ceph/src/mon/Monitor.h
Joao Eduardo Luis 3f014dade0 mon: Monitor: s/_mon_status()/get_mon_status()/
'Monitor::_mon_status()' provides status specific to the monitor being
poked.  This is information that does not necessarily relate with
cluster status, and can even be obtained when there's no quorum (via the
admin socket).

We change the function name to make the distinction between mon-specific
status and cluster-status, which is obtained via a different function.

Signed-off-by: Joao Eduardo Luis <joao.luis@inktank.com>
2014-03-24 14:43:21 +00:00

957 lines
27 KiB
C++

// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
/*
* This is the top level monitor. It runs on each machine in the Monitor
* Cluster. The election of a leader for the paxos algorithm only happens
* once per machine via the elector. There is a separate paxos instance (state)
* kept for each of the system components: Object Store Device (OSD) Monitor,
* Placement Group (PG) Monitor, Metadata Server (MDS) Monitor, and Client Monitor.
*/
#ifndef CEPH_MONITOR_H
#define CEPH_MONITOR_H
#include "include/types.h"
#include "msg/Messenger.h"
#include "common/Timer.h"
#include "MonMap.h"
#include "Elector.h"
#include "Paxos.h"
#include "Session.h"
#include "osd/OSDMap.h"
#include "common/LogClient.h"
#include "common/SimpleRNG.h"
#include "common/cmdparse.h"
#include "auth/cephx/CephxKeyServer.h"
#include "auth/AuthMethodList.h"
#include "auth/KeyRing.h"
#include "perfglue/heap_profiler.h"
#include "messages/MMonCommand.h"
#include "messages/MPing.h"
#include "mon/MonitorStore.h"
#include "mon/MonitorDBStore.h"
#include <memory>
#include "include/memory.h"
#include <errno.h>
#define CEPH_MON_PROTOCOL 13 /* cluster internal */
enum {
l_cluster_first = 555000,
l_cluster_num_mon,
l_cluster_num_mon_quorum,
l_cluster_num_osd,
l_cluster_num_osd_up,
l_cluster_num_osd_in,
l_cluster_osd_epoch,
l_cluster_osd_kb,
l_cluster_osd_kb_used,
l_cluster_osd_kb_avail,
l_cluster_num_pool,
l_cluster_num_pg,
l_cluster_num_pg_active_clean,
l_cluster_num_pg_active,
l_cluster_num_pg_peering,
l_cluster_num_object,
l_cluster_num_object_degraded,
l_cluster_num_object_unfound,
l_cluster_num_bytes,
l_cluster_num_mds_up,
l_cluster_num_mds_in,
l_cluster_num_mds_failed,
l_cluster_mds_epoch,
l_cluster_last,
};
class QuorumService;
class PaxosService;
class PerfCounters;
class AdminSocketHook;
class MMonGetMap;
class MMonGetVersion;
class MMonSync;
class MMonScrub;
class MMonProbe;
struct MMonSubscribe;
class MAuthRotating;
struct MRoute;
struct MForward;
struct MTimeCheck;
struct MMonHealth;
struct MonCommand;
#define COMPAT_SET_LOC "feature_set"
class Monitor : public Dispatcher {
public:
// me
string name;
int rank;
Messenger *messenger;
ConnectionRef con_self;
Mutex lock;
SafeTimer timer;
/// true if we have ever joined a quorum. if false, we are either a
/// new cluster, a newly joining monitor, or a just-upgraded
/// monitor.
bool has_ever_joined;
PerfCounters *logger, *cluster_logger;
bool cluster_logger_registered;
void register_cluster_logger();
void unregister_cluster_logger();
MonMap *monmap;
set<entity_addr_t> extra_probe_peers;
LogClient clog;
KeyRing keyring;
KeyServer key_server;
AuthMethodList auth_cluster_required;
AuthMethodList auth_service_required;
CompatSet features;
const MonCommand *leader_supported_mon_commands;
int leader_supported_mon_commands_size;
private:
void new_tick();
friend class C_Mon_Tick;
// -- local storage --
public:
MonitorDBStore *store;
static const string MONITOR_NAME;
static const string MONITOR_STORE_PREFIX;
// -- monitor state --
private:
enum {
STATE_PROBING = 1,
STATE_SYNCHRONIZING,
STATE_ELECTING,
STATE_LEADER,
STATE_PEON,
STATE_SHUTDOWN
};
int state;
public:
static const char *get_state_name(int s) {
switch (s) {
case STATE_PROBING: return "probing";
case STATE_SYNCHRONIZING: return "synchronizing";
case STATE_ELECTING: return "electing";
case STATE_LEADER: return "leader";
case STATE_PEON: return "peon";
case STATE_SHUTDOWN: return "shutdown";
default: return "???";
}
}
const char *get_state_name() const {
return get_state_name(state);
}
bool is_shutdown() const { return state == STATE_SHUTDOWN; }
bool is_probing() const { return state == STATE_PROBING; }
bool is_synchronizing() const { return state == STATE_SYNCHRONIZING; }
bool is_electing() const { return state == STATE_ELECTING; }
bool is_leader() const { return state == STATE_LEADER; }
bool is_peon() const { return state == STATE_PEON; }
const utime_t &get_leader_since() const;
// -- elector --
private:
Paxos *paxos;
Elector elector;
friend class Elector;
int leader; // current leader (to best of knowledge)
set<int> quorum; // current active set of monitors (if !starting)
utime_t leader_since; // when this monitor became the leader, if it is the leader
utime_t exited_quorum; // time detected as not in quorum; 0 if in
uint64_t quorum_features; ///< intersection of quorum member feature bits
bufferlist supported_commands_bl; // encoded MonCommands we support
bufferlist classic_commands_bl; // encoded MonCommands supported by Dumpling
set<int> classic_mons; // set of "classic" monitors; only valid on leader
set<string> outside_quorum;
/**
* @defgroup scrub
* @{
*/
version_t scrub_version; ///< paxos version we are scrubbing
map<int,ScrubResult> scrub_result; ///< results so far
/**
* trigger a cross-mon scrub
*
* Verify all mons are storing identical content
*/
int scrub();
void handle_scrub(MMonScrub *m);
void _scrub(ScrubResult *r);
void scrub_finish();
void scrub_reset();
/**
* @defgroup Synchronization
* @{
*/
/**
* @} // provider state
*/
struct SyncProvider {
entity_inst_t entity; ///< who
uint64_t cookie; ///< unique cookie for this sync attempt
utime_t timeout; ///< when we give up and expire this attempt
version_t last_committed; ///< last paxos version on peer
pair<string,string> last_key; ///< last key sent to (or on) peer
bool full; ///< full scan?
MonitorDBStore::Synchronizer synchronizer; ///< iterator
SyncProvider() : cookie(0), last_committed(0), full(false) {}
void reset_timeout(CephContext *cct, int grace) {
timeout = ceph_clock_now(cct);
timeout += grace;
}
};
map<uint64_t, SyncProvider> sync_providers; ///< cookie -> SyncProvider for those syncing from us
uint64_t sync_provider_count; ///< counter for issued cookies to keep them unique
/**
* @} // requester state
*/
entity_inst_t sync_provider; ///< who we are syncing from
uint64_t sync_cookie; ///< 0 if we are starting, non-zero otherwise
bool sync_full; ///< true if we are a full sync, false for recent catch-up
version_t sync_start_version; ///< last_committed at sync start
Context *sync_timeout_event; ///< timeout event
/**
* floor for sync source
*
* When we sync we forget about our old last_committed value which
* can be dangerous. For example, if we have a cluster of:
*
* mon.a: lc 100
* mon.b: lc 80
* mon.c: lc 100 (us)
*
* If something forces us to sync (say, corruption, or manual
* intervention, or bug), we forget last_committed, and might abort.
* If mon.a happens to be down when we come back, we will see:
*
* mon.b: lc 80
* mon.c: lc 0 (us)
*
* and sync from mon.b, at which point a+b will both have lc 80 and
* come online with a majority holding out of date commits.
*
* Avoid this by preserving our old last_committed value prior to
* sync and never going backwards.
*/
version_t sync_last_committed_floor;
struct C_SyncTimeout : public Context {
Monitor *mon;
C_SyncTimeout(Monitor *m) : mon(m) {}
void finish(int r) {
mon->sync_timeout();
}
};
/**
* Obtain the synchronization target prefixes in set form.
*
* We consider a target prefix all those that are relevant when
* synchronizing two stores. That is, all those that hold paxos service's
* versions, as well as paxos versions, or any control keys such as the
* first or last committed version.
*
* Given the current design, this function should return the name of all and
* any available paxos service, plus the paxos name.
*
* @returns a set of strings referring to the prefixes being synchronized
*/
set<string> get_sync_targets_names();
/**
* Reset the monitor's sync-related data structures for syncing *from* a peer
*/
void sync_reset_requester();
/**
* Reset sync state related to allowing others to sync from us
*/
void sync_reset_provider();
/**
* Caled when a sync attempt times out (requester-side)
*/
void sync_timeout();
/**
* Get the latest monmap for backup purposes during sync
*/
void sync_obtain_latest_monmap(bufferlist &bl);
/**
* Start sync process
*
* Start pulling committed state from another monitor.
*
* @param entity where to pull committed state from
* @param full whether to do a full sync or just catch up on recent paxos
*/
void sync_start(entity_inst_t &entity, bool full);
public:
/**
* force a sync on next mon restart
*/
void sync_force(Formatter *f, ostream& ss);
private:
/**
* store critical state for safekeeping during sync
*
* We store a few things on the side that we don't want to get clobbered by sync. This
* includes the latest monmap and a lower bound on last_committed.
*/
void sync_stash_critical_state(MonitorDBStore::Transaction *tx);
/**
* reset the sync timeout
*
* This is used on the client to restart if things aren't progressing
*/
void sync_reset_timeout();
/**
* trim stale sync provider state
*
* If someone is syncing from us and hasn't talked to us recently, expire their state.
*/
void sync_trim_providers();
/**
* Complete a sync
*
* Finish up a sync after we've gotten all of the chunks.
*
* @param last_committed final last_committed value from provider
*/
void sync_finish(version_t last_committed);
/**
* request the next chunk from the provider
*/
void sync_get_next_chunk();
/**
* handle sync message
*
* @param m Sync message with operation type MMonSync::OP_START_CHUNKS
*/
void handle_sync(MMonSync *m);
void _sync_reply_no_cookie(MMonSync *m);
void handle_sync_get_cookie(MMonSync *m);
void handle_sync_get_chunk(MMonSync *m);
void handle_sync_finish(MMonSync *m);
void handle_sync_cookie(MMonSync *m);
void handle_sync_forward(MMonSync *m);
void handle_sync_chunk(MMonSync *m);
void handle_sync_no_cookie(MMonSync *m);
/**
* @} // Synchronization
*/
list<Context*> waitfor_quorum;
list<Context*> maybe_wait_for_quorum;
/**
* @defgroup Monitor_h_TimeCheck Monitor Clock Drift Early Warning System
* @{
*
* We use time checks to keep track of any clock drifting going on in the
* cluster. This is accomplished by periodically ping each monitor in the
* quorum and register its response time on a map, assessing how much its
* clock has drifted. We also take this opportunity to assess the latency
* on response.
*
* This mechanism works as follows:
*
* - Leader sends out a 'PING' message to each other monitor in the quorum.
* The message is timestamped with the leader's current time. The leader's
* current time is recorded in a map, associated with each peon's
* instance.
* - The peon replies to the leader with a timestamped 'PONG' message.
* - The leader calculates a delta between the peon's timestamp and its
* current time and stashes it.
* - The leader also calculates the time it took to receive the 'PONG'
* since the 'PING' was sent, and stashes an approximate latency estimate.
* - Once all the quorum members have pong'ed, the leader will share the
* clock skew and latency maps with all the monitors in the quorum.
*/
map<entity_inst_t, utime_t> timecheck_waiting;
map<entity_inst_t, double> timecheck_skews;
map<entity_inst_t, double> timecheck_latencies;
// odd value means we are mid-round; even value means the round has
// finished.
version_t timecheck_round;
unsigned int timecheck_acks;
utime_t timecheck_round_start;
/**
* Time Check event.
*/
Context *timecheck_event;
struct C_TimeCheck : public Context {
Monitor *mon;
C_TimeCheck(Monitor *m) : mon(m) { }
void finish(int r) {
mon->timecheck_start_round();
}
};
void timecheck_start();
void timecheck_finish();
void timecheck_start_round();
void timecheck_finish_round(bool success = true);
void timecheck_cancel_round();
void timecheck_cleanup();
void timecheck_report();
void timecheck();
health_status_t timecheck_status(ostringstream &ss,
const double skew_bound,
const double latency);
void handle_timecheck_leader(MTimeCheck *m);
void handle_timecheck_peon(MTimeCheck *m);
void handle_timecheck(MTimeCheck *m);
/**
* @}
*/
/**
* @defgroup Monitor_h_stats Keep track of monitor statistics
* @{
*/
struct MonStatsEntry {
// data dir
uint64_t kb_total;
uint64_t kb_used;
uint64_t kb_avail;
unsigned int latest_avail_ratio;
utime_t last_update;
};
struct MonStats {
MonStatsEntry ours;
map<entity_inst_t,MonStatsEntry> others;
};
MonStats stats;
void stats_update();
/**
* @}
*/
/**
* Handle ping messages from others.
*/
void handle_ping(MPing *m);
Context *probe_timeout_event; // for probing
struct C_ProbeTimeout : public Context {
Monitor *mon;
C_ProbeTimeout(Monitor *m) : mon(m) {}
void finish(int r) {
mon->probe_timeout(r);
}
};
void reset_probe_timeout();
void cancel_probe_timeout();
void probe_timeout(int r);
public:
epoch_t get_epoch();
int get_leader() { return leader; }
const set<int>& get_quorum() { return quorum; }
list<string> get_quorum_names() {
list<string> q;
for (set<int>::iterator p = quorum.begin(); p != quorum.end(); ++p)
q.push_back(monmap->get_name(*p));
return q;
}
uint64_t get_quorum_features() const {
return quorum_features;
}
void apply_quorum_to_compatset_features();
uint64_t apply_compatset_features_to_quorum_requirements();
private:
void _reset(); ///< called from bootstrap, start_, or join_election
public:
void bootstrap();
void join_election();
void start_election();
void win_standalone_election();
// end election (called by Elector)
void win_election(epoch_t epoch, set<int>& q,
uint64_t features,
const MonCommand *cmdset, int cmdsize,
const set<int> *classic_monitors);
void lose_election(epoch_t epoch, set<int>& q, int l,
uint64_t features); // end election (called by Elector)
void finish_election();
const bufferlist& get_supported_commands_bl() {
return supported_commands_bl;
}
const bufferlist& get_classic_commands_bl() {
return classic_commands_bl;
}
const set<int>& get_classic_mons() {
return classic_mons;
}
void update_logger();
/**
* Vector holding the Services serviced by this Monitor.
*/
vector<PaxosService*> paxos_service;
PaxosService *get_paxos_service_by_name(const string& name);
class PGMonitor *pgmon() {
return (class PGMonitor *)paxos_service[PAXOS_PGMAP];
}
class MDSMonitor *mdsmon() {
return (class MDSMonitor *)paxos_service[PAXOS_MDSMAP];
}
class MonmapMonitor *monmon() {
return (class MonmapMonitor *)paxos_service[PAXOS_MONMAP];
}
class OSDMonitor *osdmon() {
return (class OSDMonitor *)paxos_service[PAXOS_OSDMAP];
}
class AuthMonitor *authmon() {
return (class AuthMonitor *)paxos_service[PAXOS_AUTH];
}
class LogMonitor *logmon() {
return (class LogMonitor*) paxos_service[PAXOS_LOG];
}
friend class Paxos;
friend class OSDMonitor;
friend class MDSMonitor;
friend class MonmapMonitor;
friend class PGMonitor;
friend class LogMonitor;
QuorumService *health_monitor;
QuorumService *config_key_service;
// -- sessions --
MonSessionMap session_map;
AdminSocketHook *admin_hook;
void check_subs();
void check_sub(Subscription *sub);
void send_latest_monmap(Connection *con);
// messages
void handle_get_version(MMonGetVersion *m);
void handle_subscribe(MMonSubscribe *m);
void handle_mon_get_map(MMonGetMap *m);
static void _generate_command_map(map<string,cmd_vartype>& cmdmap,
map<string,string> &param_str_map);
static const MonCommand *_get_moncommand(const string &cmd_prefix,
MonCommand *cmds, int cmds_size);
bool _allowed_command(MonSession *s, string &module, string &prefix,
const map<string,cmd_vartype>& cmdmap,
const map<string,string>& param_str_map,
const MonCommand *this_cmd);
void get_mon_status(Formatter *f, ostream& ss);
void _quorum_status(Formatter *f, ostream& ss);
void _osdmonitor_prepare_command(cmdmap_t& cmdmap, ostream& ss);
void _add_bootstrap_peer_hint(string cmd, cmdmap_t& cmdmap, ostream& ss);
void handle_command(class MMonCommand *m);
void handle_route(MRoute *m);
/**
* Generate health report
*
* @param status one-line status summary
* @param detailbl optional bufferlist* to fill with a detailed report
*/
void get_health(string& status, bufferlist *detailbl, Formatter *f);
void get_cluster_status(stringstream &ss, Formatter *f);
void reply_command(MMonCommand *m, int rc, const string &rs, version_t version);
void reply_command(MMonCommand *m, int rc, const string &rs, bufferlist& rdata, version_t version);
void handle_probe(MMonProbe *m);
/**
* Handle a Probe Operation, replying with our name, quorum and known versions.
*
* We use the MMonProbe message class for anything and everything related with
* Monitor probing. One of the operations relates directly with the probing
* itself, in which we receive a probe request and to which we reply with
* our name, our quorum and the known versions for each Paxos service. Thus the
* redundant function name. This reply will obviously be sent to the one
* probing/requesting these infos.
*
* @todo Add @pre and @post
*
* @param m A Probe message, with an operation of type Probe.
*/
void handle_probe_probe(MMonProbe *m);
void handle_probe_reply(MMonProbe *m);
// request routing
struct RoutedRequest {
uint64_t tid;
bufferlist request_bl;
MonSession *session;
ConnectionRef con;
uint64_t con_features;
entity_inst_t client_inst;
RoutedRequest() : tid(0), session(NULL), con_features(0) {}
~RoutedRequest() {
if (session)
session->put();
}
};
uint64_t routed_request_tid;
map<uint64_t, RoutedRequest*> routed_requests;
void forward_request_leader(PaxosServiceMessage *req);
void handle_forward(MForward *m);
void try_send_message(Message *m, const entity_inst_t& to);
void send_reply(PaxosServiceMessage *req, Message *reply);
void no_reply(PaxosServiceMessage *req);
void resend_routed_requests();
void remove_session(MonSession *s);
void remove_all_sessions();
void waitlist_or_zap_client(Message *m);
void send_command(const entity_inst_t& inst,
const vector<string>& com);
public:
struct C_Command : public Context {
Monitor *mon;
MMonCommand *m;
int rc;
string rs;
bufferlist rdata;
version_t version;
C_Command(Monitor *_mm, MMonCommand *_m, int r, string s, version_t v) :
mon(_mm), m(_m), rc(r), rs(s), version(v){}
C_Command(Monitor *_mm, MMonCommand *_m, int r, string s, bufferlist rd, version_t v) :
mon(_mm), m(_m), rc(r), rs(s), rdata(rd), version(v){}
void finish(int r) {
if (r >= 0)
mon->reply_command(m, rc, rs, rdata, version);
else if (r == -ECANCELED)
m->put();
else if (r == -EAGAIN)
mon->_ms_dispatch(m);
else
assert(0 == "bad C_Command return value");
}
};
private:
class C_RetryMessage : public Context {
Monitor *mon;
Message *msg;
public:
C_RetryMessage(Monitor *m, Message *ms) : mon(m), msg(ms) {}
void finish(int r) {
if (r == -EAGAIN || r >= 0)
mon->_ms_dispatch(msg);
else if (r == -ECANCELED)
msg->put();
else
assert(0 == "bad C_RetryMessage return value");
}
};
//ms_dispatch handles a lot of logic and we want to reuse it
//on forwarded messages, so we create a non-locking version for this class
bool _ms_dispatch(Message *m);
bool ms_dispatch(Message *m) {
lock.Lock();
bool ret = _ms_dispatch(m);
lock.Unlock();
return ret;
}
// dissociate message handling from session and connection logic
bool dispatch(MonSession *s, Message *m, const bool src_is_mon);
//mon_caps is used for un-connected messages from monitors
MonCap * mon_caps;
bool ms_get_authorizer(int dest_type, AuthAuthorizer **authorizer, bool force_new);
bool ms_verify_authorizer(Connection *con, int peer_type,
int protocol, bufferlist& authorizer_data, bufferlist& authorizer_reply,
bool& isvalid, CryptoKey& session_key);
bool ms_handle_reset(Connection *con);
void ms_handle_remote_reset(Connection *con) {}
int write_default_keyring(bufferlist& bl);
void extract_save_mon_key(KeyRing& keyring);
// features
static CompatSet get_supported_features();
static CompatSet get_legacy_features();
/// read the ondisk features into the CompatSet pointed to by read_features
static void read_features_off_disk(MonitorDBStore *store, CompatSet *read_features);
void read_features();
void write_features(MonitorDBStore::Transaction &t);
public:
Monitor(CephContext *cct_, string nm, MonitorDBStore *s,
Messenger *m, MonMap *map);
~Monitor();
static int check_features(MonitorDBStore *store);
int preinit();
int init();
void init_paxos();
void refresh_from_paxos(bool *need_bootstrap);
void shutdown();
void tick();
void handle_signal(int sig);
int mkfs(bufferlist& osdmapbl);
/**
* check cluster_fsid file
*
* @return EEXIST if file exists and doesn't match, 0 on match, or negative error code
*/
int check_fsid();
/**
* write cluster_fsid file
*
* @return 0 on success, or negative error code
*/
int write_fsid();
int write_fsid(MonitorDBStore::Transaction &t);
void do_admin_command(std::string command, cmdmap_t& cmdmap,
std::string format, ostream& ss);
private:
// don't allow copying
Monitor(const Monitor& rhs);
Monitor& operator=(const Monitor &rhs);
public:
class StoreConverter {
const string path;
MonitorDBStore *db;
boost::scoped_ptr<MonitorStore> store;
set<version_t> gvs;
map<version_t, set<pair<string,version_t> > > gv_map;
version_t highest_last_pn;
version_t highest_accepted_pn;
public:
StoreConverter(string path, MonitorDBStore *d)
: path(path), db(d), store(NULL),
highest_last_pn(0), highest_accepted_pn(0)
{ }
/**
* Check if store needs to be converted from old format to a
* k/v store.
*
* @returns 0 if store doesn't need conversion; 1 if it does; <0 if error
*/
int needs_conversion();
int convert();
bool is_converting() {
return db->exists("mon_convert", "on_going");
}
private:
bool _check_gv_store();
void _init() {
assert(!store);
MonitorStore *store_ptr = new MonitorStore(path);
store.reset(store_ptr);
}
void _deinit() {
store.reset(NULL);
}
set<string> _get_machines_names() {
set<string> names;
names.insert("auth");
names.insert("logm");
names.insert("mdsmap");
names.insert("monmap");
names.insert("osdmap");
names.insert("pgmap");
return names;
}
void _mark_convert_start() {
MonitorDBStore::Transaction tx;
tx.put("mon_convert", "on_going", 1);
db->apply_transaction(tx);
}
void _convert_finish_features(MonitorDBStore::Transaction &t);
void _mark_convert_finish() {
MonitorDBStore::Transaction tx;
tx.erase("mon_convert", "on_going");
_convert_finish_features(tx);
db->apply_transaction(tx);
}
void _convert_monitor();
void _convert_machines(string machine);
void _convert_osdmap_full();
void _convert_machines();
void _convert_paxos();
};
static void format_command_descriptions(const MonCommand *commands,
unsigned commands_size,
Formatter *f,
bufferlist *rdata);
void get_locally_supported_monitor_commands(const MonCommand **cmds, int *count);
void get_classic_monitor_commands(const MonCommand **cmds, int *count);
void get_leader_supported_commands(const MonCommand **cmds, int *count);
/// the Monitor owns this pointer once you pass it in
void set_leader_supported_commands(const MonCommand *cmds, int size);
static bool is_keyring_required();
};
#define CEPH_MON_FEATURE_INCOMPAT_BASE CompatSet::Feature (1, "initial feature set (~v.18)")
#define CEPH_MON_FEATURE_INCOMPAT_GV CompatSet::Feature (2, "global version sequencing (v0.52)")
#define CEPH_MON_FEATURE_INCOMPAT_SINGLE_PAXOS CompatSet::Feature (3, "single paxos with k/v store (v0.\?)")
#define CEPH_MON_FEATURE_INCOMPAT_OSD_ERASURE_CODES CompatSet::Feature(4, "support erasure code pools")
#define CEPH_MON_FEATURE_INCOMPAT_OSDMAP_ENC CompatSet::Feature(5, "new-style osdmap encoding")
// make sure you add your feature to Monitor::get_supported_features
long parse_pos_long(const char *s, ostream *pss = NULL);
struct MonCommand {
string cmdstring;
string helpstring;
string module;
string req_perms;
string availability;
void encode(bufferlist &bl) const {
/*
* very naughty: deliberately unversioned because individual commands
* shouldn't be encoded standalone, only as a full set (which we do
* version, see encode_array() below).
*/
::encode(cmdstring, bl);
::encode(helpstring, bl);
::encode(module, bl);
::encode(req_perms, bl);
::encode(availability, bl);
}
void decode(bufferlist::iterator &bl) {
::decode(cmdstring, bl);
::decode(helpstring, bl);
::decode(module, bl);
::decode(req_perms, bl);
::decode(availability, bl);
}
bool operator==(const MonCommand& o) const {
return cmdstring == o.cmdstring && helpstring == o.helpstring &&
module == o.module && req_perms == o.req_perms &&
availability == o.availability;
}
bool operator!=(const MonCommand& o) const {
return !(*this == o);
}
static void encode_array(const MonCommand *cmds, int size, bufferlist &bl) {
ENCODE_START(1, 1, bl);
uint16_t s = size;
::encode(s, bl);
::encode_array_nohead(cmds, size, bl);
ENCODE_FINISH(bl);
}
static void decode_array(MonCommand **cmds, int *size,
bufferlist::iterator &bl) {
DECODE_START(1, bl);
uint16_t s = 0;
::decode(s, bl);
*size = s;
*cmds = new MonCommand[*size];
::decode_array_nohead(*cmds, *size, bl);
DECODE_FINISH(bl);
}
};
WRITE_CLASS_ENCODER(MonCommand);
#endif