ceph/src/test/omap_bench.cc
Sage Weil 35671cedb2 rados: omap bench: pass null for pmore for omap fetch
Assume OSD limits are high enough for us.

Signed-off-by: Sage Weil <sage@redhat.com>
2017-01-20 17:52:18 -05:00

442 lines
12 KiB
C++

/*
* Generate latency statistics for a configurable number of write
* operations of configurable size.
*
* Created on: May 21, 2012
* Author: Eleanor Cawthon
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*/
#include "include/rados/librados.hpp"
#include "include/Context.h"
#include "common/ceph_context.h"
#include "common/Mutex.h"
#include "common/Cond.h"
#include "include/utime.h"
#include "global/global_context.h"
#include "common/ceph_argparse.h"
#include "test/omap_bench.h"
#include <string>
#include <iostream>
#include <cassert>
#include <climits>
#include <cmath>
using namespace std;
using ceph::bufferlist;
int OmapBench::setup(int argc, const char** argv) {
//parse key_value_store_bench args
vector<const char*> args;
argv_to_vec(argc,argv,args);
for (unsigned i = 0; i < args.size(); i++) {
if(i < args.size() - 1) {
if (strcmp(args[i], "-t") == 0) {
threads = atoi(args[i+1]);
} else if (strcmp(args[i], "-o") == 0) {
objects = atoi(args[i+1]);
} else if (strcmp(args[i], "--entries") == 0) {
entries_per_omap = atoi(args[i+1]);
} else if (strcmp(args[i], "--keysize") == 0) {
key_size = atoi(args[i+1]);
} else if (strcmp(args[i], "--valsize") == 0) {
value_size = atoi(args[i+1]);
} else if (strcmp(args[i], "--inc") == 0) {
increment = atoi(args[i+1]);
} else if (strcmp(args[i], "--omaptype") == 0) {
if(strcmp("rand",args[i+1]) == 0) {
omap_generator = OmapBench::generate_non_uniform_omap;
}
else if (strcmp("uniform", args[i+1]) == 0) {
omap_generator = OmapBench::generate_uniform_omap;
}
} else if (strcmp(args[i], "--name") == 0) {
rados_id = args[i+1];
}
} else if (strcmp(args[i], "--help") == 0) {
cout << "\nUsage: ostorebench [options]\n"
<< "Generate latency statistics for a configurable number of "
<< "key value pair operations of\n"
<< "configurable size.\n\n"
<< "OPTIONS\n"
<< " -t number of threads to use (default "<<threads;
cout << ")\n"
<< " -o number of objects to write (default "<<objects;
cout << ")\n"
<< " --entries number of entries per (default "
<< entries_per_omap;
cout <<")\n"
<< " --keysize number of characters per key "
<< "(default "<<key_size;
cout << ")\n"
<< " --valsize number of characters per value "
<< "(default "<<value_size;
cout << ")\n"
<< " --inc specify the increment to use in the displayed "
<< "histogram (default "<<increment;
cout << ")\n"
<< " --omaptype specify how omaps should be generated - "
<< "rand for random sizes between\n"
<< " 0 and max size, uniform for all sizes"
<< " to be specified size.\n"
<< " (default uniform)\n";
cout << " --name the rados id to use (default "<< rados_id
<< ")\n";
exit(1);
}
}
int r = rados.init(rados_id.c_str());
if (r < 0) {
cout << "error during init" << std::endl;
return r;
}
r = rados.conf_parse_argv(argc, argv);
if (r < 0) {
cout << "error during parsing args" << std::endl;
return r;
}
r = rados.conf_parse_env(NULL);
if (r < 0) {
cout << "error during parsing env" << std::endl;
return r;
}
r = rados.conf_read_file(NULL);
if (r < 0) {
cout << "error during read file" << std::endl;
return r;
}
r = rados.connect();
if (r < 0) {
cout << "error during connect" << std::endl;
return r;
}
r = rados.ioctx_create(pool_name.c_str(), io_ctx);
if (r < 0) {
cout << "error creating io ctx" << std::endl;
rados.shutdown();
return r;
}
return 0;
}
//Writer functions
Writer::Writer(OmapBench *omap_bench) : ob(omap_bench) {
stringstream name;
ob->data_lock.Lock();
name << omap_bench->prefix << ++(ob->data.started_ops);
ob->data_lock.Unlock();
oid = name.str();
}
void Writer::start_time() {
begin_time = ceph_clock_now();
}
void Writer::stop_time() {
end_time = ceph_clock_now();
}
double Writer::get_time() {
return (end_time - begin_time) * 1000;
}
string Writer::get_oid() {
return oid;
}
std::map<std::string, bufferlist> & Writer::get_omap() {
return omap;
}
//AioWriter functions
AioWriter::AioWriter(OmapBench *ob) : Writer(ob) {
aioc = NULL;
}
AioWriter::~AioWriter() {
if(aioc) aioc->release();
}
librados::AioCompletion * AioWriter::get_aioc() {
return aioc;
}
void AioWriter::set_aioc(librados::callback_t complete,
librados::callback_t safe) {
aioc = ob->rados.aio_create_completion(this, complete, safe);
}
//Helper methods
void OmapBench::aio_is_safe(rados_completion_t c, void *arg) {
AioWriter *aiow = reinterpret_cast<AioWriter *>(arg);
aiow->stop_time();
Mutex * data_lock = &aiow->ob->data_lock;
Mutex * thread_is_free_lock = &aiow->ob->thread_is_free_lock;
Cond * thread_is_free = &aiow->ob->thread_is_free;
int &busythreads_count = aiow->ob->busythreads_count;
o_bench_data &data = aiow->ob->data;
int INCREMENT = aiow->ob->increment;
int err = aiow->get_aioc()->get_return_value();
if (err < 0) {
cout << "error writing AioCompletion";
return;
}
double time = aiow->get_time();
delete aiow;
data_lock->Lock();
data.avg_latency = (data.avg_latency * data.completed_ops + time)
/ (data.completed_ops + 1);
data.completed_ops++;
if (time < data.min_latency) {
data.min_latency = time;
}
if (time > data.max_latency) {
data.max_latency = time;
}
data.total_latency += time;
++(data.freq_map[time / INCREMENT]);
if(data.freq_map[time/INCREMENT] > data.mode.second) {
data.mode.first = time/INCREMENT;
data.mode.second = data.freq_map[time/INCREMENT];
}
data_lock->Unlock();
thread_is_free_lock->Lock();
busythreads_count--;
thread_is_free->Signal();
thread_is_free_lock->Unlock();
}
string OmapBench::random_string(int len) {
string ret;
string alphanum = "0123456789"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz";
for (int i = 0; i < len; ++i) {
ret.push_back(alphanum[rand() % (alphanum.size() - 1)]);
}
return ret;
}
int OmapBench::run() {
return (((OmapBench *)this)->*OmapBench::test)(omap_generator);
}
int OmapBench::print_written_omap() {
for (int i = 1; i <= objects; i++) {
int err = 0;
librados::ObjectReadOperation key_read;
set<string> out_keys;
map<string, bufferlist> out_vals;
std::stringstream objstrm;
objstrm << prefix;
objstrm << i;
cout << "\nPrinting omap for "<<objstrm.str() << std::endl;
// FIXME: we ignore pmore here. this shouldn't happen for benchmark
// keys, though, unless the OSD limit is *really* low.
key_read.omap_get_keys2("", LONG_MAX, &out_keys, nullptr, &err);
io_ctx.operate(objstrm.str(), &key_read, NULL);
if (err < 0) {
cout << "error " << err;
cout << " getting omap key set " << std::endl;
return err;
}
librados::ObjectReadOperation val_read;
val_read.omap_get_vals_by_keys(out_keys, &out_vals, &err);
if (err < 0) {
cout << "error " << err;
cout << " getting omap value set " << std::endl;
return err;
}
io_ctx.operate(objstrm.str(), &val_read, NULL);
for (set<string>::iterator iter = out_keys.begin();
iter != out_keys.end(); ++iter) {
cout << *iter << "\t" << (out_vals)[*iter] << std::endl;
}
}
return 0;
}
void OmapBench::print_results() {
cout << "========================================================";
cout << "\nNumber of kvmaps written:\t" << objects;
cout << "\nNumber of ops at once:\t" << threads;
cout << "\nEntries per kvmap:\t\t" << entries_per_omap;
cout << "\nCharacters per key:\t" << key_size;
cout << "\nCharacters per val:\t" << value_size;
cout << std::endl;
cout << std::endl;
cout << "Average latency:\t" << data.avg_latency;
cout << "ms\nMinimum latency:\t" << data.min_latency;
cout << "ms\nMaximum latency:\t" << data.max_latency;
cout << "ms\nMode latency:\t\t"<<"between "<<data.mode.first * increment;
cout << " and " <<data.mode.first * increment + increment;
cout << "ms\nTotal latency:\t\t" << data.total_latency;
cout << "ms"<<std::endl;
cout << std::endl;
cout << "Histogram:" << std::endl;
for(int i = floor(data.min_latency / increment); i <
ceil(data.max_latency / increment); i++) {
cout << ">= "<< i * increment;
cout << "ms";
int spaces;
if (i == 0) spaces = 4;
else spaces = 3 - floor(log10(i));
for (int j = 0; j < spaces; j++) {
cout << " ";
}
cout << "[";
for(int j = 0; j < ((data.freq_map)[i])*45/(data.mode.second); j++) {
cout << "*";
}
cout << std::endl;
}
cout << "\n========================================================"
<< std::endl;
}
int OmapBench::write_omap_asynchronously(AioWriter *aiow,
const std::map<std::string,bufferlist> &omap) {
librados::ObjectWriteOperation owo;
owo.create(false);
owo.omap_clear();
owo.omap_set(omap);
aiow->start_time();
int err = io_ctx.aio_operate(aiow->get_oid(), aiow->get_aioc(), &owo);
if (err < 0) {
cout << "writing omap failed with code "<<err;
cout << std::endl;
return err;
}
return 0;
}
//Omap Generators
int OmapBench::generate_uniform_omap(const int omap_entries, const int key_size,
const int value_size, std::map<std::string,bufferlist> * out_omap) {
bufferlist bl;
//setup omap
for (int i = 0; i < omap_entries; i++) {
bufferlist omap_val;
omap_val.append(random_string(value_size));
string key = random_string(key_size);
(*out_omap)[key]= omap_val;
}
return 0;
}
int OmapBench::generate_non_uniform_omap(const int omap_entries,
const int key_size, const int value_size,
std::map<std::string,bufferlist> * out_omap) {
bufferlist bl;
int num_entries = rand() % omap_entries + 1;
int key_len = rand() % key_size +1;
int val_len = rand() % value_size +1;
//setup omap
for (int i = 0; i < num_entries; i++) {
bufferlist omap_val;
omap_val.append(random_string(val_len));
string key = random_string(key_len);
(*out_omap)[key] = omap_val;
}
return 0;
}
int OmapBench::generate_small_non_random_omap(const int omap_entries,
const int key_size, const int value_size,
std::map<std::string,bufferlist> * out_omap) {
bufferlist bl;
stringstream key;
//setup omap
for (int i = 0; i < omap_entries; i++) {
bufferlist omap_val;
omap_val.append("Value ");
omap_val.append(i);
key << "Key " << i;
(*out_omap)[key.str()]= omap_val;
}
return 0;
}
//tests
int OmapBench::test_write_objects_in_parallel(omap_generator_t omap_gen) {
comp = NULL;
AioWriter *this_aio_writer;
Mutex::Locker l(thread_is_free_lock);
for (int i = 0; i < objects; i++) {
assert(busythreads_count <= threads);
//wait for a writer to be free
if (busythreads_count == threads) {
int err = thread_is_free.Wait(thread_is_free_lock);
assert(busythreads_count < threads);
if (err < 0) {
return err;
}
}
//set up the write
this_aio_writer = new AioWriter(this);
this_aio_writer->set_aioc(NULL,safe);
//perform the write
busythreads_count++;
int err = omap_gen(entries_per_omap, key_size, value_size,
& this_aio_writer->get_omap());
if (err < 0) {
return err;
}
err = OmapBench::write_omap_asynchronously(this_aio_writer,
(this_aio_writer->get_omap()));
if (err < 0) {
return err;
}
}
while(busythreads_count > 0) {
thread_is_free.Wait(thread_is_free_lock);
}
return 0;
}
/**
* runs the specified test with the specified parameters and generates
* a histogram of latencies
*/
int main(int argc, const char** argv) {
OmapBench ob;
int err = ob.setup(argc, argv);
if (err<0) {
cout << "error during setup: "<<err;
cout << std::endl;
exit(1);
}
err = ob.run();
if (err < 0) {
cout << "writing objects failed with code " << err;
cout << std::endl;
return err;
}
ob.print_results();
//uncomment to show omaps
/*err = ob.return print_written_omap();
if (err < 0) {
cout << "printing omaps failed with code " << err;
cout << std::endl;
return err;
}
*/
return 0;
}