xhpct->context_array == NULL) {
if (!(xhpct->context_array =
malloc(pcpus * sizeof(struct xen_hyper_pcpu_context)))) {
error(FATAL, "cannot malloc context array (%d pcpus).",
pcpus);
}
}
BZERO(xhpct->context_array, pcpus * sizeof(struct xen_hyper_pcpu_context));
}
/*
* Fill cpu_data.
*/
char *
xen_hyper_x86_fill_cpu_data(int idx, char *cpuinfo_x86)
{
ulong cpu_data;
if (!xen_hyper_test_pcpu_id(idx) || !xht->cpu_data_address)
return NULL;
cpu_data = xht->cpu_data_address + XEN_HYPER_SIZE(cpuinfo_x86) * idx;
if (!readmem(cpu_data, KVADDR, cpuinfo_x86, XEN_HYPER_SIZE(cpuinfo_x86),
"cpu_data", RETURN_ON_ERROR)) {
error(WARNING, "cannot read cpu_data.\n");
return NULL;
}
return cpuinfo_x86;
}
char *
xen_hyper_ia64_fill_cpu_data(int idx, char *cpuinfo_ia64)
{
ulong cpu_data;
if (!xen_hyper_test_pcpu_id(idx) || !xht->cpu_data_address)
return NULL;
cpu_data = xen_hyper_per_cpu(xht->cpu_data_address, idx);
if (!readmem(cpu_data, KVADDR, cpuinfo_ia64, XEN_HYPER_SIZE(cpuinfo_ia64),
"cpu_data", RETURN_ON_ERROR)) {
error(WARNING, "cannot read cpu_data.\n");
return NULL;
}
return cpuinfo_ia64;
}
/*
* Return whether vcpu is crashing.
*/
int
xen_hyper_is_vcpu_crash(struct xen_hyper_vcpu_context *vcc)
{
if (vcc == xht->crashing_vcc)
return TRUE;
return FALSE;
}
/*
* Test whether cpu for pcpu id exists.
*/
int
xen_hyper_test_pcpu_id(uint pcpu_id)
{
ulong *cpumask = xht->cpumask;
uint i, j;
if (pcpu_id == XEN_HYPER_PCPU_ID_INVALID ||
pcpu_id > XEN_HYPER_MAX_CPUS()) {
return FALSE;
}
i = pcpu_id / (sizeof(ulong) * 8);
j = pcpu_id % (sizeof(ulong) * 8);
cpumask += i;
if (*cpumask & (1UL << j)) {
return TRUE;
} else {
return FALSE;
}
}
/*
* Calculate and return the uptime.
*/
ulonglong
xen_hyper_get_uptime_hyper(void)
{
ulong jiffies, tmp1, tmp2;
ulonglong jiffies_64, wrapped;
if (symbol_exists("jiffies_64")) {
get_symbol_data("jiffies_64", sizeof(ulonglong), &jiffies_64);
wrapped = (jiffies_64 & 0xffffffff00000000ULL);
if (wrapped) {
wrapped -= 0x100000000ULL;
jiffies_64 &= 0x00000000ffffffffULL;
jiffies_64 |= wrapped;
jiffies_64 += (ulonglong)(300*machdep->hz);
} else {
tmp1 = (ulong)(uint)(-300*machdep->hz);
tmp2 = (ulong)jiffies_64;
jiffies_64 = (ulonglong)(tmp2 - tmp1);
}
} else if (symbol_exists("jiffies")) {
get_symbol_data("jiffies", sizeof(long), &jiffies);
jiffies_64 = (ulonglong)jiffies;
} else {
jiffies_64 = 0; /* hypervisor does not have uptime */
}
return jiffies_64;
}
/*
* Get cpu informatin around.
*/
void
xen_hyper_get_cpu_info(void)
{
ulong addr, init_begin, init_end;
ulong *cpumask;
uint *cpu_idx;
int i, j, cpus;
XEN_HYPER_STRUCT_SIZE_INIT(cpumask_t, "cpumask_t");
if (symbol_exists("nr_cpu_ids"))
get_symbol_data("nr_cpu_ids", sizeof(uint), &xht->max_cpus);
else {
init_begin = symbol_value("__init_begin");
init_end = symbol_value("__init_end");
addr = symbol_value("max_cpus");
if (addr >= init_begin && addr < init_end)
xht->max_cpus = XEN_HYPER_SIZE(cpumask_t) * 8;
else {
get_symbol_data("max_cpus", sizeof(xht->max_cpus), &xht->max_cpus);
if (XEN_HYPER_SIZE(cpumask_t) * 8 > xht->max_cpus)
xht->max_cpus = XEN_HYPER_SIZE(cpumask_t) * 8;
}
}
if (xht->cpumask) {
free(xht->cpumask);
}
if((xht->cpumask = malloc(XEN_HYPER_SIZE(cpumask_t))) == NULL) {
error(FATAL, "cannot malloc cpumask space.\n");
}
addr = symbol_value("cpu_present_map");
if (!readmem(addr, KVADDR, xht->cpumask,
XEN_HYPER_SIZE(cpumask_t), "cpu_present_map", RETURN_ON_ERROR)) {
error(FATAL, "cannot read cpu_present_map.\n");
}
if (xht->cpu_idxs) {
free(xht->cpu_idxs);
}
if((xht->cpu_idxs = malloc(sizeof(uint) * XEN_HYPER_MAX_CPUS())) == NULL) {
error(FATAL, "cannot malloc cpu_idxs space.\n");
}
memset(xht->cpu_idxs, 0xff, sizeof(uint) * XEN_HYPER_MAX_CPUS());
for (i = cpus = 0, cpumask = xht->cpumask, cpu_idx = xht->cpu_idxs;
i < (XEN_HYPER_SIZE(cpumask_t)/sizeof(ulong)); i++, cpumask++) {
for (j = 0; j < sizeof(ulong) * 8; j++) {
if (*cpumask & (1UL << j)) {
*cpu_idx++ = i * sizeof(ulong) * 8 + j;
cpus++;
}
}
}
xht->pcpus = cpus;
}
/*
* Calculate the number of physical cpu for x86.
*/
int
xen_hyper_x86_get_smp_cpus(void)
{
if (xht->pcpus) {
return xht->pcpus;
}
xen_hyper_get_cpu_info();
return xht->pcpus;
}
/*
* Calculate used memory size for x86.
*/
uint64_t
xen_hyper_x86_memory_size(void)
{
ulong vaddr;
if (machdep->memsize) {
return machdep->memsize;
}
vaddr = symbol_value("total_pages");
if (!readmem(vaddr, KVADDR, &xht->total_pages, sizeof(xht->total_pages),
"total_pages", RETURN_ON_ERROR)) {
error(WARNING, "cannot read total_pages.\n");
}
xht->sys_pages = xht->total_pages;
machdep->memsize = (uint64_t)(xht->sys_pages) * (uint64_t)(machdep->pagesize);
return machdep->memsize;
}
/*
* Calculate the number of physical cpu for ia64.
*/
int
xen_hyper_ia64_get_smp_cpus(void)
{
return xen_hyper_x86_get_smp_cpus();
}
/*
* Calculate used memory size for ia64.
*/
uint64_t
xen_hyper_ia64_memory_size(void)
{
return xen_hyper_x86_memory_size();
}
/*
* Calculate and return the speed of the processor.
*/
ulong
xen_hyper_ia64_processor_speed(void)
{
ulong mhz, proc_freq;
if (machdep->mhz)
return(machdep->mhz);
mhz = 0;
if (!xht->cpu_data_address ||
!XEN_HYPER_VALID_STRUCT(cpuinfo_ia64) ||
XEN_HYPER_INVALID_MEMBER(cpuinfo_ia64_proc_freq))
return (machdep->mhz = mhz);
readmem(xen_hyper_per_cpu(xht->cpu_data_address, xht->cpu_idxs[0]) +
XEN_HYPER_OFFSET(cpuinfo_ia64_proc_freq),
KVADDR, &proc_freq, sizeof(ulong),
"cpuinfo_ia64 proc_freq", FAULT_ON_ERROR);
mhz = proc_freq/1000000;
return (machdep->mhz = mhz);
}
/*
* Print an aligned string with specified length.
*/
void
xen_hyper_fpr_indent(FILE *fp, int len, char *str1, char *str2, int flag)
{
char buf[XEN_HYPER_CMD_BUFSIZE];
int sl, r;
char *s1, *s2;
sl = strlen(str1);
if (sl > len) {
r = 0;
} else {
r = len - sl;
}
memset(buf, ' ', sizeof(buf));
buf[r] = '\0';
if (flag & XEN_HYPER_PRI_L) {
s1 = str1;
s2 = buf;
} else {
s1 = buf;
s2 = str1;
}
if (str2) {
fprintf(fp, "%s%s%s", s1, s2, str2);
} else {
fprintf(fp, "%s%s", s1, s2);
}
if (flag & XEN_HYPER_PRI_LF) {
fprintf(fp, "\n");
}
}
ulong
xen_hyper_get_active_vcpu_from_pcpuid(ulong pcpuid)
{
struct xen_hyper_pcpu_context *pcc;
struct xen_hyper_vcpu_context_array *vcca;
struct xen_hyper_vcpu_context *vcc;
int i, j;
if (!xen_hyper_test_pcpu_id(pcpuid))
return 0;
pcc = &xhpct->context_array[pcpuid];
if (pcc->current_vcpu)
return pcc->current_vcpu;
for (i = 0, vcca = xhvct->vcpu_context_arrays;
i < xhvct->vcpu_context_arrays_cnt; i++, vcca++) {
for (j = 0, vcc = vcca->context_array;
j < vcca->context_array_cnt; j++, vcc++) {
if (vcc->processor == pcpuid &&
vcc->state == XEN_HYPER_RUNSTATE_running) {
return vcc->vcpu;
}
}
}
return 0;
}
ulong
xen_hyper_pcpu_to_active_vcpu(ulong pcpu)
{
ulong vcpu;
/* if pcpu is vcpu address, return it. */
if (pcpu & (~(PAGESIZE() - 1))) {
return pcpu;
}
if(!(vcpu = XEN_HYPER_CURR_VCPU(pcpu)))
error(FATAL, "invalid pcpu id\n");
return vcpu;
}
void
xen_hyper_print_bt_header(FILE *out, ulong vcpu, int newline)
{
struct xen_hyper_vcpu_context *vcc;
if (newline)
fprintf(out, "\n");
vcc = xen_hyper_vcpu_to_vcpu_context(vcpu);
if (!vcc)
error(FATAL, "invalid vcpu\n");
fprintf(out, "PCPU: %2d VCPU: %lx\n", vcc->processor, vcpu);
}
#endif