ceph/doc/dev/osd_internals/snaps.rst
Samuel Just 6f8e4b3810 src: rename ReplicatedPG to PrimaryLogPG
It's been confusing for a long time that EC pools are implemented by
ReplicatedPG.  What PG/ReplicatedPG really implement is the concept
of a PG where consistency is managed by the primary via a log.

Signed-off-by: Samuel Just <sjust@redhat.com>
2016-12-14 10:18:27 -08:00

125 lines
5.3 KiB
ReStructuredText

======
Snaps
======
Overview
--------
Rados supports two related snapshotting mechanisms:
1. *pool snaps*: snapshots are implicitely applied to all objects
in a pool
2. *self managed snaps*: the user must provide the current *SnapContext*
on each write.
These two are mutually exclusive, only one or the other can be used on
a particular pool.
The *SnapContext* is the set of snapshots currently defined for an object
as well as the most recent snapshot (the *seq*) requested from the mon for
sequencing purposes (a *SnapContext* with a newer *seq* is considered to
be more recent).
The difference between *pool snaps* and *self managed snaps* from the
OSD's point of view lies in whether the *SnapContext* comes to the OSD
via the client's MOSDOp or via the most recent OSDMap.
See OSD::make_writeable
Ondisk Structures
-----------------
Each object has in the pg collection a *head* object (or *snapdir*, which we
will come to shortly) and possibly a set of *clone* objects.
Each hobject_t has a snap field. For the *head* (the only writeable version
of an object), the snap field is set to CEPH_NOSNAP. For the *clones*, the
snap field is set to the *seq* of the *SnapContext* at their creation.
When the OSD services a write, it first checks whether the most recent
*clone* is tagged with a snapid prior to the most recent snap represented
in the *SnapContext*. If so, at least one snapshot has occurred between
the time of the write and the time of the last clone. Therefore, prior
to performing the mutation, the OSD creates a new clone for servicing
reads on snaps between the snapid of the last clone and the most recent
snapid.
The *head* object contains a *SnapSet* encoded in an attribute, which tracks
1. The full set of snaps defined for the object
2. The full set of clones which currently exist
3. Overlapping intervals between clones for tracking space usage
4. Clone size
If the *head* is deleted while there are still clones, a *snapdir* object
is created instead to house the *SnapSet*.
Additionally, the *object_info_t* on each clone includes a vector of snaps
for which clone is defined.
Snap Removal
------------
To remove a snapshot, a request is made to the *Monitor* cluster to
add the snapshot id to the list of purged snaps (or to remove it from
the set of pool snaps in the case of *pool snaps*). In either case,
the *PG* adds the snap to its *snap_trimq* for trimming.
A clone can be removed when all of its snaps have been removed. In
order to determine which clones might need to be removed upon snap
removal, we maintain a mapping from snap to *hobject_t* using the
*SnapMapper*.
See PrimaryLogPG::SnapTrimmer, SnapMapper
This trimming is performed asynchronously by the snap_trim_wq while the
pg is clean and not scrubbing.
#. The next snap in PG::snap_trimq is selected for trimming
#. We determine the next object for trimming out of PG::snap_mapper.
For each object, we create a log entry and repop updating the
object info and the snap set (including adjusting the overlaps).
#. We also locally update our *SnapMapper* instance with the object's
new snaps.
#. The log entry containing the modification of the object also
contains the new set of snaps, which the replica uses to update
its own *SnapMapper* instance.
#. The primary shares the info with the replica, which persists
the new set of purged_snaps along with the rest of the info.
Recovery
--------
Because the trim operations are implemented using repops and log entries,
normal pg peering and recovery maintain the snap trimmer operations with
the caveat that push and removal operations need to update the local
*SnapMapper* instance. If the purged_snaps update is lost, we merely
retrim a now empty snap.
SnapMapper
----------
*SnapMapper* is implemented on top of map_cacher<string, bufferlist>,
which provides an interface over a backing store such as the filesystem
with async transactions. While transactions are incomplete, the map_cacher
instance buffers unstable keys allowing consistent access without having
to flush the filestore. *SnapMapper* provides two mappings:
1. hobject_t -> set<snapid_t>: stores the set of snaps for each clone
object
2. snapid_t -> hobject_t: stores the set of hobjects with the snapshot
as one of its snaps
Assumption: there are lots of hobjects and relatively few snaps. The
first encoding has a stringification of the object as the key and an
encoding of the set of snaps as a value. The second mapping, because there
might be many hobjects for a single snap, is stored as a collection of keys
of the form stringify(snap)_stringify(object) such that stringify(snap)
is constant length. These keys have a bufferlist encoding
pair<snapid, hobject_t> as a value. Thus, creating or trimming a single
object does not involve reading all objects for any snap. Additionally,
upon construction, the *SnapMapper* is provided with a mask for filtering
the objects in the single SnapMapper keyspace belonging to that pg.
Split
-----
The snapid_t -> hobject_t key entries are arranged such that for any pg,
up to 8 prefixes need to be checked to determine all hobjects in a particular
snap for a particular pg. Upon split, the prefixes to check on the parent
are adjusted such that only the objects remaining in the pg will be visible.
The children will immediately have the correct mapping.