ceph/doc/rados/troubleshooting/troubleshooting-pg.rst

687 lines
24 KiB
ReStructuredText

=====================
Troubleshooting PGs
=====================
Placement Groups Never Get Clean
================================
When you create a cluster and your cluster remains in ``active``,
``active+remapped`` or ``active+degraded`` status and never achieves an
``active+clean`` status, you likely have a problem with your configuration.
You may need to review settings in the `Pool, PG and CRUSH Config Reference`_
and make appropriate adjustments.
As a general rule, you should run your cluster with more than one OSD and a
pool size greater than 1 object replica.
.. _one-node-cluster:
One Node Cluster
----------------
Ceph no longer provides documentation for operating on a single node, because
you would never deploy a system designed for distributed computing on a single
node. Additionally, mounting client kernel modules on a single node containing a
Ceph daemon may cause a deadlock due to issues with the Linux kernel itself
(unless you use VMs for the clients). You can experiment with Ceph in a 1-node
configuration, in spite of the limitations as described herein.
If you are trying to create a cluster on a single node, you must change the
default of the ``osd_crush_chooseleaf_type`` setting from ``1`` (meaning
``host`` or ``node``) to ``0`` (meaning ``osd``) in your Ceph configuration
file before you create your monitors and OSDs. This tells Ceph that an OSD
can peer with another OSD on the same host. If you are trying to set up a
1-node cluster and ``osd_crush_chooseleaf_type`` is greater than ``0``,
Ceph will try to peer the PGs of one OSD with the PGs of another OSD on
another node, chassis, rack, row, or even datacenter depending on the setting.
.. tip:: DO NOT mount kernel clients directly on the same node as your
Ceph Storage Cluster, because kernel conflicts can arise. However, you
can mount kernel clients within virtual machines (VMs) on a single node.
If you are creating OSDs using a single disk, you must create directories
for the data manually first.
Fewer OSDs than Replicas
------------------------
If you have brought up two OSDs to an ``up`` and ``in`` state, but you still
don't see ``active + clean`` placement groups, you may have an
``osd_pool_default_size`` set to greater than ``2``.
There are a few ways to address this situation. If you want to operate your
cluster in an ``active + degraded`` state with two replicas, you can set the
``osd_pool_default_min_size`` to ``2`` so that you can write objects in
an ``active + degraded`` state. You may also set the ``osd_pool_default_size``
setting to ``2`` so that you only have two stored replicas (the original and
one replica), in which case the cluster should achieve an ``active + clean``
state.
.. note:: You can make the changes at runtime. If you make the changes in
your Ceph configuration file, you may need to restart your cluster.
Pool Size = 1
-------------
If you have the ``osd_pool_default_size`` set to ``1``, you will only have
one copy of the object. OSDs rely on other OSDs to tell them which objects
they should have. If a first OSD has a copy of an object and there is no
second copy, then no second OSD can tell the first OSD that it should have
that copy. For each placement group mapped to the first OSD (see
``ceph pg dump``), you can force the first OSD to notice the placement groups
it needs by running::
ceph osd force-create-pg <pgid>
CRUSH Map Errors
----------------
Another candidate for placement groups remaining unclean involves errors
in your CRUSH map.
Stuck Placement Groups
======================
It is normal for placement groups to enter states like "degraded" or "peering"
following a failure. Normally these states indicate the normal progression
through the failure recovery process. However, if a placement group stays in one
of these states for a long time this may be an indication of a larger problem.
For this reason, the monitor will warn when placement groups get "stuck" in a
non-optimal state. Specifically, we check for:
* ``inactive`` - The placement group has not been ``active`` for too long
(i.e., it hasn't been able to service read/write requests).
* ``unclean`` - The placement group has not been ``clean`` for too long
(i.e., it hasn't been able to completely recover from a previous failure).
* ``stale`` - The placement group status has not been updated by a ``ceph-osd``,
indicating that all nodes storing this placement group may be ``down``.
You can explicitly list stuck placement groups with one of::
ceph pg dump_stuck stale
ceph pg dump_stuck inactive
ceph pg dump_stuck unclean
For stuck ``stale`` placement groups, it is normally a matter of getting the
right ``ceph-osd`` daemons running again. For stuck ``inactive`` placement
groups, it is usually a peering problem (see :ref:`failures-osd-peering`). For
stuck ``unclean`` placement groups, there is usually something preventing
recovery from completing, like unfound objects (see
:ref:`failures-osd-unfound`);
.. _failures-osd-peering:
Placement Group Down - Peering Failure
======================================
In certain cases, the ``ceph-osd`` `Peering` process can run into
problems, preventing a PG from becoming active and usable. For
example, ``ceph health`` might report::
ceph health detail
HEALTH_ERR 7 pgs degraded; 12 pgs down; 12 pgs peering; 1 pgs recovering; 6 pgs stuck unclean; 114/3300 degraded (3.455%); 1/3 in osds are down
...
pg 0.5 is down+peering
pg 1.4 is down+peering
...
osd.1 is down since epoch 69, last address 192.168.106.220:6801/8651
We can query the cluster to determine exactly why the PG is marked ``down`` with::
ceph pg 0.5 query
.. code-block:: javascript
{ "state": "down+peering",
...
"recovery_state": [
{ "name": "Started\/Primary\/Peering\/GetInfo",
"enter_time": "2012-03-06 14:40:16.169679",
"requested_info_from": []},
{ "name": "Started\/Primary\/Peering",
"enter_time": "2012-03-06 14:40:16.169659",
"probing_osds": [
0,
1],
"blocked": "peering is blocked due to down osds",
"down_osds_we_would_probe": [
1],
"peering_blocked_by": [
{ "osd": 1,
"current_lost_at": 0,
"comment": "starting or marking this osd lost may let us proceed"}]},
{ "name": "Started",
"enter_time": "2012-03-06 14:40:16.169513"}
]
}
The ``recovery_state`` section tells us that peering is blocked due to
down ``ceph-osd`` daemons, specifically ``osd.1``. In this case, we can start that ``ceph-osd``
and things will recover.
Alternatively, if there is a catastrophic failure of ``osd.1`` (e.g., disk
failure), we can tell the cluster that it is ``lost`` and to cope as
best it can.
.. important:: This is dangerous in that the cluster cannot
guarantee that the other copies of the data are consistent
and up to date.
To instruct Ceph to continue anyway::
ceph osd lost 1
Recovery will proceed.
.. _failures-osd-unfound:
Unfound Objects
===============
Under certain combinations of failures Ceph may complain about
``unfound`` objects::
ceph health detail
HEALTH_WARN 1 pgs degraded; 78/3778 unfound (2.065%)
pg 2.4 is active+degraded, 78 unfound
This means that the storage cluster knows that some objects (or newer
copies of existing objects) exist, but it hasn't found copies of them.
One example of how this might come about for a PG whose data is on ceph-osds
1 and 2:
* 1 goes down
* 2 handles some writes, alone
* 1 comes up
* 1 and 2 repeer, and the objects missing on 1 are queued for recovery.
* Before the new objects are copied, 2 goes down.
Now 1 knows that these object exist, but there is no live ``ceph-osd`` who
has a copy. In this case, IO to those objects will block, and the
cluster will hope that the failed node comes back soon; this is
assumed to be preferable to returning an IO error to the user.
First, you can identify which objects are unfound with::
ceph pg 2.4 list_unfound [starting offset, in json]
.. code-block:: javascript
{
"num_missing": 1,
"num_unfound": 1,
"objects": [
{
"oid": {
"oid": "object",
"key": "",
"snapid": -2,
"hash": 2249616407,
"max": 0,
"pool": 2,
"namespace": ""
},
"need": "43'251",
"have": "0'0",
"flags": "none",
"clean_regions": "clean_offsets: [], clean_omap: 0, new_object: 1",
"locations": [
"0(3)",
"4(2)"
]
}
],
"state": "NotRecovering",
"available_might_have_unfound": true,
"might_have_unfound": [
{
"osd": "2(4)",
"status": "osd is down"
}
],
"more": false
}
If there are too many objects to list in a single result, the ``more``
field will be true and you can query for more. (Eventually the
command line tool will hide this from you, but not yet.)
Second, you can identify which OSDs have been probed or might contain
data.
At the end of the listing (before ``more`` is false), ``might_have_unfound`` is provided
when ``available_might_have_unfound`` is true. This is equivalent to the output
of ``ceph pg #.# query``. This eliminates the need to use ``query`` directly.
The ``might_have_unfound`` information given behaves the same way as described below for ``query``.
The only difference is that OSDs that have ``already probed`` status are ignored.
Use of ``query``::
ceph pg 2.4 query
.. code-block:: javascript
"recovery_state": [
{ "name": "Started\/Primary\/Active",
"enter_time": "2012-03-06 15:15:46.713212",
"might_have_unfound": [
{ "osd": 1,
"status": "osd is down"}]},
In this case, for example, the cluster knows that ``osd.1`` might have
data, but it is ``down``. The full range of possible states include:
* already probed
* querying
* OSD is down
* not queried (yet)
Sometimes it simply takes some time for the cluster to query possible
locations.
It is possible that there are other locations where the object can
exist that are not listed. For example, if a ceph-osd is stopped and
taken out of the cluster, the cluster fully recovers, and due to some
future set of failures ends up with an unfound object, it won't
consider the long-departed ceph-osd as a potential location to
consider. (This scenario, however, is unlikely.)
If all possible locations have been queried and objects are still
lost, you may have to give up on the lost objects. This, again, is
possible given unusual combinations of failures that allow the cluster
to learn about writes that were performed before the writes themselves
are recovered. To mark the "unfound" objects as "lost"::
ceph pg 2.5 mark_unfound_lost revert|delete
This the final argument specifies how the cluster should deal with
lost objects.
The "delete" option will forget about them entirely.
The "revert" option (not available for erasure coded pools) will
either roll back to a previous version of the object or (if it was a
new object) forget about it entirely. Use this with caution, as it
may confuse applications that expected the object to exist.
Homeless Placement Groups
=========================
It is possible for all OSDs that had copies of a given placement groups to fail.
If that's the case, that subset of the object store is unavailable, and the
monitor will receive no status updates for those placement groups. To detect
this situation, the monitor marks any placement group whose primary OSD has
failed as ``stale``. For example::
ceph health
HEALTH_WARN 24 pgs stale; 3/300 in osds are down
You can identify which placement groups are ``stale``, and what the last OSDs to
store them were, with::
ceph health detail
HEALTH_WARN 24 pgs stale; 3/300 in osds are down
...
pg 2.5 is stuck stale+active+remapped, last acting [2,0]
...
osd.10 is down since epoch 23, last address 192.168.106.220:6800/11080
osd.11 is down since epoch 13, last address 192.168.106.220:6803/11539
osd.12 is down since epoch 24, last address 192.168.106.220:6806/11861
If we want to get placement group 2.5 back online, for example, this tells us that
it was last managed by ``osd.0`` and ``osd.2``. Restarting those ``ceph-osd``
daemons will allow the cluster to recover that placement group (and, presumably,
many others).
Only a Few OSDs Receive Data
============================
If you have many nodes in your cluster and only a few of them receive data,
`check`_ the number of placement groups in your pool. Since placement groups get
mapped to OSDs, a small number of placement groups will not distribute across
your cluster. Try creating a pool with a placement group count that is a
multiple of the number of OSDs. See `Placement Groups`_ for details. The default
placement group count for pools is not useful, but you can change it `here`_.
Can't Write Data
================
If your cluster is up, but some OSDs are down and you cannot write data,
check to ensure that you have the minimum number of OSDs running for the
placement group. If you don't have the minimum number of OSDs running,
Ceph will not allow you to write data because there is no guarantee
that Ceph can replicate your data. See ``osd_pool_default_min_size``
in the `Pool, PG and CRUSH Config Reference`_ for details.
PGs Inconsistent
================
If you receive an ``active + clean + inconsistent`` state, this may happen
due to an error during scrubbing. As always, we can identify the inconsistent
placement group(s) with::
$ ceph health detail
HEALTH_ERR 1 pgs inconsistent; 2 scrub errors
pg 0.6 is active+clean+inconsistent, acting [0,1,2]
2 scrub errors
Or if you prefer inspecting the output in a programmatic way::
$ rados list-inconsistent-pg rbd
["0.6"]
There is only one consistent state, but in the worst case, we could have
different inconsistencies in multiple perspectives found in more than one
objects. If an object named ``foo`` in PG ``0.6`` is truncated, we will have::
$ rados list-inconsistent-obj 0.6 --format=json-pretty
.. code-block:: javascript
{
"epoch": 14,
"inconsistents": [
{
"object": {
"name": "foo",
"nspace": "",
"locator": "",
"snap": "head",
"version": 1
},
"errors": [
"data_digest_mismatch",
"size_mismatch"
],
"union_shard_errors": [
"data_digest_mismatch_info",
"size_mismatch_info"
],
"selected_object_info": "0:602f83fe:::foo:head(16'1 client.4110.0:1 dirty|data_digest|omap_digest s 968 uv 1 dd e978e67f od ffffffff alloc_hint [0 0 0])",
"shards": [
{
"osd": 0,
"errors": [],
"size": 968,
"omap_digest": "0xffffffff",
"data_digest": "0xe978e67f"
},
{
"osd": 1,
"errors": [],
"size": 968,
"omap_digest": "0xffffffff",
"data_digest": "0xe978e67f"
},
{
"osd": 2,
"errors": [
"data_digest_mismatch_info",
"size_mismatch_info"
],
"size": 0,
"omap_digest": "0xffffffff",
"data_digest": "0xffffffff"
}
]
}
]
}
In this case, we can learn from the output:
* The only inconsistent object is named ``foo``, and it is its head that has
inconsistencies.
* The inconsistencies fall into two categories:
* ``errors``: these errors indicate inconsistencies between shards without a
determination of which shard(s) are bad. Check for the ``errors`` in the
`shards` array, if available, to pinpoint the problem.
* ``data_digest_mismatch``: the digest of the replica read from OSD.2 is
different from the ones of OSD.0 and OSD.1
* ``size_mismatch``: the size of the replica read from OSD.2 is 0, while
the size reported by OSD.0 and OSD.1 is 968.
* ``union_shard_errors``: the union of all shard specific ``errors`` in
``shards`` array. The ``errors`` are set for the given shard that has the
problem. They include errors like ``read_error``. The ``errors`` ending in
``oi`` indicate a comparison with ``selected_object_info``. Look at the
``shards`` array to determine which shard has which error(s).
* ``data_digest_mismatch_info``: the digest stored in the object-info is not
``0xffffffff``, which is calculated from the shard read from OSD.2
* ``size_mismatch_info``: the size stored in the object-info is different
from the one read from OSD.2. The latter is 0.
You can repair the inconsistent placement group by executing::
ceph pg repair {placement-group-ID}
Which overwrites the `bad` copies with the `authoritative` ones. In most cases,
Ceph is able to choose authoritative copies from all available replicas using
some predefined criteria. But this does not always work. For example, the stored
data digest could be missing, and the calculated digest will be ignored when
choosing the authoritative copies. So, please use the above command with caution.
If ``read_error`` is listed in the ``errors`` attribute of a shard, the
inconsistency is likely due to disk errors. You might want to check your disk
used by that OSD.
If you receive ``active + clean + inconsistent`` states periodically due to
clock skew, you may consider configuring your `NTP`_ daemons on your
monitor hosts to act as peers. See `The Network Time Protocol`_ and Ceph
`Clock Settings`_ for additional details.
Erasure Coded PGs are not active+clean
======================================
When CRUSH fails to find enough OSDs to map to a PG, it will show as a
``2147483647`` which is ITEM_NONE or ``no OSD found``. For instance::
[2,1,6,0,5,8,2147483647,7,4]
Not enough OSDs
---------------
If the Ceph cluster only has 8 OSDs and the erasure coded pool needs
9, that is what it will show. You can either create another erasure
coded pool that requires less OSDs::
ceph osd erasure-code-profile set myprofile k=5 m=3
ceph osd pool create erasurepool erasure myprofile
or add a new OSDs and the PG will automatically use them.
CRUSH constraints cannot be satisfied
-------------------------------------
If the cluster has enough OSDs, it is possible that the CRUSH rule
imposes constraints that cannot be satisfied. If there are 10 OSDs on
two hosts and the CRUSH rule requires that no two OSDs from the
same host are used in the same PG, the mapping may fail because only
two OSDs will be found. You can check the constraint by displaying ("dumping")
the rule::
$ ceph osd crush rule ls
[
"replicated_rule",
"erasurepool"]
$ ceph osd crush rule dump erasurepool
{ "rule_id": 1,
"rule_name": "erasurepool",
"type": 3,
"steps": [
{ "op": "take",
"item": -1,
"item_name": "default"},
{ "op": "chooseleaf_indep",
"num": 0,
"type": "host"},
{ "op": "emit"}]}
You can resolve the problem by creating a new pool in which PGs are allowed
to have OSDs residing on the same host with::
ceph osd erasure-code-profile set myprofile crush-failure-domain=osd
ceph osd pool create erasurepool erasure myprofile
CRUSH gives up too soon
-----------------------
If the Ceph cluster has just enough OSDs to map the PG (for instance a
cluster with a total of 9 OSDs and an erasure coded pool that requires
9 OSDs per PG), it is possible that CRUSH gives up before finding a
mapping. It can be resolved by:
* lowering the erasure coded pool requirements to use less OSDs per PG
(that requires the creation of another pool as erasure code profiles
cannot be dynamically modified).
* adding more OSDs to the cluster (that does not require the erasure
coded pool to be modified, it will become clean automatically)
* use a handmade CRUSH rule that tries more times to find a good
mapping. This can be done by setting ``set_choose_tries`` to a value
greater than the default.
You should first verify the problem with ``crushtool`` after
extracting the crushmap from the cluster so your experiments do not
modify the Ceph cluster and only work on a local files::
$ ceph osd crush rule dump erasurepool
{ "rule_id": 1,
"rule_name": "erasurepool",
"type": 3,
"steps": [
{ "op": "take",
"item": -1,
"item_name": "default"},
{ "op": "chooseleaf_indep",
"num": 0,
"type": "host"},
{ "op": "emit"}]}
$ ceph osd getcrushmap > crush.map
got crush map from osdmap epoch 13
$ crushtool -i crush.map --test --show-bad-mappings \
--rule 1 \
--num-rep 9 \
--min-x 1 --max-x $((1024 * 1024))
bad mapping rule 8 x 43 num_rep 9 result [3,2,7,1,2147483647,8,5,6,0]
bad mapping rule 8 x 79 num_rep 9 result [6,0,2,1,4,7,2147483647,5,8]
bad mapping rule 8 x 173 num_rep 9 result [0,4,6,8,2,1,3,7,2147483647]
Where ``--num-rep`` is the number of OSDs the erasure code CRUSH
rule needs, ``--rule`` is the value of the ``rule_id`` field
displayed by ``ceph osd crush rule dump``. The test will try mapping
one million values (i.e. the range defined by ``[--min-x,--max-x]``)
and must display at least one bad mapping. If it outputs nothing it
means all mappings are successful and you can stop right there: the
problem is elsewhere.
The CRUSH rule can be edited by decompiling the crush map::
$ crushtool --decompile crush.map > crush.txt
and adding the following line to the rule::
step set_choose_tries 100
The relevant part of the ``crush.txt`` file should look something
like::
rule erasurepool {
id 1
type erasure
step set_chooseleaf_tries 5
step set_choose_tries 100
step take default
step chooseleaf indep 0 type host
step emit
}
It can then be compiled and tested again::
$ crushtool --compile crush.txt -o better-crush.map
When all mappings succeed, an histogram of the number of tries that
were necessary to find all of them can be displayed with the
``--show-choose-tries`` option of ``crushtool``::
$ crushtool -i better-crush.map --test --show-bad-mappings \
--show-choose-tries \
--rule 1 \
--num-rep 9 \
--min-x 1 --max-x $((1024 * 1024))
...
11: 42
12: 44
13: 54
14: 45
15: 35
16: 34
17: 30
18: 25
19: 19
20: 22
21: 20
22: 17
23: 13
24: 16
25: 13
26: 11
27: 11
28: 13
29: 11
30: 10
31: 6
32: 5
33: 10
34: 3
35: 7
36: 5
37: 2
38: 5
39: 5
40: 2
41: 5
42: 4
43: 1
44: 2
45: 2
46: 3
47: 1
48: 0
...
102: 0
103: 1
104: 0
...
It took 11 tries to map 42 PGs, 12 tries to map 44 PGs etc. The highest number of tries is the minimum value of ``set_choose_tries`` that prevents bad mappings (i.e. 103 in the above output because it did not take more than 103 tries for any PG to be mapped).
.. _check: ../../operations/placement-groups#get-the-number-of-placement-groups
.. _here: ../../configuration/pool-pg-config-ref
.. _Placement Groups: ../../operations/placement-groups
.. _Pool, PG and CRUSH Config Reference: ../../configuration/pool-pg-config-ref
.. _NTP: https://en.wikipedia.org/wiki/Network_Time_Protocol
.. _The Network Time Protocol: http://www.ntp.org/
.. _Clock Settings: ../../configuration/mon-config-ref/#clock