ceph/tasks/mds_client_limits.py
John Spray 8f49a7d86a tasks: wait for active after mds restart
May have been causing spurious failures on
trying to read session state after MDS restart (
session list isn't populated until recovery is
complete)

Signed-off-by: John Spray <john.spray@redhat.com>
2014-09-25 11:28:53 +01:00

245 lines
8.3 KiB
Python

"""
Exercise the MDS's behaviour when clients and the MDCache reach or
exceed the limits of how many caps/inodes they should hold.
"""
import contextlib
import logging
import time
from teuthology.orchestra.run import CommandFailedError
from tasks.cephfs.filesystem import Filesystem
from tasks.cephfs.fuse_mount import FuseMount
from tasks.cephfs.cephfs_test_case import CephFSTestCase, run_tests
log = logging.getLogger(__name__)
# Arbitrary timeouts for operations involving restarting
# an MDS or waiting for it to come up
MDS_RESTART_GRACE = 60
# Hardcoded values from Server::recall_client_state
CAP_RECALL_RATIO = 0.8
CAP_RECALL_MIN = 100
def wait_until_equal(get_fn, expect_val, timeout, reject_fn=None):
period = 5
elapsed = 0
while True:
val = get_fn()
if val == expect_val:
return
elif reject_fn and reject_fn(val):
raise RuntimeError("wait_until_equal: forbidden value {0} seen".format(val))
else:
if elapsed >= timeout:
raise RuntimeError("Timed out after {0} seconds waiting for {1} (currently {2})".format(
elapsed, expect_val, val
))
else:
log.debug("wait_until_equal: {0} != {1}, waiting...".format(val, expect_val))
time.sleep(period)
elapsed += period
log.debug("wait_until_equal: success")
def wait_until_true(condition, timeout):
period = 5
elapsed = 0
while True:
if condition():
return
else:
if elapsed >= timeout:
raise RuntimeError("Timed out after {0} seconds".format(elapsed))
else:
log.debug("wait_until_equal: waiting...")
time.sleep(period)
elapsed += period
log.debug("wait_until_equal: success")
class TestClientLimits(CephFSTestCase):
# Environment references
mount_a = None
mount_b = None
mds_session_timeout = None
mds_reconnect_timeout = None
ms_max_backoff = None
def __init__(self, *args, **kwargs):
super(TestClientLimits, self).__init__(*args, **kwargs)
self.configs_set = set()
def set_conf(self, subsys, key, value):
self.configs_set.add((subsys, key))
self.fs.set_ceph_conf(subsys, key, value)
def setUp(self):
self.fs.mds_restart()
self.fs.wait_for_daemons()
self.mount_a.mount()
self.mount_a.wait_until_mounted()
self.mount_b.mount()
self.mount_b.wait_until_mounted()
def tearDown(self):
self.fs.clear_firewall()
self.mount_a.teardown()
self.mount_b.teardown()
for subsys, key in self.configs_set:
self.fs.clear_ceph_conf(subsys, key)
def wait_for_health(self, pattern, timeout):
"""
Wait until 'ceph health' contains a single message matching the pattern
"""
def seen_health_warning():
health = self.fs.mon_manager.get_mon_health()
summary_strings = [s['summary'] for s in health['summary']]
if len(summary_strings) == 0:
log.debug("Not expected number of summary strings ({0})".format(summary_strings))
return False
elif len(summary_strings) == 1 and pattern in summary_strings[0]:
return True
else:
raise RuntimeError("Unexpected health messages: {0}".format(summary_strings))
wait_until_true(seen_health_warning, timeout)
def _test_client_pin(self, use_subdir):
"""
When a client pins an inode in its cache, for example because the file is held open,
it should reject requests from the MDS to trim these caps. The MDS should complain
to the user that it is unable to enforce its cache size limits because of this
objectionable client.
:param use_subdir: whether to put test files in a subdir or use root
"""
cache_size = 200
open_files = 250
self.fs.set_ceph_conf('mds', 'mds cache size', cache_size)
self.fs.mds_restart()
self.fs.wait_for_daemons()
mount_a_client_id = self.mount_a.get_global_id()
path = "subdir/mount_a" if use_subdir else "mount_a"
open_proc = self.mount_a.open_n_background(path, open_files)
# Client should now hold:
# `open_files` caps for the open files
# 1 cap for root
# 1 cap for subdir
wait_until_equal(lambda: self.get_session(mount_a_client_id)['num_caps'],
open_files + (2 if use_subdir else 1),
timeout=600,
reject_fn=lambda x: x > open_files + 2)
# MDS should not be happy about that, as the client is failing to comply
# with the SESSION_RECALL messages it is being sent
mds_recall_state_timeout = int(self.fs.get_config("mds_recall_state_timeout"))
self.wait_for_health("failing to respond to cache pressure", mds_recall_state_timeout + 10)
# When the client closes the files, it should retain only as many caps as allowed
# under the SESSION_RECALL policy
log.info("Terminating process holding files open")
open_proc.stdin.close()
try:
open_proc.wait()
except CommandFailedError:
# We killed it, so it raises an error
pass
# The remaining caps should comply with the numbers sent from MDS in SESSION_RECALL message,
# which depend on the cache size and overall ratio
wait_until_equal(
lambda: self.get_session(mount_a_client_id)['num_caps'],
int(cache_size * 0.8),
timeout=600,
reject_fn=lambda x: x < int(cache_size*.8))
def test_client_pin_root(self):
self._test_client_pin(False)
def test_client_pin(self):
self._test_client_pin(True)
def test_client_release_bug(self):
"""
When a client has a bug (which we will simulate) preventing it from releasing caps,
the MDS should notice that releases are not being sent promptly, and generate a health
metric to that effect.
"""
self.set_conf('client.{0}'.format(self.mount_a.client_id), 'client inject release failure', 'true')
self.mount_a.teardown()
self.mount_a.mount()
self.mount_a.wait_until_mounted()
mount_a_client_id = self.mount_a.get_global_id()
# Client A creates a file. He will hold the write caps on the file, and later (simulated bug) fail
# to comply with the MDSs request to release that cap
self.mount_a.run_shell(["touch", "file1"])
# Client B tries to stat the file that client A created
rproc = self.mount_b.write_background("file1")
# After mds_revoke_cap_timeout, we should see a health warning (extra lag from
# MDS beacon period)
mds_revoke_cap_timeout = int(self.fs.get_config("mds_revoke_cap_timeout"))
self.wait_for_health("failing to respond to capability release", mds_revoke_cap_timeout + 10)
# Client B should still be stuck
self.assertFalse(rproc.finished)
# Kill client A
self.mount_a.kill()
self.mount_a.kill_cleanup()
# Client B should complete
self.fs.mds_asok(['session', 'evict', "%s" % mount_a_client_id])
rproc.wait()
@contextlib.contextmanager
def task(ctx, config):
fs = Filesystem(ctx, config)
# Pick out the clients we will use from the configuration
# =======================================================
if len(ctx.mounts) < 2:
raise RuntimeError("Need at least two clients")
mount_a = ctx.mounts.values()[0]
mount_b = ctx.mounts.values()[1]
if not isinstance(mount_a, FuseMount):
# TODO: make kclient mount capable of all the same test tricks as ceph_fuse
raise RuntimeError("Require FUSE clients")
# Stash references on ctx so that we can easily debug in interactive mode
# =======================================================================
ctx.filesystem = fs
ctx.mount_a = mount_a
ctx.mount_b = mount_b
run_tests(ctx, config, TestClientLimits, {
'fs': fs,
'mount_a': mount_a,
'mount_b': mount_b
})
# Continue to any downstream tasks
# ================================
yield