ceph/doc/cephfs/createfs.rst
Ken Dreyer db4cd72479 doc/cephfs: monospace "ceph fs set-default" command
Fix the rst syntax here to make this command match everything else.

Signed-off-by: Ken Dreyer <kdreyer@redhat.com>
2022-12-06 15:24:43 -05:00

132 lines
5.4 KiB
ReStructuredText

=========================
Create a Ceph file system
=========================
Creating pools
==============
A Ceph file system requires at least two RADOS pools, one for data and one for metadata.
There are important considerations when planning these pools:
- We recommend configuring *at least* 3 replicas for the metadata pool,
as data loss in this pool can render the entire file system inaccessible.
Configuring 4 would not be extreme, especially since the metadata pool's
capacity requirements are quite modest.
- We recommend the fastest feasible low-latency storage devices (NVMe, Optane,
or at the very least SAS/SATA SSD) for the metadata pool, as this will
directly affect the latency of client file system operations.
- The data pool used to create the file system is the "default" data pool and
the location for storing all inode backtrace information, which is used for hard link
management and disaster recovery. For this reason, all CephFS inodes
have at least one object in the default data pool. If erasure-coded
pools are planned for file system data, it is best to configure the default as
a replicated pool to improve small-object write and
read performance when updating backtraces. Separately, another erasure-coded
data pool can be added (see also :ref:`ecpool`) that can be used on an entire
hierarchy of directories and files (see also :ref:`file-layouts`).
Refer to :doc:`/rados/operations/pools` to learn more about managing pools. For
example, to create two pools with default settings for use with a file system, you
might run the following commands:
.. code:: bash
$ ceph osd pool create cephfs_data
$ ceph osd pool create cephfs_metadata
The metadata pool will typically hold at most a few gigabytes of data. For
this reason, a smaller PG count is usually recommended. 64 or 128 is commonly
used in practice for large clusters.
.. note:: The names of the file systems, metadata pools, and data pools can
only have characters in the set [a-zA-Z0-9\_-.].
Creating a file system
======================
Once the pools are created, you may enable the file system using the ``fs new`` command:
.. code:: bash
$ ceph fs new <fs_name> <metadata> <data> [--force] [--allow-dangerous-metadata-overlay] [<fscid:int>] [--recover]
This command creates a new file system with specified metadata and data pool.
The specified data pool is the default data pool and cannot be changed once set.
Each file system has its own set of MDS daemons assigned to ranks so ensure that
you have sufficient standby daemons available to accommodate the new file system.
The ``--force`` option is used to achieve any of the following:
- To set an erasure-coded pool for the default data pool. Use of an EC pool for the
default data pool is discouraged. Refer to `Creating pools`_ for details.
- To set non-empty pool (pool already contains some objects) for the metadata pool.
- To create a file system with a specific file system's ID (fscid).
The --force option is required with --fscid option.
The ``--allow-dangerous-metadata-overlay`` option permits the reuse metadata and
data pools if it is already in-use. This should only be done in emergencies and
after careful reading of the documentation.
If the ``--fscid`` option is provided then this creates a file system with a
specific fscid. This can be used when an application expects the file system's ID
to be stable after it has been recovered, e.g., after monitor databases are
lost and rebuilt. Consequently, file system IDs don't always keep increasing
with newer file systems.
The ``--recover`` option sets the state of file system's rank 0 to existing but
failed. So when a MDS daemon eventually picks up rank 0, the daemon reads the
existing in-RADOS metadata and doesn't overwrite it. The flag also prevents the
standby MDS daemons to join the file system.
For example:
.. code:: bash
$ ceph fs new cephfs cephfs_metadata cephfs_data
$ ceph fs ls
name: cephfs, metadata pool: cephfs_metadata, data pools: [cephfs_data ]
Once a file system has been created, your MDS(s) will be able to enter
an *active* state. For example, in a single MDS system:
.. code:: bash
$ ceph mds stat
cephfs-1/1/1 up {0=a=up:active}
Once the file system is created and the MDS is active, you are ready to mount
the file system. If you have created more than one file system, you will
choose which to use when mounting.
- `Mount CephFS`_
- `Mount CephFS as FUSE`_
- `Mount CephFS on Windows`_
.. _Mount CephFS: ../../cephfs/mount-using-kernel-driver
.. _Mount CephFS as FUSE: ../../cephfs/mount-using-fuse
.. _Mount CephFS on Windows: ../../cephfs/ceph-dokan
If you have created more than one file system, and a client does not
specify a file system when mounting, you can control which file system
they will see by using the ``ceph fs set-default`` command.
Adding a Data Pool to the File System
-------------------------------------
See :ref:`adding-data-pool-to-file-system`.
Using Erasure Coded pools with CephFS
=====================================
You may use Erasure Coded pools as CephFS data pools as long as they have overwrites enabled, which is done as follows:
.. code:: bash
ceph osd pool set my_ec_pool allow_ec_overwrites true
Note that EC overwrites are only supported when using OSDs with the BlueStore backend.
You may not use Erasure Coded pools as CephFS metadata pools, because CephFS metadata is stored using RADOS *OMAP* data structures, which EC pools cannot store.